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Abstract:



The capability of flapping wings to generate lift is currently evaluated by using the lift coefficient [image: there is no content], a dimensionless number that is derived from the basal equation that calculates the steady-state lift coefficient CL for fixed wings. In contrast to its simple and direct application to fixed wings, the equation for [image: there is no content] requires prior knowledge of the flow field along the wing span, which results in two integrations: along the wing span and over time. This paper proposes an alternate average normalized lift [image: there is no content] that is easy to apply to hovering and forward flapping flight, does not require prior knowledge of the flow field, does not resort to calculus for its solution, and its lineage is close to the basal equation for steady state CL. Furthermore, the average normalized lift [image: there is no content] converges to the legacy CL as the flapping frequency is reduced to zero (gliding flight). Its ease of use is illustrated by applying the average normalized lift [image: there is no content] to the hovering and translating flapping flight of bumblebees. This application of the normalized lift is compared to the same application using two widely-accepted legacy average lift coefficients: the first [image: there is no content] as defined by Dudley and Ellington, and the second lift coefficient by Weis-Fogh. Furthermore, it is shown that the average normalized lift [image: there is no content] has a physical meaning: that of the ratio of work exerted by the flapping wings onto the surrounding flow field and the kinetic energy available at the aerodynamic surfaces during the generation of lift. The working equation for the average normalized lift [image: there is no content] is derived and is presented as a function of Strouhal number, St.
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1. Introduction


The lift coefficient CL is a dimensionless number that evaluates the capability of generating lift by a translating fixed wing subjected to steady state aerodynamics [1] (p. 24):


[image: there is no content]



(1)







This equation is applied directly to steady-state, fixed wings without further derivation, and the resulting CL value, which allows for the comparison of dissimilar flyers (i.e., engineering, as well as biological flyers, with fixed wings during gliding) is obtained by normalizing (dividing) lift L by two variables that are widely accepted in the aerodynamic community: the dynamic pressure [image: there is no content] (i.e., [image: there is no content]) and a reference area, [image: there is no content], the wing planform area (note the use of lower case symbol [image: there is no content], to be explained later). This ubiquitous and practical Equation (1) has three peculiarities, the first peculiarity is that it uses the kinetic energy per unit volume of the mass of air, [image: there is no content], as it flows over a static airplane, to normalize lift L.



Equation (1) is referred to as a basal equation as the current average lift [image: there is no content] that evaluates the ability of generating lift by flapping wings is derived from it. As an example, an average lift coefficient, [image: there is no content], deduced by Dudley and Ellington [2] is shown below:


[image: there is no content]



(2)







This equation is one of a system of two equations and can be found in [2] (p. 62). This system of equations is applied to hovering and translating flapping flight. A second example, also derived from Equation (1), is the lift average lift coefficient [image: there is no content], a quick estimate derived by Weis-Fogh [3] (p. 173) that is applied only to hovering flight:


[image: there is no content]



(3)







Solving the above integral results in the following working equation:


[image: there is no content]



(4)







Equations (2) and (3) are illustrative of current typical mathematical complications encountered during the derivation of [image: there is no content] for flapping wings from the basal equation for CL.



The complexity of these equations derives from a second peculiarity found in the basal Equation (1): the fact that it only accounts for the translation velocity [image: there is no content] but does not account for the average angular velocity [image: there is no content] of flapping wings. The absence of the average angular velocity impedes the direct application of Equation (1) to evaluate the lift-generating capability of flapping wings. In order to apply the equation to flapping wings, the average angular velocity [image: there is no content] must be inserted in Equation (1) by means of an artificial computational construct, the blade element method (BEM) [4] (p. 347), which result in Equations (2) and (3). This construct consists in dividing the flapping wing into a large number of chordwise elements along its span R. Each of these elements of infinitesimally small width are immersed in a unique local flow field that vary along the length of the flapping wing and must be defined a priori by adding the translation velocity vector [image: there is no content] (accounted for in Equation (1)) to the local average tangential velocity [image: there is no content] due to average angular velocity [image: there is no content] of the flapping wing (both velocities [image: there is no content] and [image: there is no content] are not accounted for in Equation (1)). The resultant of both of these velocities vary along the spanwise length of the wing r as well as with time t (hence, the integrands in Equations (2) and (3) are integrated with respect to dr and dt). In this way, the BEM is the tool that introduces the effect of the average angular velocity [image: there is no content] of flapping wings in Equation (1).



This paper compares the average lift coefficient [image: there is no content] with the average normalized lift [image: there is no content], which has a physical meaning, does not resort to the BEM and is simple to apply to flapping wings during hover and forward flight [5,6].




2. The Average Normalized Lift [image: there is no content]


The normalized lift [image: there is no content] evaluates the lifting capability of aircraft with a fixed wing during forward (translating) flight and uses the same variables for normalizing the steady state lift L in Equation (1), but reformatted in the following way: the specific kinetic energy available at the wing due to translation, [image: there is no content], or [image: there is no content], the density ρ, and a reference area Sp (note upper case S):


[image: there is no content]



(5)







Note that the density ρ has been “dissociated” from the dynamic pressure [image: there is no content] in Equation (1) resulting in the product of the specific kinetic energy, [image: there is no content], available at the translating wings, [image: there is no content], and the density ρ of the surrounding static flow field. This dissociation shifts the legacy reference coordinate system from being affixed to a static lifting surface, say, an aircraft model in a wind tunnel, from which the incoming airflow’s kinetic energy [image: there is no content] is being measured, to a new reference coordinate system that is affixed to the static air mass from which the aircraft’s kinetic energy [image: there is no content] (or [image: there is no content]) is measured.



Note that Equation (5) has introduced a new definition of the reference area Sp (written in upper case) that differs from the lower case sp in Equation (1). The original reference area Sp in Equation (1) is found to be its third peculiarity. More on this later.



The term representing the specific kinetic energy (per unit mass) of the flyer, [image: there is no content] in Equation (5), can be written in a more general format as the total specific kinetic energy available, say, at a lifting rotor that has a translating velocity [image: there is no content] and an angular velocity ω. As the presence of these two velocities are accompanied by the possession of corresponding kinetic energies, the total specific kinetic energy [image: there is no content] can be written as the sum of these two scalar components: the translating kinetic energy [image: there is no content] and the rotating kinetic energy [image: there is no content]:


[image: there is no content]



(6)







The term I/m is the specific moment of inertia (again, per unit mass) of the flapping wing and it accounts for the spanwise mass distribution along its length R. More on this ratio later. To write Equation (5) in a more general format, the kinetic energy term [image: there is no content] found in its denominator is replaced by Equation (6). This results in the equation for the normalized lift [image: there is no content] that can be applied directly to evaluate the lifting capability of, say, a lift rotor that generates lift L while translating at a velocity [image: there is no content] and rotates at an angular velocity ω:


[image: there is no content]



(7)







The average normalized lift [image: there is no content] of flapping wings is obtained by replacing the steady state lift L and angular velocity ω in Equation (7) by the average lift [image: there is no content] and the average angular velocity [image: there is no content] due to flapping:


[image: there is no content]



(8)







Throughout this paper, the freestream velocity [image: there is no content] and the average angular velocity [image: there is no content] are assumed to remain constant over time. Note that for gliding flight, ω = 0 in Equation (7) and [image: there is no content] = 0 in Equation (8), and as a result, the normalized lift [image: there is no content] in Equation (7) and the average normalized lift [image: there is no content] in Equation (8) equal the steady state lift coefficient CL in Equation (1). In case of the average lift [image: there is no content] for gliding or soaring flight, [image: there is no content] = 0, we find that the normalized lift [image: there is no content] equals the steady state lift coefficient CL:


[image: there is no content]



(9)







For small values of the average angular velocity [image: there is no content] due to flapping, the quasi-steady state assumption for flapping flight can be invoked and the above steady state equation, Equation (9), can be applied. More on the quasi-steady assumption is given in Section 5.



The quasi-steady assumption tells us that the average normalized lift [image: there is no content] ≈ lift coefficient CL with one caveat: the definition of the reference area Sp (symbol in upper case) chosen for both [image: there is no content] and CL is the sum of all planform areas of the aerodynamic surfaces that (i) contribute to the net average lift [image: there is no content] and (ii) are found (close to) perpendicular to the vector lift [image: there is no content] (the contribution to lift by the fuselage or body is neglected in this paper). This definition of reference area is considered to be physically proper (upper case Sp) whereas the definition of a reference area that does not consider all surfaces contributing to lift (in a positive or negative sense) is considered a physically improper reference area (lower case sp), as is the case of the legacy reference area sp of an airplane in Equation (1) (which does not account for tail or canard surfaces, both contributing to lift). In the case of a bumblebee, the physically proper reference area Sp is its total wing area.



The average normalized lift [image: there is no content] during hover ([image: there is no content] = 0 in Equation (8)) is:


[image: there is no content]



(10)







Whereas the legacy equations for [image: there is no content] in Equations (2) and (4) require prior knowledge of the flow field surrounding a flapping wing (which implies the calculation of the velocity field ahead of each element of the wing along its span r and over time t by resorting to the BEM), Equations (8) (for forward flight) and (10) (for hovering flight) do not require such knowledge, and so, do not resort to the BEM as the average angular velocity [image: there is no content] due to flapping is included in these equations. It is recalled that the sole function of resorting to BEM is to introduce [image: there is no content] of the flapping wings into the basal Equation (1).



With the exception of the ubiquitous usage of the kinetic energy [image: there is no content] of a flowing mass of air, the field of aerodynamics does not made extensive use of the concept of energy as do the fields of strength of materials and structure design (i.e., elastic strain energy, Castigliano’s theorem, etc.). Nor has aerodynamics made frequent use of appropriate figures of merit a used in mechanics and thermodynamics. A figure of merit is defined here as a dimensionless number that (i) possesses a physical meaning, that of a ratio of work w and kinetic energy ek; (ii) uses only physically proper parameters for normalizing (dividing) the average lift [image: there is no content] (or average drag [image: there is no content] and thrust [image: there is no content], forces not covered in this paper), that is, parameters that have a dominant effect in the generation of lift [image: there is no content]; (iii) is associated with a maximum value [image: there is no content] which is usually empirical in nature, and (arguably) close to 1; and (iv) can be read on a stand-alone basis as a “high” or a “low” value.



The average normalized lift [image: there is no content] is a figure of merit like the efficiency η used in mechanics and thermodynamics, and has the same physical significance: the ratio of work and energy.



The physical meaning of the average normalized lift [image: there is no content] is the ratio of the work w (=[image: there is no content]) exerted by the surface Sp and the kinetic energy ek available at this reference surface Sp during the generation of the average net lift [image: there is no content] [5]. This ratio w/ek is made apparent by rewriting Equation (8) as:


[image: there is no content]



(11)







Note that when the wing loading, [image: there is no content], found in the numerator of Equation (11), is divided by the density ρ, it results in the specific work w exerted by the flapping wings.



Equation (11) does not imply that the average lift [image: there is no content] generated by flapping is sensitive to the specific moment of inertia I/m of the flapping wings, but the average normalized lift [image: there is no content] is. The above equation format (i.e.; w/ek) allows for a novel physical interpretation of the normalized lift, an interpretation that is shared with all physically proper lift coefficients CL, as applied, say, to a fixed-winged airplane (ω = 0 in Equation (11)) as it accelerates gradually during straight and level flight as it generates a constant amount of lift L (equal to its weight W) while gradually reducing its angle of attack. In this scenario, the work exerted by the fixed wing, L/ρ·Sp, remains constant (L = W = constant) whereas the kinetic energy [image: there is no content] available at the wing gradually increases. Its normalized lift [image: there is no content] (or lift coefficient CL) measures the amount of work w done “per kinetic energy available” ek that is found to reduce gradually as evidenced by the gradual reduction of the angle of attack. In other words, L/ρ·Sp remains constant in the numerator of Equation (11), whereas its denominator gradually increases, resulting in a decrease of the normalized lift [image: there is no content] (or lift coefficient CL). This physical concept is applicable to the lift coefficient CL as long as it is calculated by normalizing lift L by physically proper parameters only. The use of one or more physically improper parameters for calculating CL will render it also physically improper and unfit for use for comparing different lifting surfaces (say, between flapping wings and rotating cylinders in Magnus effect). At this point, and possibly addressing the possible question raised by the reader on the purpose or validity of comparing such differing lifting systems, it is argued that the usefulness of a figure of merit may be seen to increase if these comparisons, however unlikely, are allowed as meaningful (in the same way the efficiency η of, say, the Otto cycle and a jet engine’s Brayton cycle can be compared in thermodynamics). The use of physically improper parameter(s) will result in physically improper legacy coefficients CL and CDo that do not allow for such meaningful comparisons, as is the case when comparing the lift coefficient CL of different aircraft configurations (e.g.; flying wing against tail-configured aircraft) or when comparing the parasite drag coefficient CDo of airplanes of different wing areas (e.g.; F-104 Starfighter against B-58 Hustler). When using these legacy coefficients, meaningful comparisons can still be made by limiting the comparison of CL to airplanes of same configuration (flying wing against flying wing), or comparing the CDo of airplanes with same physically improper reference area sp [5].



Enter the third peculiarity of Equation (1): as mentioned above, a valid side-by-side comparison of the normalized lift [image: there is no content] of steady state lift systems (i.e., fixed-wing aircraft) as well as the average normalized lift [image: there is no content] for time-dependent lift systems (i.e., bumblebees) requires a consistent, physically proper reference area: the reference surface Sp (upper case S) in Equation (5) (and onwards) is the total planform area found (close to) perpendicular and contributing to the net average lift [image: there is no content]. As discussed above, an expected application of a dimensionless coefficient, be it the lift coefficient CL, the normalized lift [image: there is no content] or its average value [image: there is no content] is the comparison of the ability of generating lift L by various types of lift systems, be these designed by engineers (i.e., tail or canard-configured airplanes, lift rotors, ornithopters) or researched by biomechanicists (i.e., flapping wings of bumblebees). As mentioned, the possibility of a side-by-side comparison of these differing systems has a valuable cross-pollination potential that unfortunately is not currently possible as the definition of a reference area selected for normalizing steady-state lift L of aircraft (with a reference area represented by a lower case sp in Equation (1)) is not consistent with the definition of a reference area used for normalizing the time-dependent lift [image: there is no content] in biological flight (with a reference area represented by an upper case Sp in Equation (5) and onwards). The average lift coefficient [image: there is no content] of a bumblebee is obtained by normalizing its lift [image: there is no content] by all the aerodynamic surfaces contributing to its generation, an all-inclusive definition made explicit by the use of the upper case symbol, Sp, as shown in Equation (5). In contrast, and here is the third peculiarity of CL in Equation (1), the reference area used for a tail or canard-configured airplane considers only the main wing planform sp. This definition of the legacy sp, suggested by Munk in 1923 [6], excludes the tail surface and so, neglects its contribution to the net lift L (usually a negative one due to stability purposes) as well as the canard surface (and so, neglects its contribution to the net lift L, always a positive one). This non-inclusive definitions of reference area is a third peculiarity of Equation (1) that results in an physically improper parameter, and is made explicit in this paper by choosing for a lower case symbol, sp, as shown in Equation (1).



The inconsistency in the definition of reference areas results in, say, the bumblebee having a relatively lower wing loading [image: there is no content], whereas the tail and canard-configured airplanes will have a higher wing loading L/sp (as tail and canard areas are not accounted for). This results in an “inflated” wing loading (as sp < Sp, so L/sp > [image: there is no content]) for the tail and canard-configured airplanes when compared to a bumblebee. This larger wing loading, when divided by the density ρ (as per Equation (11)) results, again, in an “inflated” work w exerted by the tail and canard-configured airplanes, which in turn results in an inflated [image: there is no content] (and [image: there is no content]) when compared to a bumblebee. This inflated value can be mistakenly reported as a result of a Reynolds number effect but is, instead, due to an inconsistency in the definition of reference areas. That an increase in the Reynolds number has an effect of an increase in CL max is not in question: what is highlighted here is a significant contribution towards an increase in the lift coefficient CL (and CL max) that is a result of a more mundane problem: the neglect of the tail and canard areas. If comparisons between biological flyers and aircraft are necessary, the reader is encouraged to compare their legacy CL (and CL max) values using flying wings instead of tail and canard-configured airplanes. In other words: the comparison of the capability of generating lift by tail and canard-configured airplanes on one side and bumblebees on the other may be flawed due to the use of inconsistent definition of their reference areas that, by neglecting a large percentage of their lifting areas that contribute to net lift (≈ tail and canard are typically 20% of the total lifting planform) invalidates a meaningful comparison between lift coefficients, as results show an overestimate of the lift capability of tail and canard-configured by, typically, 20%. Although not related to flapping flight, the above-described situation also arises when comparing the (inevitably lower) CL max of a flying wing with the CL max of a tail or canard-configured aircraft. The normalized lift [image: there is no content] is a figure of merit that is not configuration-dependent and allows for the meaningful comparison of a large variety of lifting systems due to its use of a consistent, physically proper definition of reference area Sp [5].



Next, we evaluate two physically proper parameters found in Equation (11): the average angular velocity [image: there is no content] and the specific moment of inertia I/m. From these parameters, other physically proper parameters will be derived, and their inclusions in Equation (11) will make this equation more practical.



The average angular velocity [image: there is no content] of flapping wings in Equation (11) equals 2·f·Φ where f is the flapping frequency in cycles per second (a cycle is a downstroke followed by an upstroke) and Φ is the stroke angle (a stroke is the wing’s upstroke or downstroke).



The specific moment of inertia I/m in Equation (11) is the specific moment of inertia of a single flapping wing, a term that is not related to aerodynamics but to its spanwise (not chordwise) mass distribution. The specific moment of inertia I/m of a wing is related to the second moment of inertia, but from a “kinetic energy-during-flapping” standpoint that occupies us here, the chordwise placement of the wing’s center of gravity, CG, is neglected. This is so as is the wing pronation/supination involves a negligible amount of kinetic energy as the wing rotates about the wing’s long axis during each flapping cycle. So, the “second moment” scenario is now a “first moment” one, were the two-dimensional wing is substituted by a one-dimensional rod of constant density distribution along its length, a valid substitution as long as the wing’s spanwise CG location coincides with the rod’s CG (as the rod of length R has a constant density along its length R, its center of gravity is placed at R/2). From an inertial standpoint and from a “per unit basis” (and understanding that aerodynamics does not play a role in I/m) the flapping wing will have the same inertial property (i.e., I/m) as the rod, as long as both (i) share the same kinetic characteristics (wing pronation and supination during flapping are not considered) and (ii) the CG of the wing and rod are placed at the same spanwise distance dCG from the axis of rotation. Whereas the length R of the wing and the rod may be different, the distance of their CG to the axis of rotation dCG must be the same for this substitution to be valid (i.e., same dCG). So, if the CG of the wing is not known, the term I/m is obtained by replacing the wing by a cylindrical rod of the same length R as the wing’s span. It is not necessary to know the mass m of the wing as Equation (11) contains specific kinetic energy terms ek, that is, energies per unit mass.



There are two cases to contemplate: as mentioned above, if the CG of the wing is not known, it can be assumed to be at half the wing’s length, R/2, and so, its specific moment of inertia I/m can be substituted by the moment of inertia per unit mass of a rod as it rotates about its end and equal to ⅓·R2, a value found in [7] (p. 251, Figure 9f). The 1/3 value is what Weis-Fogh calls the shape factor for the second moment of the area, σ [3] (p. 173, Table 1, first row). The second case is when the center of gravity of the wing can be calculated and is not found to be at (or close to) R/2 on the wing but at a distance, say, dCG, from the axis of rotation. In this case, the rod substituting the wing will be of length 2·dCG, and its specific moment of inertia I/m of the wing becomes ⅓·(2·dCG)2.



If the assumption of the placement of the center of gravity of the wing at R/2 is acceptable, then I/m in Equation (11) can be replaced with ⅓·R2, and [image: there is no content] is replaced by 2·f·Φ, and the fraction ½ is made a common factor and placed outside of the parentheses. With these changes made in the denominator of Equation (11), we define the total wing velocity Vw of a flapping wing as:


[image: there is no content]



(12)







The product [image: there is no content] equals the peak-to-peak amplitude A travelled by the wing tip along a upstroke (or a downstroke) and if multiplied by the frequency 2·f, it results in the average tangential velocity vtt of the wing tip (subscript tt stands for tip, tangential) during a stroke. Replacing in Equation (12), the total velocity Vw is:


[image: there is no content]



(13)







For a non-zero translating flight velocity, [image: there is no content] ≠ 0 in Equation (13), the translation velocity v∞ is made a common factor and, when taken out of the parentheses, the above expression is written as a function of the velocity ratio [image: there is no content] that equals the Strouhal number, St [8]:


[image: there is no content]



(14)







This definition of the total wing velocity Vw is based on kinetic energy considerations and varies from Lentink and Dickinson’s definition of the characteristic speed U, which derives from the kinematics of the flapping wing [9] (p. 2695).



In the same vane, the total dynamic pressure Q is defined as a function of total velocity Vw and the Strouhal number St:


[image: there is no content]



(15)







The total dynamic pressure Q results from the addition of the dynamic pressure due to the wing translation, [image: there is no content], and the dynamic pressure due to flapping, and should not be confused with the total pressure p0, the sum of static and dynamic pressure. Note that for the translating flight of fixed wings (i.e., gliding flight), the flapping frequency f is 0, and so, the Strouhal number St is zero, and the total velocity Vw is then reduced to the freestream velocity at infinity, Vw = [image: there is no content], in Equation (14). Furthermore, the total dynamic pressure Q is reduced to the dynamic pressure [image: there is no content] in Equation (15).



The average normalized lift [image: there is no content] of flapping wings is next written as a function of Strouhal number:


[image: there is no content]



(16)







The relationship between the steady state lift coefficient CL and the time-dependent average normalized lift [image: there is no content] is evaluated by the ratio [image: there is no content], or the ratio Equation (1)/Equation (16):


[image: there is no content]



(17)







As the flapping frequency f tends to 0 for a given forward velocity [image: there is no content], the Strouhal number St tends to 0 and [image: there is no content] tends to CL (f→0, then St→0 and [image: there is no content]→1). Equation (17) can be used to advantage to calculate the average normalized lift [image: there is no content] in two steps: the first step calculates the coefficient CL for the steady state flight (by assuming extended wings and simply not considering its flapping kinematics) using Equation (1). The second step “corrects” CL for the time-dependent effects of flapping by dividing the steady state CL by 1 + ⅓·St2. The lift coefficient CL in Equation (17) during flapping flight can be interpreted as the hypothetical steady-state lift coefficient CL required from the extended, non-flapping wings as they generate an (unrealistic) lift L equal to the weight of the flyer as it translates at the same forward speed [image: there is no content] as the actual flapping flyer. This steady state CL is unrealistic as the wings will stall at a much lower value. Correcting this steady-state fictitious CL value by dividing it (1 + ⅓·St2) results in the average normalized lift [image: there is no content] of the flapping wings of the flyer. A quasi-steady analysis of flapping flight can be contemplated when the values of the steady state lift coefficient CL and the corresponding average normalized lift [image: there is no content] are close (i.e.; CL ≈[image: there is no content]). More on this subject in Section 5.



The total velocity Vw defined in Equation (14) can be used to advantage to characterize the Reynolds number of flapping wings of characteristic chord c, surrounded by the air of kinematic viscosity, υ:


[image: there is no content]



(18)







The Reynolds number Re due to flapping can be calculated in two steps: the first step calculates the steady state Reynolds number Ress (the subscript ss stands for steady state) contained in the leftmost parentheses, and the second step corrects Ress for flapping effects by multiplying it by (1 + ⅓·St2)½. A closely-related approach to evaluating the Reynolds number of flapping wings has been suggested by Lentink and Dickinson [9] (p. 2696).



The average normalized lift [image: there is no content] can be written in a familiar format, as a function of the total velocity Vw or the total dynamic pressure, Q,


[image: there is no content]



(19)







The following Table 1 shows how the time-dependent variables Vw, Q, [image: there is no content] and Re can be calculated by “correcting” the corresponding steady-state parameters [image: there is no content], [image: there is no content], CL and Ress by the term (1 + ⅓·St2):



Table 1. Time-dependent variables obtained from steady state variables.







	
Time-Dependent Variable

	
Time-Dependent Variables as a Function of Steady State Parameters

	
Equation No.






	
Total velocity, Vw

	
Vw = v∞·(1 + ⅓·St2)½

	
14




	
Total dynamic pressure, Q

	
Q = q∞·(1 + ⅓·St2)

	
15




	
Average normalized Lift, [image: there is no content]

	
[image: there is no content] = CL·(1 + ⅓·St2)−1

	
17




	
Reynolds number, Re

	
Re = Ress·(1 + ⅓·St2)½

	
18










For illustration purposes, Table 2 shows how the correction factor (1 + ⅓·St2), the ratio of total dynamic pressure and dynamic pressure, Q/q∞, and the ratio of the Reynolds number of a flapping wing and the corresponding steady state Reynolds number of the same wing, Re/Ress, vary with Strouhal number, St:



Table 2. Strouhal number effect on total dynamic pressure Q and Reynolds number Re of flapping wings.







	
St

	
1 + ⅓·St2

	
Q/q∞

	
Re/Ress






	
0

	
1.00

	
1.00

	
1.00




	
1

	
1.33

	
1.33

	
1.15




	
2

	
2.33

	
2.33

	
1.53




	
3

	
4.00

	
4.00

	
2.00




	
4

	
6.33

	
6.33

	
2.52




	
5

	
9.33

	
9.33

	
3.06




	
6

	
13.00

	
13.00

	
3.61




	
7

	
17.33

	
17.33

	
4.16




	
8

	
22.33

	
22.33

	
4.73




	
9

	
28.00

	
28.00

	
5.29




	
10

	
34.33

	
34.33

	
5.86










A desirable feature of the average normalized lift [image: there is no content] is its association with an empirical maximum value, [image: there is no content], that makes it possible to read it on a stand-alone basis, as a “high” or “low” value, relative to [image: there is no content]. In a similar way, the lift coefficient [image: there is no content] of a fixed lifting surface can also be read on a stand-alone basis (which does not necessarily imply it is a physically proper figure of merit). This feature should not be taken for granted as is illustrated by the ubiquitous drag coefficient [image: there is no content] of an airplane of, say, 0.0345 or 345 counts (calculated using the customary wing planform as a reference area). This value cannot be read on a stand-alone basis as this value is not associated to a common maximum value CD max, and so, cannot be read as a “high” or low” value.




3. Evaluation of [image: there is no content] and [image: there is no content] of Hovering Bumblebees


This section compares the application of the normalized lift [image: there is no content] against the two legacy and well known legacy coefficients [image: there is no content] derived from the basal [image: there is no content] equation using the BEM. One lift equation is the one derived by Dudley and Ellington (subscript DE), Equation (2), and the second equation is derived by Weis-Fogh (subscript W–F), shown in Equations (3) and (4). In this section, these dimensionless numbers, [image: there is no content], [image: there is no content], and [image: there is no content] are calculated for three bumblebees during hovering flight. Data on weight W, reference area Sp and wing root-to-tip length R for the three bumblebees BB01, BB02, and BB03 are presented in Table 3 and were obtained from Dudley and Ellington [10] (p. 32, Table 1):



Table 3. Weight and wing geometric parameters of the three bumblebees.







	
ID

	
W (N)

	
Sp (m2)

	
R (m)






	
BB01

	
0.00172

	
0.00011

	
0.0132




	
BB02

	
0.0018

	
0.0001

	
0.0137




	
BB03

	
0.00583

	
0.0137

	
0.0154










Furthermore, kinematic data of these bumblebees are also given by Dudley and Ellington and are presented in Table 4 [2] (Figures 8–10, Part A, pp. 38–40). During hover, the air density ρ is 1.23 kg/m3 at sea level, and the kinematic viscosity υ is assumed to be 1.46 × 10−5 m2/s, corresponding to the according to the standard atmosphere [11].



Table 4. Kinematic data of the flapping wings of the three bumblebees during hover.







	
ID

	
f (Hz)

	
Φ (rad)

	
[image: there is no content] (1/s)






	
BB01

	
155

	
2.02

	
627.57




	
BB02

	
147

	
1.82

	
533.61




	
BB03

	
166

	
2.27

	
753.23










The average lift coefficient [image: there is no content] is calculated by Dudley and Ellington using Equation (2) and read from a graph in [2] (p. 72, Figure 10), and the quick estimates [image: there is no content] by Weis-Fogh’s using Equation (3), and the average normalized lift [image: there is no content] is calculated using Equation (10). Results are presented in Table 5 below.



Table 5. Averages of the two legacy average lift coefficients [image: there is no content] and the average normalized lift [image: there is no content] for the three bumblebees during hover. Note lower average value of 1.29 for average normalized lift [image: there is no content].







	
ID

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
BB01

	
1.2

	
1.87

	
1.15




	
BB02

	
2.1

	
2.35

	
1.45




	
BB03

	
2.65

	
2.09

	
1.29




	
Average

	
1.98

	
2.01

	
1.29










.



The average normalized lift [image: there is no content] has the lowest average.




4. Evaluating [image: there is no content] and [image: there is no content] of Forward Flying Bumblebees


This section compares the average lift coefficient [image: there is no content] by Dudley and Ellington with the average normalized lift [image: there is no content]. Weis-Fogh’s lift coefficient as per Equation (4) is not included in this study as his equation is only fit for evaluating hovering flight. The forward velocity [image: there is no content], frequency f, and flapping stroke angle Φ, shown in the first three columns in Table 6 represent data of the three bumblebees at the different forward velocities of 1, 2.5, and 4.5 m/s [2] (Figures 8–10, Part A, pp. 38–40). The next three columns show the calculated mean flapping angular speed [image: there is no content], the tangential tip velocity [image: there is no content], and Strouhal number [image: there is no content]. The next two columns show the average normalized lift, [image: there is no content], Equation (16) and the average lift coefficient [image: there is no content] by Dudley and Ellington using Equation (2). The final column shows the ratio of the actual Reynolds number of the flapping wing and the Reynolds number Ress corresponding to the steady state for the same wing as it flies at the same translating velocity [image: there is no content] as the flapping wing).



Table 6. Kinematic data of flapping wings, flight data, Dudley and Ellington’s average lift coefficient [image: there is no content], average normalized lift [image: there is no content] , and the ratio of flapping Re to steady-state Ress.







	
ID

	
[image: there is no content] (m/s)

	
f (Hz)

	
Φ (rad)

	
[image: there is no content] (1/s)

	
vtt (m/s)

	
St

	
[image: there is no content]

	
[image: there is no content]

	
(1 + ⅓·St2)½

	
Re/Ress






	
BB01

	
0

	
155

	
2.02

	
627.57

	
–

	
–

	
1.15

	
1.2

	
–

	
–




	
1

	
145

	
1.95

	
566.84

	
7.48

	
7.48

	
1.34

	
1.72

	
19.66

	
4.43




	
2.5

	
152

	
2.18

	
663.18

	
8.75

	
3.50

	
0.83

	
1.28

	
5.09

	
2.26




	
4.5

	
144

	
1.80

	
517.70

	
6.83

	
1.52

	
0.74

	
1.15

	
1.77

	
1.33




	
BB02

	
0

	
147

	
1.82

	
533.61

	
–

	
–

	
1.45

	
2.1

	
–

	
–




	
1

	
132

	
1.73

	
456.13

	
6.25

	
6.25

	
1.84

	
2.18

	
14.02

	
3.74




	
2.5

	
132

	
2.01

	
529.84

	
7.26

	
2.90

	
1.09

	
1.8

	
3.81

	
1.95




	
4.5

	
143

	
1.66

	
474.17

	
6.50

	
1.44

	
0.75

	
1.05

	
1.69

	
1.30




	
BB03

	
0

	
166

	
2.27

	
753.23

	
–

	
–

	
1.29

	
2.65

	
–

	
–




	
1

	
157

	
2.22

	
695.95

	
10.72

	
10.72

	
1.47

	
3.25

	
39.29

	
6.27




	
2.5

	
141

	
1.68

	
472.46

	
7.28

	
2.91

	
2.42

	
2.1

	
3.82

	
1.96










These tabular values in Table 6 values are represented graphically in Figure 1, showing the average lift coefficients [image: there is no content] (dashed line data, copied from [2] (p. 72, Figure 10)) and average normalized lift values [image: there is no content] (continuous lines) for hover ([image: there is no content] = 0, along the ordinate axis) and forward flight, as a function of forward speed [image: there is no content]. Table 7 shows results for [image: there is no content] and [image: there is no content].


Figure 1. The average lift coefficient [image: there is no content] (dashed lines) and average normalized lift [image: there is no content] (continuous lines) of the three bumblebees during hover (along the ordinate axis, at [image: there is no content] = 0) and forward flight (for [image: there is no content] > 0). Grey labels relate to abnormal data encountered by Dudley and Ellington.



[image: Aerospace 03 00024 g001]






Table 7. The Dudley and Ellington’s average lift coefficient [image: there is no content], and the average normalized lift [image: there is no content], and corresponding averages for forward flight.







	
ID

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
1 m/s

	
2.5 m/s

	
4.5 m/s






	
BB01

	
1.72

	
1.34

	
1.28

	
0.83

	
1.15

	
0.74




	
BB02

	
2.18

	
1.84

	
1.8

	
1.09

	
1.05

	
0.75




	
BB03

	
3.25

	
1.47

	
2.1

	
–

	
–

	
–




	
Average

	
2.38

	
1.55

	
1.73

	
1.89

	
1.89

	
1.89










Dudley and Ellington have stated that no good quality for the average lift coefficient [image: there is no content] was obtained for bumblebee queen BB03 at [image: there is no content] of 4.5 m/s [10] (p. 35). According to their data though, no abnormality was found in the average lift coefficient of BB03 at the prior speed of 2.5 m/s, which measured a [image: there is no content] of 2.1, as shown in Figure 1. At this speed, the average normalized lift [image: there is no content] of BB03 is anomalously high, 2.42, as shown as a grey symbol “[image: there is no content]” in Figure 1.



Based on this data, the normalized lift [image: there is no content] may be better suited for diagnosis and detection of anomalous flight data.




5. Evaluating the Aerodynamics of Bumblebee BB01


The average normalized lift [image: there is no content] of, say, bumblebee BB01 as it flies at a forward speed of 2.5 m/s has been found to be 0.83, as shown in the third row, seventh column in Table 6. This value can be easily computed with the aforementioned two-step approach and implied in Equation (17), repeated below for convenience,


[image: there is no content]



(20)







When using this approach, both the normalized lift [image: there is no content] and the steady state lift coefficient CL are calculated using the same physically proper reference area Sp, as defined in Section 2 (i.e.; the total wing area of the bumblebee). The first step calculates the steady state (non-flapping) lift coefficient CL of the bumblebee using Equation (1), using the following information: its weight W of 0.001715 N, its reference area Sp of 0.000106 m2, the density at sea level of 1.23 kg/m3, and a forward velocity [image: there is no content] of 2.5 m/s. The resulting steady state lift coefficient CL equals 4.2, an obviously unrealistic value that is much higher than the maximum value CL max that can be possibly reached during steady state at these low (or any) Reynolds numbers (the steady state value for CL max at this Reynolds numbers is likely < 1). The second step modifies this steady state lift coefficient CL by dividing it by the “correction factor” (1 + ⅓·St2) to account for the effects of time-dependent flow. This correction factor is 5.08, where the Strouhal number St is 3.5 [image: there is no content]. The resulting average normalized lift [image: there is no content] is 0.83 (= 4.2/5.08).



This second step can also be obtained graphically using Figure 2 by entering the steady state CL of 4.2 and intersecting the isoline corresponding to a constant Strouhal number St of 3.5, and reading the resulting average normalized lift of [image: there is no content] on the vertical axis: 0.83.


Figure 2. The average normalized lift [image: there is no content] of flapping wings is related to their steady-state lift coefficient CL of fixed wings by the isolines corresponding to various Strouhal numbers (0.2 < St < 5 shown). The quasi-steady region, [image: there is no content] ≈ CL, is bound by St < 0.2.



[image: Aerospace 03 00024 g002]






Figure 2 shows a region delimited by the (vertical) ordinate axis and the isoline for St = 0.2 (dashed line). This area represents the quasi-steady region where the average normalized lift [image: there is no content] of flapping flight using Equation (16) is close to its steady-state CL calculated using Equation (1). In other words, for flight conditions where the Strouhal number St is equal or less than 0.2, then [image: there is no content] ≈ CL and so, it can be estimated by CL, and the actual average normalized lift [image: there is no content] is smaller than CL by 1.33%. If St = 0.3, [image: there is no content] is smaller than CL by 2.91% and for St = 1, [image: there is no content] is smaller than CL by 33%.



The ratio of the Reynolds number, Re, of a flapping wing and the Reynolds number Ress for the corresponding steady state, non-flapping flight, Re/Ress, is given by Equation (21). Following a similar aforementioned two-step procedure, the actual Reynolds number Re of flapping wings is calculated by first calculating its steady state Reynolds number Ress for the wing of BB01 of chord c of 0.002 m (span/aspect ratio = R/AR = 0.0132/6.56), flying at a forward velocity [image: there is no content] of, say, 2.5 m/s, at sea level. This results in a steady state Reynolds number Ress of 344, and when multiplied by (1+ ⅓·St2)½ with St = 3.5, it results in Re of 777:


[image: there is no content]



(21)







The term (1+ ⅓·St2)½ in Equation (21) is a multiplier that converts the Reynolds number from steady to time-dependent values. The multiplier can be computed graphically by using Figure 3: the Strouhal number St of 3.5 is entered on the abscissa (horizontal axis) and intercepting the curve, one reads the value for Re/Ress of 2.26 on the ordinate axis. Multiplying Ress by this number results in Re.


Figure 3. The ratio of the Re of flapping wings and the Ress for steady state wings, Re/Ress, as a function of the Strouhal number.



[image: Aerospace 03 00024 g003]






Flapping flight in the region delimited by St ≤ 0.2 may be considered quasi-static and so, the Reynolds number Re of the flapping wing may be approximated by its steady-state counterpart, Ress as Re ≈ Ress.




6. Conclusions


“Essentially, all models are wrong, but some are useful”. Little is there to argue against this statement, credited to the statistician George E. P. Box. This paper showcases the usefulness of the average normalized lift [image: there is no content] of flapping wings, a figure of merit with a physical meaning that is easy to apply as it does not require prior knowledge of the surrounding flow field by the user and does not resort to the BEM for its computation.



The close lineage of [image: there is no content] with the basal equation for CL is evidenced by making the flapping frequency f approach zero in Equation (8): when f → 0, then [image: there is no content] → 0, and [image: there is no content]. Furthermore, a quasi-steady regime for flapping flight can be defined quantitatively as a function of the Strouhal number. This region, shown in Figure 2 is bounded by 0 < St < 0.2, where the maximum difference between [image: there is no content] and CL in this region is never to exceed 1.33%. This suggestion of the quasi-steady regime boundary may only be accepted if this difference of 1.33% is acceptable. A reason the particular upper boundary for quasi-steady flight was suggested is that it coincides with the lower boundary of the Strouhal number that defines the region for high power efficiency for flying and swimming animals during cruise, namely, 0.2 < St < 0.4, as documented by Taylor et al. [8]. The equations for the average normalized lift [image: there is no content] presented in this paper can also be applied to underwater locomotion for the calculation of the average thrust [image: there is no content] and drag [image: there is no content] by using the appropriate physically proper parameters (i.e.; the reference planform area of the caudal fin for calculating [image: there is no content], and the reference frontal area for calculating [image: there is no content]) [5].



Normalizing the average lift [image: there is no content]for calculating the normalized lift [image: there is no content] by dividing it by physically proper parameters assures the normalized lift to have a physical meaning: that of the ratio of work w exerted by the wing and the kinetic energy ek available at the wing, a meaning that makes the normalized lift [image: there is no content] independent of the configuration or type of lifting system. The average normalized lift [image: there is no content] of a bumblebee can be compared meaningfully to the normalized lift [image: there is no content] of, say, a tail or canard-configured airplane, or the normalized lift [image: there is no content] of a rotating cylinder in Magnus effect, a lift rotor, a quadcopter or an ornithopter.



A final intriguing observation: Table 5 shows that the average value of the average [image: there is no content] of the three hovering bumblebees is 1.29, a value that is referred here as a “maximum operating [image: there is no content]”. This value is numerically close to a typical “maximum operating [image: there is no content]” for aircraft (with no flaps, using a physically proper reference area Sp as the sum of all aerodynamic surfaces contributing to its net lift L, that is, including horizontal tail and/or canard planform areas in the case of aircraft). Here, the term “maximum operating [image: there is no content]” is a transparent means by the author of staying away from [image: there is no content] (stall). Additionally, it may be observed that the hovering bumblebees may not be flying at their [image: there is no content] as they may have some energy reserve for an upward vertical acceleration. In the same way, airplanes may have to fly at a higher normalized lift to effectively experience stall.



As the average normalized force set [image: there is no content] containing the average normalized lift [image: there is no content], drag [image: there is no content] and thrust [image: there is no content] share the same format of Equation (8) as well as subsequent derivations that include the Strouhal number, their common use in different fields may contribute to a consistent comparison of differing lift platforms, independent of configuration (wings vs. caudal fins) and favor cross-pollination across engineering, science, and biomechanics borders and help understand the effects of Reynolds numbers.



For reference purposes it is mentioned that an earlier paper introducing the normalized lift as LN can be found in [12].
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Glossary




	A
	amplitude (distance travelled) by the wingtips over a wing stroke



	c
	mean chord of wing



	CL
	steady-state lift coefficient (i.e., during gliding or soaring)



	[image: there is no content]
	average lift coefficient derived by Dudley and Ellington



	[image: there is no content]
	Weis-Fogh’s quick estimate of average lift applicable to hovering flight only



	dCG
	distance between spanwise location of center of gravity of wing and rod to axis of rotation



	ek
	specific kinetic energy per unit mass of flyer at the flapping wing



	f
	stroke frequency during flapping



	I/m
	specific moment of inertia of flapping wing about its end (shoulder or hinge)



	L
	lift



	Lb
	Lift on the body



	[image: there is no content]
	average lift



	m
	mass of the flyer or lifting system, mass of surrounding fluid (air)



	f
	flapping frequency



	q∞
	dynamic pressure, ½·ρ·v∞2of a moving mass of fluid (air)



	Q
	total dynamic pressure, not to be confused with the sum of static and dynamic pressure, po



	R
	root-to-tip length of wing. Length of rod replacing a wing, used in calculation of I/m



	r
	a variable of integration representing the distance from wing root to a given wing station along the semispan, 0 < r < R



	Ress
	Reynolds number for steady state flight



	Re
	Reynolds number of a flapping wing



	sp
	physically improper (lower case) reference wing planform area (subscript p stands for planform). Excludes other aerodynamic surfaces contributing to the net lift L or average net lift [image: there is no content]. Upper case Sp is physically proper reference area



	St
	Strouhal number



	Sref
	physically proper reference area used to normalize lift L for obtaining [image: there is no content]. It is obtained by adding all planform areas that contribute to the generation of lift L, ΣSref i



	T
	period, the duration of one complete flapping cycle or wingbeat



	t
	time, variable of integration



	vtg
	tangential velocity due to the angular velocity of the flapping wing at a given chordwise wing element during the application of the blade element analysis



	vtt
	tangential velocity of flapping wing at the tip



	v∞
	freestream velocity at infinity relative to a static flyer, velocity of translating flight while inmersed in static mass of air



	Vw
	total velocity



	W
	weight of the flyer during equilibrium flight (forward flight or hover), equal to average lift, [image: there is no content]



	vr(r,t)
	relative velocity



	β
	stroke plane angle



	ρ
	density of air at sea level, 1.23 kg/m3



	ηL
	normalized lift of fixed wing and propeller blades



	[image: there is no content]
	average normalized lift of flapping wings



	Φ
	stroke angle in radians during downstroke or upstroke



	υ
	kinematic viscosity, 1.46 × 10−5 m2/s



	σ
	shape factor for the second moment of the wing area [3]



	[image: there is no content]
	average flapping angular speed



	Ψ
	direction of the relative velocity vector
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