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Abstract: Electromagnetic (EM) simulation of dual-polarized antennas is necessary for precise
initial alignments, calibration and performance predictions of multi-function phased array radar
systems. To achieve the required flexibility and scalability, a novel Finite-Difference Time-Domain
(FDTD) solution is developed for rectangular, cylindrical and non-orthogonal coordinate systems
to simulate various types of array antenna manifolds. Scalable array pattern predictions and beam
generations are obtained by combining the FDTD simulation solutions with the Near-Field (NF)
chamber measurements. The effectiveness and accuracy of this approach are validated by comparing
different simulations and comparing simulations with measurements.

Keywords: Finite-Difference Time-Domain (FDTD) method; phased array antenna (PAA);
Multi-functional Phased Array Radar (MPAR); Near-Field antenna measurements

1. Introduction

Traditionally, the approximation-approach based on array factors and typical element patterns
is sufficient for designing and testing many large-scale array antenna systems [1–3]. The recent
developments on more advanced and sophisticated phased array radar systems, which can perform
aerospace surveillance, weather observation and target discrimination, demand more accurate
electromagnetic characterizations of the radiation patterns and interactions between antennas and
electronics. As an example, precise knowledge of the three-dimensional cross-polarization radiation
patterns is needed to predict and calibrate the future dual-polarized multifunction array radar [4–6],
regardless of analog or digital array system architectures. In addition, the impacts of mutual coupling
and the surface wave on optimal beam-forming [7] are important considerations in phased array
antenna designing.

The challenges of this electromagnetic (EM) characterization are significant in the following
aspects: (i) the immense disparity between the small-scale testbeds and larger, full-scale systems,
which are necessarily characterized by both simulations and measurements: We may simulate infinite
array with Periodic Boundary Conditions (PBC), but the reflection of surface currents (end currents)
is absent in those computations. The end currents (edge current) and interference of the surface
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current wave with Floquet currents give unique characteristics to finite arrays [7]. Then, we need to
investigate the surface wave impacts on array performances changing from a small-sized array to
a larger array. For the measurements, although we have developed a laboratory-scale testbed and
measurement procedures [8–11] for different types of manifolds, the method to extend small-scale
array measurements to a large array with thousands of elements still needs more investigations
and verifications; (ii) The diversity of design options being evaluated and compared, especially
for cylindrical arrays [12], due to multiple and different choices in the manifold implementations:
Other examples include dipole vs. radiating patch elements, faceted geometries vs. fully-conformal
geometries for array antenna implementations and hybrid configurations. Electromagnetic simulations
are essential in the prediction, comparison and verification of larger EM structure applications.
However, the existing approaches are limited to address the challenge. Commercial solvers, such as
ANSYS HFSS (In this work, HFSS is used to validate and compare the efficiency of the new algorithm
and simulator. Since the new solver does not have the capability to use all of the computational
power, HFSS uses one core to solve the equivalent model or structure simulated by the program
developed in this work.), can solve active element in a planar array antenna very accurately and
reliably through master-slave boundary conditions. However, The precise modeling of periodic
boundaries is questionable when the elements are conformal to a cylindrical surface; (iii) Initial
alignments of the actual system and measurements: After we have the pattern characterizations
through combined simulation and measurements, the challenge is how to use this information for
initial alignment of the array system, which is also more complicated for larger arrays; (iv) As most of
the existing simulations are frequency-domain solutions, time-domain solutions are more desirable for
a system level simulation, for example considering the trend in wider bandwidth waveforms, pulse
compression technologies and electronics’ calibrations.

To address these challenges, simulation and laboratory measurement approaches are developed.
An in-house and EM solver was developed, which is based on the Finite-Difference Time-Domain
(FDTD) algorithm and PBC in the rectangular, cylindrical and unstructured nonorthogonal coordinate
systems. Active Element Patterns (AEPs) for linear (one-by-infinite), planar (infinite-by-infinite) and
cylindrical (finite-by-infinite) array systems can be simulated effectively. For validations, the array
radiation patterns generated from the simulated AEPs are synthesized for the radiation patterns of
the full array, which are then compared with the measured patterns of a full array in a near-field
chamber. A synthesis process is also applied to obtain optimized patterns using both simulation and
measurement data. The laboratory part involves measurement for AEPs of small-scale array manifolds
that can fit into the near-field chamber facility. In this measurement process, the 3D radiation patterns
of each element were measured while all of the other elements are properly terminated with match
loads. The novel aspects of this approach lie in the application of the time-domain EM solution,
the configuration of boundary conditions for different array configurations and a method to extend
smaller scale array characterizations to a full-scale radar system, meanwhile achieving the right balance
between accuracy and complexity.

Predicting the antenna radiation patterns for a large-scale system is still a big challenge for the
radar system community. The capability to make an accurate prediction of finite array antenna patterns
has an inherently significant effect on the success of designing large-scale array antennas for the future
generation of air-surveillance radar. In particular, this work is related to the Multi-functional Phased
Array Radar (MPAR), which is a critical R&D program by Federal Aviation Administration (FAA)
and National Oceanic and Atmospheric Administration (NOAA) in the USA and will be the new
multi-function radar system platform for both weather surveillance and air-traffic control.

This paper is organized as follows: Section 2 introduces the theoretical foundation of the
time-domain EM solver used in this study; Section 3 describes the simulations of AEPs in a specific
array configuration; Section 4 outlines measurements of the AEP using the Configurable Polarimetric
Array Demonstrator (CPAD) in the near-field range; and Section 5 shows how the array radiation
patterns are characterized based on AEP. In Section 6, a novel technique of extending the smaller
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scale array pattern characterization to a larger scale or full-size array is presented. A summary and
conclusions are provided in Section 7.

2. Theory

The EM simulation for radiation pattern prediction is implemented with the FDTD updating
equations [13–15] for calculating electric and magnetic field components in a grid space. The standard
FDTD solution is based on rectangular coordinates. The FDTD updating equations for a cylindrical
grid [15] can be used to simulate a fully-conformal cylindrical phased array antenna. However,
the cylindrical array as part of CPAD fabricated in this work is based on column sub-arrays, which
is not a fully-conformal array, but rather a faceted array. The simulation of a faceted-cylindrical
array is achieved by FDTD solution in a non-orthogonal grid. The solution of an array with a larger
number of columns approaches the expected EM characterization of a true cylindrical grid. The goal
of EM simulation is to estimate the co-polarization and cross-polarization of active elements precisely.
To achieve good approximation for AEP of the middle element of a large array (with a size larger
than nine-by-nine elements), an infinite-by-infinite array is usually assumed [16]. When we apply this
assumption, a periodically-arranged patch antenna is modeled as a unit cell. The FDTD model for
the unit cell of a planar phased array is depicted as in Figure 1. In Figure 1, the Yee cells in the x̂ and
ŷ directions in the mesh only contain the patch antenna without any air gap. By switching among
appropriate boundary conditions, this array model can also be used to obtain the AEP of any elements
in a semi-infinite array in the x̂ or ŷ directions.

Figure 1. Unit cell for finite-difference time-domain (FDTD) simulation for a planar array.
Convolutional perfectly matched layer (CPML) and Periodic Boundary Condition (PBC) are the
boundaries of the problem space. This unit cell has one patch antenna of an infinite planar array. The
red color area is the metal patch and gray color area is the substrate material.

2.1. Rectangular Grid

The detailed mathematical formulation for this case is omitted as it is the standard scenario.
Indeed, the updating equations, absorbing boundaries model and voltage source model to calculate
field components Ex, Ey, Ez, Hx, Hy and Hz in a rectangular grid can be found in [14,15]. In this EM
simulator, the Yee cell is a cubic shape, then ∆x = ∆y = ∆z = ∆. These updating equation are altered
to realize the periodic boundaries as in [17,18]. Yee cells at ix = 1, iy = 1, ix = Nx and iy = Ny are
used to form the periodic boundaries. In the +ẑ and −ẑ directions, Convolutional Perfectly Matched
Layers (CPML) are implemented with proper air gaps to truncate the problem space in a finite region.
As illustrated in Figure 2, field components can be found using traditional FDTD equations, the nature
of periodic boundary and Floquet theory. This method is called the constant horizontal wavenumber
approach, and an exclusive discussion can be found in [14]. In Figure 2, filled blue-colored circles,
solid blue-colored arrows, filled red-colored circles, and filled red-colored triangles are representing
magnetic and electric field components in x̂, ŷ, and ẑ directions which can be computed using FDTD
updating equations based on rectangular coordinate system. At the boundaries of the problem space,
the electric field components (red-colored circles and triangles) in x̂, ŷ, and ẑ direction can not be
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computed using standard FDTD equations since one of the magnetic fields in x̂, ŷ, or ẑ does not exist
in the problem space. Those missing magnetic fields represented by The blue-colored circles and
dashed blue-colored arrows can be determined by the Floquet theory. The blue-colored solid lines are
representing the cells in the problem space. The green colored and orange colored dashed lines are
representing Yee cells, which does not exist in the problem space.

Figure 2. Field components in one unit cell.

2.2. Cylindrical Grid

In our solution, the simulation model for a fully-conformal cylindrical phased array antenna has
been implemented using absorbing boundaries and periodic boundaries in the cylindrical coordinate
system. The PBC implementation utilized in the rectangular grid can be adapted for PBC in the
cylindrical grid, as well. The detailed computing procedure is presented in the rest of this section.
The periodic boundaries are implemented in the +φ̂, −φ̂, +ẑ and −ẑ directions and the Convolutional
Perfectly Matched Layers (CPML) are implemented in the +r̂ and −r̂ directions (Figure 3). A circular
array or an isolated element in cylindrical coordinates can be simulated by switching the PBC to CPML
of the unit cell, to achieve the objective of simulating the AEP of a cylindrical array antenna. The FDTD
updating equations for the cylindrical grid are provided in Appendix A.

Figure 3. Unit cell for FDTD simulation for a cylindrical array. This unit cell has one patch antenna of
an infinite cylindrical array. The red color area is the metal patch and gray color area is the substrate
material.
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2.2.1. Periodicity in the ẑ Direction

Equation (1) is for calculating the field components Eφ at the lower bound of z (iz = 1). The field
components En+1

φ (ir, iφ, 1) are computed using En
φ(ir, iφ, 1) and the magnetic field components in the

ẑ and r̂ directions, which are Hn+ 1
2

r (ir, iφ, 1), Hn+ 1
2

r (ir, iφ, 0), Hn+ 1
2

z (ir, iφ, 1) and Hn+ 1
2

z (ir − 1, iφ, 1).
The updating coefficients Ceφe(ir, iφ, 1), Ceφhr(ir, iφ, 1) and Ceφhz(ir, iφ, 1) of Equation (1) can be
computed using Equation (A4).

En+1
φ (ir, iφ, 1) = Ceφe(ir, iφ, 1)× En

φ(ir, iφ, 1)

+ Ceφhr(ir, iφ, 1)×
(

Hn+ 1
2

r (ir, iφ, 1)− Hn+ 1
2

r (ir, iφ, 0)
)

− Ceφhz(ir, iφ, 1)×
(

Hn+ 1
2

z (ir, iφ, 1)− Hn+ 1
2

z (ir − 1, iφ, 1)
) (1)

The magnetic field components Hn+ 1
2

r (ir, iφ, 0) do not exist in the problem space. Using the

Floquet theory, Hn+ 1
2

r (ir, iφ, 0) can be calculated as in Equation (2). kz is the wave number in the ẑ
direction and can be computed as kz =

ω
c sin vz (vz is the incident angle of the wave in the ẑ direction):

Hn+ 1
2

r (ir, iφ, 0) = Hn+ 1
2

r (ir, iφ, Nz)ejkz Nz∆z (2)

A similar procedure can be carried out to compute En+1
φ (ir, iφ, Nz + 1). However, using the

Floquet theory, En+1
φ (ir, iφ, Nz + 1) can be computed using En+1

φ (ir, iφ, 1) as Equation (3).

En+1
φ (ir, iφ, Nz + 1) = En+1

φ (ir, iφ, 1)ejkz Nz∆z (3)

Equation (4) is for calculating the Er field components at the lower bound of φ (iφ = 1). The field
components En+1

r (ir, iφ, 1) are computed using En
r (ir, iφ, 1) and the magnetic field components in

the z and φ directions, which are Hn+ 1
2

z (ir, iφ, 1), Hn+ 1
2

z (ir, iφ, 1), Hn+ 1
2

φ (ir, iφ, 1) and Hn+ 1
2

φ (ir, iφ, 1).

The magnetic field components Hn+ 1
2

z (ir, 1, iz) are at φ = 0. The updating coefficients Cere(ir, Nφ, iz),
Cerhz(ir, Nφ, iz) and Cerhφ(ir, Nφ, iz) of Equation (4) can be computed using Equation (A2).

En+1
r (ir, iφ, 1) = Cere(ir, Nφ, iz)En

r (ir, iφ, 1)

+Cerhz(ir, iφ, 1)×
(

Hn+ 1
2

z (ir, iφ, 1)− Hn+ 1
2

z (ir, iφ, 1)
)

+Cerhφ(ir, iφ, iz)×
(

Hn+ 1
2

φ (ir, iφ, 1)− Hn+ 1
2

φ (ir, iφ, 1)
) (4)

The magnetic field components Hn+ 1
2

φ (ir, iφ, 0) do not exist in the problem space. Using the Floquet

theory, Hn+ 1
2

φ (ir, iφ, 0) can be calculated as in Equation (5). kφ is the wave number in the φ̂ direction
and can be computed as kφ = ω

c sin vφ (vφ is the incident angle of the wave in the φ̂ direction):

Hn+ 1
2

φ (ir, iφ, 0) = Hn+ 1
2

φ (ir, iφ, Nz)ejkz Nz∆z (5)

Using the Floquet theory, En+1
r (ir, iφ, Nz + 1) can be computed using En+1

r (ir, iφ, 1) as Equation (6).

En+1
r (ir, iφ, Nz + 1) = En+1

r (ir, iφ, 1)ejkz Nz∆z (6)
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2.2.2. Periodicity in the φ̂ Direction

Equation (7) is for calculating the Ez field components at the lower bound of φ (iφ = 1). The field
components En+1

z (ir, 1, iz) are computed using En
z (ir, 1, iz) and the magnetic field components in

the φ̂ and r̂ directions, which are Hn+ 1
2

φ (ir, 1, iz), Hn+ 1
2

φ (ir − 1, 1, Nz), Hn+ 1
2

r (ir, 1, iz), Hn+ 1
2

r (ir, 0, iz).
The updating coefficients of Equation (7) Ceze(ir, 1, iz), Cezhr(ir, 1, iz) and Cezhφ(ir, 1, iz) can be computed
using Equation (A6).

En+1
z (ir, 1, iz) = Ceze(ir, 1, iz)En

z (ir, 1, iz)

+Cezhφ(ir, 1, iz)×
(

rHn+ 1
2

φ (ir, 1, iz)− (r− ∆r)Hn+ 1
2

φ (ir − 1, 1, iz)
)

+Cezhr(ir, 1, iz)×
(

Hn+ 1
2

r (ir, 1, iz)− Hn+ 1
2

r (ir, 0, iz)

) (7)

The magnetic field components Hn+ 1
2

r (ir, 0, iz) do not exist in the problem space. Using the Floquet

theory, Hn+ 1
2

r (ir, 0, iz) can be calculated as in Equation (8). kφ is the wave number in the φ̂ direction
and can be computed as kφ = ω

c sin vφ (vφ is the incident angle of the wave in the φ̂ direction):

Hn+ 1
2

r (ir, 0, iz) = Hn+ 1
2

r (ir, Nφ, iz)ejkφ Nφ∆φ (8)

Using the Floquet theory, En+1
z (ir, iφ, Nz + 1) can be computed using En+1

z (ir, iφ, 1) as Equation (9).

En+1
z (ir, Nφ + 1, iz) = En+1

z (ir, 1, iz)ejkφ Nφ∆φ (9)

Equation (10) is for calculating the Er field components at the lower bound of φ (iφ = 1). The field
components En+1

r (ir, 1, iz) are computed using En
r (ir, 1, iz) and the magnetic field components in the

ẑ and φ̂ directions, which are Hn+ 1
2

z (ir, 1, iz), Hn+ 1
2

z (ir, Nφ, iz), Hn+ 1
2

φ (ir, 1, iz) and Hn+ 1
2

φ (ir, 1, iz − 1).
The updating coefficients Cere(ir, Nφ, iz), Cerhz(ir, Nφ, iz) and Cerhφ(ir, Nφ, iz) of Equation (10) can be
computed using Equation (A2).

En+1
r (ir, iφ, 1) = Cere(ir, Nφ, iz)En

r (ir, iφ, 1)

+Cerhz(ir, iφ, 1)×
(

Hn+ 1
2

z (ir, iφ, 1)− Hn+ 1
2

z (ir, iφ, 1)
)

+Cerhφ(ir, iφ, iz)×
(

Hn+ 1
2

φ (ir, iφ, 1)− Hn+ 1
2

φ (ir, iφ, 1)
) (10)

The magnetic field components Hn+ 1
2

φ (ir, iφ, 0) do not exist in the problem space. Using the Floquet

theory, Hn+ 1
2

φ (ir, iφ, 0) can be calculated as in Equation (11). kφ is the wave number in the φ̂ direction
and can be computed as kφ = ω

c sin vφ (vφ is the incident angle of the wave in the φ̂ direction):

Hn+ 1
2

φ (ir, iφ, 0) = Hn+ 1
2

φ (ir, iφ, Nz)ejkz Nz∆z (11)

Using the Floquet theory, En+1
r (ir, iφ, Nz + 1) can be computed using En+1

r (ir, iφ, 1) as
Equation (12).

En+1
r (ir, iφ, Nz + 1) = En+1

r (ir, iφ, 1)ejkz Nz∆z (12)
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2.2.3. At the Corners

At the corners of the cell (the FDTD mesh of the patch antenna), Er has to be updated using (13)
and (15)–(17).

En+1
r (ir, 1, 1) = Cere(ir, 1, 1)En

r (ir, 1, 1)

+Cerhz(ir, 1, 1)×
(

Hn+ 1
2

z (ir, 1, 1)− Hn+ 1
2

z (ir, 0, 1)
)

+Cerhφ(ir, 1, 1)×
(

Hn+ 1
2

φ (ir, 1, 1)− Hn+ 1
2

φ (ir, 1, 0)
) (13)

The magnetic field components Hn+ 1
2

φ (ir, 1, 0) and Hn+ 1
2

z (ir, 0, 1) do not exist in the problem space.
They can be calculated as in Equation (14).

Hn+ 1
2

φ (ir, 1, 0) = Hn+ 1
2

φ (ir, 1, Nz)× ejkφ Nφ∆φ (14a)

Hn+ 1
2

z (ir, 0, 1) = Hn+ 1
2

φ (ir, Nφ, 1)× ejkz Nz∆z (14b)

After electric field components {En+1
r (ir, 1, 1)} are computed using Equation (13), all of the electric

field components En+1
r (ir, Nφ + 1, 1), En+1

r (ir, 1, Nz + 1) and En+1
r (ir, Nφ + 1, Nz + 1) at other corners

can be computed using Equations (15)–(17).

En+1
r (ir, Nφ + 1, 1) = En+1

r (ir, 1, 1)× ejkφ Nφ∆φ (15)

En+1
r (ir, 1, Nz + 1) = En+1

r (ir, 1, 1)× ejkz Nz∆z (16)

En+1
r (ir, Nφ + 1, Nz + 1) = En+1

r (ir, 1, 1)× ejkφ Nφ∆φ × ejkz Nz∆z (17)

In all of the above equations, from Equation (1) to Equation (17), ir, iφ and iz are indexes of r, φ

and z. The updating coefficients depend on the material properties (εr, εφ, εz, σe
r , σe

φ and σe
z), the lattice

increment at the location of the field component and the time increment (∆t). They are constant in
time for the material used in patch antenna fabrication. The CPML for the cylindrical grid [19–22]
will be located in the direction of +r̂ and −r̂ in all of the simulations presented in this work. If a
finite-by-infinite array needs to be simulated, CPMLs will be located in the direction of +r̂, −r̂, +ẑ
and −ẑ.

2.3. Nonorthogonal Grid

As mentioned before, a facet array is a better manifold model for some existing system testbeds [6],
and the radiating elements in this configuration are planar. The consequence of the facet array is that
the unit cell is located in a non-orthogonal grid, as is shown in Figures 4–6. The updating equations
based on the proper projection scheme of a non-orthogonal grid are developed and used to simulate
AEP [11]. Our formulation of the project scheme takes advantage of the specific nature of the geometry
of the unit cell. Since the non-orthogonality only manifests in a two-dimensional plane, modified
equations from the rectangular grid model are used to reduce the computational load. Compared to
the update equations in the rectangular grid, the equations to calculate the field components in the ŷ
direction are the same. The field components the x̂ and ẑ directions are computed with an irregular
nonorthogonal structured grid [15]; more details of these equations are shown in Appendix B. Since the
field components are not orthogonal to each other, the intersection of two and three CPMLs does not
create a boundary, which can allow the perfect transmission of EM waves from one CPML to another.
Therefore, this grid can only be used in the simulation of an active element in infinite arrays.
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Figure 4. Unit cell for FDTD simulation for a faceted cylindrical array.

Figure 5. Illustration of the process of transforming the electric field component in the nonorthogonal
grid into the electric field in the orthogonal grid.
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Figure 6. Illustration of the process of transforming the magnetic field component in the nonorthogonal
grid into the magnetic field in the orthogonal grid.

Even though the FDTD updating equations can be derived for the nonorthogonal grid starting
from Maxwell’s equation, the derivation process is simplified by taking the geometry into consideration.
Figures 5 and 6 illustrate the derivation of FDTD equations for electric field components using the
FDTD equations for a rectangular grid. Let us consider that the nonorthogonal coordinate system
(Figure 5) is represented by α̂, β̂ and γ̂ unit vectors for representing electric field components. Notice
that α̂ depends on the location (α, β, γ), which makes this grid unstructured. By inspection of the
geometry (Figure 5), one can write Equations (18a)–(18c) to express Ex, Ey and Ez in terms of Eα, Eβ

and Eγ.
Ex(x, y, z) = Eα(α, β, γ) cos Ωα,β,γ (18a)

Ey(x, y, z) = Eβ(α, β, γ)− Eα(α, β, γ) sin Ωα,β,γ (18b)

Ez(x, y, z) = Eγ(α, β, γ) (18c)

Jx(x, y, z) = Jα(α, β, γ) cos Ωα,β,γ (18d)

Jy(x, y, z) = Jβ(α, β, γ)− Jα(α, β, γ) sin Ωα,β,γ (18e)

Jz(x, y, z) = Jγ(α, β, γ) (18f)
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In the same way, let us consider that the nonorthogonal coordinate system (Figure 6) is represented
by α̂′, β̂′ and γ̂′ unit vectors for representing magnetic field components. As the electric field component
was determined, one can write Equations (19a)–(19c) to express Ex, Ey and Ez in terms of Eα′ , Eβ′ and
Eγ′ by inspection of the geometry in Figure 6.

Hx(x, y, z) = Hα′(α
′, β′, γ′) + Hβ′(α

′, β′, γ′) sin Ωα′ ,β′ ,γ′ (19a)

Hy(x, y, z) = Hβ′(α
′, β′, γ′) cos Ωα′ ,β′ ,γ′ (19b)

Hz(x, y, z) = Hγ′(α
′, β′, γ′) (19c)

Mx(x, y, z) = Mα′(α
′, β′, γ′) + Mβ′(α

′, β′, γ′) sin Ωα′ ,β′ ,γ′ (19d)

My(x, y, z) = Mβ′(α
′, β′, γ′) cos Ωα′ ,β′ ,γ′ (19e)

Mz(x, y, z) = Mγ′(α
′, β′, γ′) (19f)

Ωα,β,γ and Ωα′ ,β′ ,γ′ are measured with respect to the blue colored dashed line. The positive
sign will be assigned if it is measured in the clockwise direction, and the negative sign will be
assigned if it is measured counterclockwise. Notice that Ωα,β,γ (Ωα′ ,β′ ,γ′ ) is independent of spacial
variables α (α′) and γ (γ′), and Ωα,β,γ and Ωα′ ,β′ ,γ′ are equal in magnitude and sign. By substituting
Ex(x, y, z), Ey(x, y, z), Ez(x, y, z), Hx(x, y, z), Hy(x, y, z), Hz(x, y, z) in the FDTD updating equation
for the rectangular grid [15,17], a new set of FDTD updating equations has been derived for this
nonorthogonal and unstructured grid (Appendix B).

3. Simulation of Active Element Patterns

3.1. Computational Load

The computational load and speed of computing for FDTD depend on the step size, far-field
frequency band (the number of frequency points used to do the near-to-far-field calculation), Yee’s
cell size, the boundary condition, the size of the computing domain and the size of the memory as
a result of these parameters. It also depends on the tradeoffs involved in the accuracies. Using PBC,
for example, reduces the AEP computation time to a single cell with an approximation of infinite array
size, because the air gaps in the +x̂, −x̂, +ŷ and −ŷ directions are absent. For finite arrays, we may
simulate the entire array on a powerful computing platform or use other techniques to reduce the
computational load [7,23]. More discussion of computational load and benchmarks of this program,
in general, can be found in [10]. In this study, we only focus on getting reasonable convergences in a
manageable amount of time rather than optimizing the computational aspects.

Our specific simulation scenarios involve hundreds of thousands of Yee cells and about twenty
thousand iterations of the time marching loop, which is CPU time and memory consuming. To keep a
balance between computational efficiency and the ease of debugging, the Java programming language
is used to implement the EM solver. A computer with Intel Core i7-4770K CPU @3.50 GHz and 32 GB
memory (RAM) is used to run the simulation. To compute a single AEP, the receiving power was
detected for planar waves from different directions. The same simulation needs to run N times to
obtain the complete three-dimensional AEP. The N will be determined by the step sizes and range
of θ and φ in the spherical coordinate system. As an example, let us consider that we want to have
a two-degree resolution in the 3D radiation pattern plot. Therefore, we need 90 samples for θ and
180 samples for φ. To record all of the data point, 16,200 (= 90× 180) simulations will have to be
performed. It is a very CPU time-consuming process (∼ 4000 h). Even though simulating AEP is not
the target of this work, active elements of infinite planar, cylindrical and faceted-cylindrical arrays are
simulated and presented in Section 3.2.
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3.2. Example Results of Simulated AEP

To support comparative studies, we simulated AEPs for identical radiating elements embedded
in different manifolds. Some of the simulated AEPs can be compared with measurements to be
validated; others are evaluated based on comparing with other simulations or expected physical
features. More details are explained in Sections 4 and 5.

The planar wave source was created near the top CPML of the model. The receiving power
was detected at one of two ports of the active element, and the other ports are terminated with the
match load. The planar waves from different directions (−180◦ < φ < +180◦) were created in each
simulation to collect received power for the planar wave coming from a different angle. That received
power information will be used to construct the AEP. This procedure is a CPU time hungry process,
which will do the same simulation 360 times (the increment of φ is 1◦). The approximated elapsed time
to predict a principal plane cut was around 350 min.

Figure 7 shows an example of the principal plane cut for AEP from an infinite-by-infinite planar
array, 100λ-diameter (λ is the wavelength of the operating frequency or the center frequency of a
bandwidth) cylindrical array and 100λ-diameter faceted-cylindrical array. The material specifications
(Section 4) and dimensions (Figure 8) are the same as the specifications and dimensions of the array
being measured. One thousand two hundred fifty seven radiating elements with λ

2 spacing can occupy
one ring (the circumference of the cylinder) of the 100λ-diameter cylindrical array. One thousand
two hundred fifty six radiating elements with λ

2 spacing can occupy one ring of the 100λ-diameter
faceted-cylindrical array.

Figure 7. Simulation of an AEP of planar, cylindrical (100λ radius) and faceted-cylindrical (100λ

radius) arrays.
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Figure 8. Specifications of the array antenna.

4. Measurements of Active Element Patterns

In-chamber measurement of AEPs is the most accurate approach for array system characterization
and prediction. However, it is limited to certain sizes of arrays that fit into the chamber environment.
In later sections, we will describe our solution to extend small-scale system measurement to larger
system predictions. For dual-polarized pattern measurements, we also need to be careful with the
coordinate systems. The azimuth-over-elevation coordinate system with the Ludwig II definition of
cross-polarization [24] is used for all of the chamber measurements in this work, which is consistent
with the EM simulations.

In the measurement testbed setup, the patch antennas are dual polarized single layer elements
with λ

2 separation. The patch antennas (Figure 8) used in the CPAD configuration was fabricated on
the RT/Duroid 5880 substrate with 1.575 mm thickness and 1

2 oz copper (17 µm thickness of copper)
cladding. The operating frequency was selected in S-band, which is common in many antennas used
in weather radar systems [6]. The CPAD allows the same set of radiating elements to be configured to
either planar or faceted-cylindrical manifolds with similar aperture sizes.

To measure the AEPs, one port of a test patch antenna element is excited while all other ports are
terminated with matched load (50 Ω). In near-field measurements, the complex AEP, measured directly
as the amplitude and phase of co-polar and cross-polar electrical field sampled at the near-field range,
is obtained first, and then, it is transformed to far-field as needed. The planar and faceted-cylindrical
array measurement system set up in the near-field chamber is shown in Figure 9. The results clearly
show that the AEPs vary with the location of the element due to the effects of surface currents, mutual
coupling and edge currents, as presented in Figure 10 for elements in the planar array antenna and
Figure 11 for elements in the cylindrical array antenna. As expected, at the middle section of the arrays,
the measured AEPs are similar to simulated AEPs with PBC. The following subsections provide more
detailed information for these results.

Figure 9. Measurement setup for 10-by-eight planar (left) and cylindrical (right) phased array antennas.
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4.1. Planar Array Example Measurement Results

In this example, the CPAD is configured as an eight-by-eight planar array with an aperture size of
432 mm. The results of AEPs are illustrated in Figure 10. The average directivities of the measured
AEPs are 9.81 dB and 9.98 dB at 3.1 GHz for the H and V channels, respectively. The probe model
(OEWG WR284) can be used in the [2.6 GHz, 3.96 Hz] frequency band. This probe model is employed
in both the near-field measurement process and the near-to-far-field conversion process. Since the
Near Field (NF) scanner is five feet in height, the system can measure [−50◦,+50◦] in both the azimuth
range and elevation ranges. The co-polar (up) and cross polar (down) AEPs of elements (4, 1), (4, 2),
(4, 3) and (4, 4) are shown in Figure 10a–d, respectively. The cross-polar level in AEP is around 15 dB
below the maximum of the co-polar level.

(a) Element (5,1) (b) Element (5,2) (c) Element (5,3) (d) Element (5,4)

Figure 10. Measured AEPs of the (5,1) (a), (5,2) (b), (5,3) (c) and (5,4) (d) elements in the eight-by-eight
planar phased array antenna; co-polar magnitude in dB (first row), co-polar phase in degrees
(second row), cross-polar magnitude in dB (third row) and cross-polar phase in degrees (forth row).

4.2. Faceted-Cylindrical Array Example Measurement Results

For the next example, the CPAD is configured as a partial faceted-cylindrical array with a diameter
of 385 mm, which has an identical planar aperture size as the planar array example. The average
directivities of the measured AEPs are 10.50 dB and 10.46 dB at 3.1 GHz for the H and V channels,
respectively. The probe model is the same model used for planar array measurements. Given the
system geometry, the azimuth range of measurement is [−90◦,+90◦], and the elevation range is
[−32◦,+32◦]. The co-polar (up) and cross polar (down) AEPs of elements (4,1), (4,2), (4,3) and (4,4) are
shown in Figure 11a–d , respectively. The cross-polarization level is around 25 dB below the maximum
of the co-polarization level. The AEPs are more directive than the planar case AEPs.
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(a) Element (5,1) (b) Element (5,2)

(c) Element (5,3) (d) Element (5,4)

Figure 11. Measured AEPs of the (5,1) (a), (5,2) (b), (5,3) (c) and (5,4) (d) elements in the eight-by-eight
faceted-cylindrical phased array antenna; co-polar magnitude in dB (first row), co-polar phase in
degrees (second row), cross-polar magnitude in dB (third row) and cross-polar phase in degrees
(forth row).
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5. Generation of The Array Pattern from Measured AEP
The radiation pattern of an array without including the mutual coupling is related to the

isolated element pattern through a simple equation: E(ϑ, ϕ) = array factor × isolated element pattern.
Implementing the same concept, a rigorous relation in which the mutual coupling effects are already
included can be presented using the AEPs as in Equation (20). The theory to generate array patterns
for planar and faceted-cylindrical arrays using AEPs from near-field measurements is presented in this
section. The radiation pattern is related to AEPs, which takes into account the mutual coupling effects,
through the equations from (20) to (23), to provide mathematical formulas for the pattern generation
using the MATLAB®program:

E(ϑ, ϕ) = ∑
∀n,m

am,ncm,nEm,n(ϑ, ϕ)ejk−→r m,n ·r̂ϑ,ϕ (20)

where Em,n(ϑ, ϕ) is the complex electric field in the r̂ϑ,ϕ direction, which can be measured or simulated
as the phase and magnitude of each element’s AEP. k is the wave number, which is 2π/λ.

am,n = |am,n|e−jk−→r m,n ·r̂ϑ0,ϕ0 (21)

where:
−→r ϑ,ϕ = ux̂ + vŷ + cosϑẑ

u and v are the direction cosines and they are defined as u = sin ϑ cos ϕ and v = sin ϑ sin ϕ.
ϑ0 and ϕ0 define the beam steering direction.

cm,n is the calibration value for each element. This value can be measured with a proper test
procedure. In this work, the mean value (αm,n) of a small zone (4 × 4 data points) at the center
of the co-polarization phase pattern is processed in each element to compute the 8× 8 calibration
matrix: [cm,n].

cm,n = |cm,n|e−jαm,n (22)

−→r m,n = xm,n x̂ + ym,nŷ + zm,n ẑ (23)

5.1. The Planar Array (Case I)

Since the elements of the planar array are arranged on the XY plane, zn,n = 0. The other
parameters xm,n and ym,n can be calculated with Equation (24). The patch antenna elements under
measurement are square-shaped, then the element separation distance is the same in the x̂ and ŷ
directions. Therefore, d is used to represent the element size of the array.

xm,n = (2n− 1)
d
2

(24a)

ym,n = (2m− 1)
d
2

(24b)

The generated planar phased array pattern using 64 AEPs for the H channel (horizontal
polarization) is shown in Figure 12. The azimuth principal plane cut is shown in Figure 13. In the same
manner, the radiation pattern can be generated for the V channel using AEPs for V channels.



Aerospace 2017, 4, 7 16 of 29

Figure 12. Measured patterns of an eight-by-eight planar phased array antenna (based on AEPs and
software calibration) : (a) co-polar magnitude in dB; (b) co-polar phase in degrees; (c) cross-polar
magnitude; and (d) cross-polar phase in degrees.

Figure 13. The azimuth principal plane cut of measured co-polar and cross-polar patterns of an
eight-by-eight planar phased array antenna (based on AEPs and software calibration).
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5.2. The Faceted-Cylindrical Array (Case II)

The parameters xm,n, ym,n and zm,n can be calculated with Equation (25). These equations were
derived using the geometry of the faceted-cylindrical array.

xm,n =
d
2

(
sin

(2n− 1)∆ξ

2
cot

∆ξ

2

)
(25a)

ym,n = (2m− 1)
d
2

(25b)

zm,n =
d
2

(
csc

∆ξ

2
− cos

(2n− 1)∆ξ

2
cot

∆ξ

2

)
(25c)

The radius of the partially-populated faceted-cylindrical array being measured in the near-field
chamber is 4λ, and the element spacing is 0.7λ. The generated faceted-cylindrical phased array pattern
using 64 AEPs for the H channel (horizontal polarization) is shown in Figure 14. The azimuth principal
plane cut is shown in Figure 15. In the same manner, radiation patterns for V-channels are generated
using AEPs for V channels.

Figure 14. Measured patterns of an eight-by-eight faceted-cylindrical phased array antenna (based
on AEPs and software-calibration) (a) co-polar magnitude in dB; (b) co-polar phase in degrees;
(c) cross-polar magnitude in dB; and (d) cross-polar phase in degrees.
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Figure 15. The azimuth principal plane cut of the measured co-polar and cross-polar magnitude
patterns of an eight-by-eight faceted-cylindrical phased array antenna (based on AEPs and
software calibration).

For the CPAD configuration in this study, we have 128 measured AEPs for each dual polarized
eight-by-eight array (either planar or faceted-cylindrical array). The above equations based on the
measured AEPs are used to generate the dual-polarized array radiation pattern. Figures 12 and 14 show
the generated 3D array patterns for planar and faceted-cylindrical arrays, respectively. Based on the
locations, phase calibration factors are extracted and are applied to each AEP. The alignment algorithm
tunes the phase excitation of each element until the maximum radiation power toward the desired
direction is achieved. The calibration beam-forming and alignment were done in MATLAB. It should
be noted here that this is a very straightforward and basic beam-forming/calibration approach, which
only uses phase alignment; the purpose is to prove the concept and to compare with simulation results.
There is no beam-forming optimization technique applied here.

5.3. Comparison of the Results of the Planar Array vs. the Facet Cylindrical Array

It is interesting to compare the results from the planar and the cylindrical/facet array since they
have the same radiating elements and the same (projected) planar aperture size. For the planar array,
the focused array beam pattern has the sidelobes and cross-polarization levels below −18 dB and
−27 dB, respectively. Comparing Figures 13 and 15, in the principal planes, the faceted-cylindrical
array patterns have lower cross-polarizations in some directions, while the radiation pattern of the
cylindrical array has some higher sidelobes at −90◦ and 90◦ locations, which is mainly due to the
surface curvature [25]. Associated EM simulations show that with the increased size of the diameter,
the sidelobe levels at −90◦ and 90◦ locations decrease, while the cross-polarized power levels around
broadside directions are not much affected.

6. Large Finite Array Antennas

Numerous methods have been proposed by researchers to predict the finite array pattern with
the knowledge of mutual coupling, radar cross-section, infinite array data and small array data
from both simulation and measurements [7,23]. In this section, we propose a new approach that
extends the near-field FDTD characterization of small sub-arrays to larger scale arrays. The solution
applies to both planar and cylindrical arrays. To implement this method for facet-cylindrical arrays,
there is a fundamental issue since the intersection of CPMLs with the nonorthogonal grid cannot
support orthogonal field components in those regions. This issue can be resolved by using the local
sub-gridding technique, which is beyond the scope of this research.
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6.1. Near-Field Aperture Merging Technique

Given a radiating element design, an approach is developed that can merge the near-field
patterns of smaller subarrays to arbitrarily-sized large arrays and achieve a good compromise between
computational loads and full-wave accuracies. Within the FDTD time marching loop, the electric
and magnetic current densities on the designated imaginary surface are collected in the first step,
which is used to calculate the near-field to far-field transformation. The frequency domain or time
domain current densities can also be collected. For the proposed procedure herein, the frequency
domain current values are used for the near-field to far-field transformation calculations. Four separate
simulations are performed firstly as the building blocks, and they are illustrated, in Figure 16a–d.
The first building block is an active element in an infinite array (infinite-by-infinite array with
periodicities in both the x̂ and ŷ directions). The second and third are semi-infinite arrays (20-by-infinite
array with the periodicity in the ŷ direction and infinite-by-20 array, which periodically repeats in the x̂
direction). The fourth building block is a finite array (four-by-four). These four simulations can be done
simultaneously using four cores of a computer. For each of the simulation runs, the current densities
in the frequency domain are collected at strategic locations. For example, in the simulation illustrated
by the array (a) in Figure 16, current densities on the surfaces in the +ẑ and −ẑ directions are collected.
The edges of a large array are constructed with the array simulation illustrated with the array (b) and
the array (c) in Figure 16. The current distribution on surfaces in the +ẑ and −ẑ directions is gathered
for the first two and the last two elements of both arrays in the frequency domain. The 20-by-infinite
building block has CPMLs in the +x̂ and −x̂ directions, and the infinite-by-20 building block has
CPMLs in the +ŷ and −ŷ directions. These current densities are used to merge and combine the
near-field samples (current density components) of a large finite array. During the merging process,
the current distributions over the entire surface of the large finite array are re-constructed based on
the current densities collected from the building blocks. In addition, the current distributions on the
surfaces next to the periodic boundaries are discarded, and the current distributions on the surfaces
next to the CPML are used.

Figure 16. Illustration of the finite array antenna simulation. (a) Infinite-by-infinite array; (b) small
finite-by-finite array; (c) finite-by-infinite array; (d) infinite-by-finite array; and (e) large finite-by-finite
array computation using (a), (b), (c), and (d).
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The array (e) in Figure 16 shows the assembly of all of the near-field current densities in the
frequency domain for a planar array. The elements indicated with dashed lines represent surfaces
with interpolated current densities using adjacent elements, which ensure a smooth transition from
one element to the next throughout the array. After this assembly, the process of near-field to
far-field transformation is computed to simulate the far-field radiation pattern of an arbitrarily large
finite-by-finite array.

6.2. Simulation of Larger Scale Cylindrical and Facet Arrays

Compared to planar arrays, large-scale faceted-cylindrical or cylindrical arrays can take better
advantage of the PBC in the azimuth direction. As a result, the technique from the previous
section is only needed for the vertical direction of a faceted-cylindrical array or partially-populated
faceted-cylindrical arrays. As PBC is used, the computational load for a larger cylindrical array is not
significantly greater than a smaller-sized array, and convergence may be easier to achieve since there is
less curvature effect. As an example, Figure 7 shows the principal plane cut of a simulated AEP from
a large size 100λ diameter cylindrical array. For this case, there is no testbed system of that size yet,
and other commercial simulators cannot provide comparable results. However, the AEP is consistent
with some theoretical and analytical predictions, such as the zoom-in area of the main lobe, which
shows the expected ripples generated in AEP due to the conformal surface.

6.3. Simulation of Larger Scale Planar Arrays

Figure 17 compares results from HFSS simulation and the proposed solution for an eight-by-eight
dual-polarized patched antenna array. The cross-polarization patterns of the horizontal and vertical
principal plane cuts are similar to the HFSS results, while for the Phased Array Simulator (PASim)
simulation results, more ripples are shown in the broadside direction. Both results show lower
cross-pol levels than measurements due to the modeling process. We need to point out that the grid
scheme in PASim is not as sophisticated as the one used in commercially available software. In future
work, PASim will be improved with locally none-structured and nonorthogonal grids, which can
model the electromagnetic structure more accurately.

(a)

Figure 17. Cont.
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(b)

Figure 17. Principal plane cuts of eight-by-eight array simulations and measurements. Simulation
patterns were generated by HFSS and PASim. Measured patterns were generated using near field
measurements of each active element of the array. (a) Horizontal principal plane cut; (b) Vertical
principal plane cut.

Figure 18 shows both the azimuth principal plane cut (Figure 18a) and elevation principal
plane cut (Figure 18b) of a 32-by-32 planar array simulation (1024 elements). Both HFSS and PASim
simulations were done only for calculation principal plane cut results, and only one CPU core is used
for both. For PASim, this 32-by-32 array simulation used the similar computational resources as that of
the eight-by-eight simulation. For our particular PC platform (i7-5960X CPU with 64 GB RAM), the
simulations of eight-by-eight and 32-by-32 arrays are done in 334 and 354 min, respectively, while for
HFSS, the simulation of the eight-by-eight array was done in about 96 h (four days), and the 32-by-32
array simulation was not performed for the current experiment.

(a)

(b)

Figure 18. Principal plane cut of 32-by-32 array simulations using the PASim program. The blue and
red plots are respectively co-polar and cross-polar directivity patterns of each principal plans. (a)
Horizontal principal plane cut; (b) Vertical principal plane cut.
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7. Summary and Conclusions

This work introduces an approach that combines FDTD-EM simulation and chamber-laboratory
measurements for the challenges of the precise characterization of dual-polarized array antennas for
multi-functional radars. The traditional FDTD for different coordinate systems and domain termination
boundary conditions are implemented in a Java language-based, computationally-efficient software.
This unique character of the software tool enables full-wave simulation of a wide variety of array
configurations from the small laboratory scale to large field system scales, such as planar arrays,
fully-conformal cylindrical arrays and faceted-cylindrical arrays. The fidelity of the EM simulation
is validated by using a laboratory array testbed (CPAD) and a near-field chamber measurement.
A simple array alignment approach is used to generate dual-polarized, three-dimensional and focused
radiation beams from both simulated and measured AEPs. The EM simulation is then extended to
large-scale array systems through a new near-field aperture merging technique, and reasonable results
are obtained.

An interesting contribution of this work is comparing the dual-polarized pattern characteristics
for planar and faceted-cylindrical arrays. CPAD allows both configurations with the same aperture size
in hardware. The comparison reveals that the far-end sidelobes of cylindrical array radiation patterns
are more significant for a smaller cylinder radius, which is consistent with theoretical predictions and
EM simulations. On the other hand, there are no real significant advantages of cross-polarization levels
for a particular radiation direction.

There is much future work expected related to this study. Since the simulation and measurements
are based on AEP, array pattern optimizations are naturally next steps to improve the co-pol and
cross-pol pattern performance generated using simple alignments. Computational speed needs to be
enhanced through more efficient, C-language implementation and applications on the General-Purpose
Graphic Processing Unit (GPGPU). Validations through measurements will be more comprehensive as
larger field-scale systems and chambers become available.
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Appendix A. FDTD Updating Equation Based on the Cylindrical Grid in an Anisotropic Material

All of the FDTD equation derived are in the same format. The left-hand side electric (magnetic)
field is the future value to be predicted from the past value of the electric (magnetic) field component,
the past electric (magnetic) current density component and the past magnetic (electric) field
components, which are perpendicular to the electric (magnetic) field and surrounded by the electric
(magnetic) field.

En+1
r (ir, iφ, iz) can be computed using Equation (A1).

En+1
r (ir, iφ, iz) = Cere(ir, iφ, iz)× En

r (ir, iφ, iz)

+ Cerhz(ir, iφ, iz)×
(

Hn+ 1
2

z (ir, iφ, iz)− Hn+ 1
2

z (ir, iφ − 1, iz)
)

+ Cerhφ(ir, iφ, iz)×
(

Hn+ 1
2

φ (ir, iφ, iz)− Hn+ 1
2

φ (ir, iφ, iz − 1)
)

+ Cerj(ir, iφ, iz)× Jn+ 1
2

r (ir, iφ, iz)

(A1)

The updating coefficients Cere(ir, iφ, iz), Cerhz(ir, iφ, iz), Cerhφ(ir, iφ, iz) and Cerj(ir, iφ, iz) of
Equation (A1) can be computed as in Equation (A2).

Cere(ir, iφ, iz) =

(
2εr(ir, iφ, iz)− σe

r(ir, iφ, iz)∆t

2εr(ir, iφ, iz) + σer(ir, iφ, iz)∆t

)
(A2a)

Cerhz(ir, iφ, iz) =

(
2∆t

r∆φ

(
2εr(ir, iφ, iz) + σer(ir, iφ, iz)∆t

)) (A2b)

Cerhφ(ir, iφ, iz) =

(
−2∆t

∆z
(
2εr(ir, iφ, iz) + σer(ir, iφ, iz)∆t

)) (A2c)

Cerj(ir, iφ, iz) =
(

−2∆t

2εr(ir, iφ, iz) + σer(ir, iφ, iz)∆t

)
(A2d)

En+1
φ (ir, iφ, iz) can be computed using Equation (A3).

En+1
φ (ir, iφ, iz) = Ceφe(ir, iφ, iz)× En

φ(ir, iφ, iz)

+ Ceφhr(ir, iφ, iz)×
(

Hn+ 1
2

r (ir, iφ, iz)− Hn+ 1
2

r (ir, iφ, iz − 1)
)

− Ceφhz(ir, iφ, iz)×
(

Hn+ 1
2

z (ir, iφ, iz)− Hn+ 1
2

z (ir − 1, iφ, iz)

)
+ Ceφj(ir, iφ, iz)× Jn+ 1

2
φ (ir, iφ, iz)

(A3)

The updating coefficients Ceφe(ir, iφ, iz), Ceφhr(ir, iφ, iz) and Ceφhz(ir, iφ, iz) of Equation (A3) can be
computed as in Equation (A4).

Ceφe(ir, iφ, iz) =

(
2εφ(ir, iφ, iz)− σe

φ(ir, iφ, iz)∆t

2εφ(ir, iφ, iz) + σe
φ(ir, iφ, iz)∆t

)
(A4a)

Ceφhr(ir, iφ, iz) =

(
2∆t

∆z
(
2εφ(ir, iφ, iz) + σe

φ(ir, iφ, iz)∆t
)) (A4b)

Ceφhz(ir, iφ, iz) =

(
−2∆t

∆r
(
2εφ(ir, iφ, iz) + σe

φ(ir, iφ, iz)∆t
)) (A4c)
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Ceφj(ir, iφ, iz) =
(

−2∆t

2εφ(ir, iφ, iz) + σe
φ(ir, iφ, iz)∆t

)
(A4d)

En+1
z (ir, iφ, iz) can be computed using Equation (A5).

En+1
z (ir, iφ, iz) = Ceze(ir, iφ, iz)× En

z (ir, iφ, iz)

+ Cezhφ(ir, iφ, iz)×
(

rHn+ 1
2

φ (ir, iφ, iz)− (r− ∆r)Hn+ 1
2

φ (ir − 1, iφ, iz)

)
− Cezhr(ir, iφ, iz)×

(
Hn+ 1

2
r (ir, iφ, iz)− Hn+ 1

2
r (ir, iφ − 1, iz)

)
+ Cezj(ir, iφ, iz)× Jn+ 1

2
z (ir, iφ, iz)

(A5)

The updating coefficients Ceze(ir, iφ, iz), Cezhφ(ir, iφ, iz), Cezhr(ir, iφ, iz) and Cezj(ir, iφ, iz) of
Equation (A5) can be computed as in Equation (A6).

Ceze(ir, Nφ, iz) =

(
2εz(ir, iφ, iz)− σe

z(ir, iφ, iz)∆t

2εz(ir, iφ, iz) + σez(ir, iφ, iz)∆t

)
(A6a)

Cezhφ(ir, iφ, iz) =

(
2∆t

r∆z
(
2εz(ir, iφ, iz) + σez(ir, iφ, iz)∆t

)) (A6b)

Cezhr(ir, iφ, iz) =

(
−2∆t

r∆φ

(
2εz(ir, iφ, iz) + σez(ir, iφ, iz)∆t

)) (A6c)

Cezj(ir, iφ, iz) =

(
−2∆t

2εz(ir, iφ, iz) + σez(ir, iφ, iz)∆t

)
(A6d)

Hn+ 1
2

r (ir, iφ, iz) can be computed using Equation (A7).

Hn+ 1
2

r (ir, iφ, iz) = Chrh(ir, iφ, iz)× Hn− 1
2

r (ir, iφ, iz)

+ Chrez(ir, iφ, iz)×
(
En

z (ir, iφ + 1, iz)− En
z (ir, iφ, iz)

)
+ Chreφ(ir, iφ, iz)×

(
En

φ(ir, iφ, iz + 1)− En
φ(ir, iφ, iz)

)
+ Chrm(ir, iφ, iz)×Mn

r (ir, iφ, iz)

(A7)

The updating coefficients Ceφe(ir, iφ, iz), Ceφhr(ir, iφ, iz), Ceφhz(ir, iφ, iz) and Chrm(ir, iφ, iz) of
Equation (A7) can be computed as in Equation (A8).

Chrh(ir, iφ, iz) =

(
2µr(ir, iφ, iz)− σm

r(ir, iφ, iz)∆t

2µr(ir, iφ, iz) + σmr(ir, iφ, iz)∆t

)
(A8a)

Chrez(ir, iφ, iz) =

(
−2∆t

r∆φ

(
2µr(ir, iφ, iz) + σmr(ir, iφ, iz)∆t

)) (A8b)

Chreφ(ir, iφ, iz) =

(
2∆t

∆z
(
2µr(ir, iφ, iz) + σmr(ir, iφ, iz)∆t

)) (A8c)

Chrm(ir, iφ, iz) =

(
−2∆t

2µr(ir, iφ, iz) + σmr(ir, iφ, iz)∆t

)
(A8d)
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Hn+ 1
2

φ (ir, iφ, iz) can be computed using Equation (A9).

Hn+ 1
2

φ (ir, iφ, iz) = Chφh(ir, iφ, iz)× Hn− 1
2

φ (ir, iφ, iz)

+ Chφez(ir, iφ, iz)×
(
En

z (ir + 1, iφ, iz)− En
z (ir, iφ, iz)

)
+ Chφer(ir, iφ, iz)×

(
En

r (ir, iφ, iz + 1)− En
r (ir, iφ, iz)

)
+ Chφm(ir, iφ, iz)×Mn

φ(ir, iφ, iz)

(A9)

The updating coefficients Ceφe(ir, iφ, iz), Ceφhr(ir, iφ, iz), Ceφhz(ir, iφ, iz) and Chφm(ir, iφ, iz) of
Equation (A9) can be computed as in Equation (A10).

Chφh(ir, iφ, iz) =

(
2µφ(ir, iφ, iz)− σm

φ(ir, iφ, iz)∆t

2µφ(ir, iφ, iz) + σm
φ(ir, iφ, iz)∆t

)
(A10a)

Chφez(ir, iφ, iz) =

(
2∆t

∆r
(
2µφ(ir, iφ, iz) + σm

φ(ir, iφ, iz)∆t
)) (A10b)

Chφer(ir, iφ, iz) =

(
−2∆t

∆z
(
2µφ(ir, iφ, iz) + σm

φ(ir, iφ, iz)∆t
)) (A10c)

Chφm(ir, iφ, iz) =
(

−2∆t

2µφ(ir, iφ, iz) + σm
φ(ir, iφ, iz)∆t

)
(A10d)

Hn+ 1
2

z (ir, iφ, iz) can be computed using Equation (A11).

Hn+ 1
2

z (ir, iφ, iz) = Chzh(ir, iφ, iz)× Hn− 1
2

z (ir, iφ, iz)

+ Chzer(ir, iφ, iz)×
(
En

r (ir, iφ + 1, iz)− En
r (ir, iφ, iz)

)
+ Chzeφ(ir, iφ, iz)×

(
(r + ∆r)En

φ(ir + 1, iφ, iz)− rEn
φ(ir, iφ, iz)

)
+ Chzm(ir, iφ, iz)×Mn

z (ir, iφ, iz)

(A11)

The updating coefficients Chzh(ir, iφ, iz), Chzer(ir, iφ, iz), Chzeφ(ir, iφ, iz) and Chzm(ir, iφ, iz) of
Equation (A11) can be computed as in Equation (A12).

Chzh(ir, iφ, iz) =

(
2µz(ir, iφ, iz)− σm

z(ir, iφ, iz)∆t

2µz(ir, iφ, iz) + σmz(ir, iφ, iz)∆t

)
(A12a)

Chzer(ir, iφ, iz) =

(
2∆t

r∆φ

(
2µz(ir, iφ, iz) + σmz(ir, iφ, iz)∆t

)) (A12b)

Chzeφ(ir, iφ, iz) =

(
−2∆t

r∆r
(
2µz(ir, iφ, iz) + σmz(ir, iφ, iz)∆t

)) (A12c)

Chzm(ir, iφ, iz) =
(

−2∆t

2µz(ir, iφ, iz) + σmz(ir, iφ, iz)∆t

)
(A12d)

Appendix B. FDTD Updating Equation Based on the Nonorthogonal Grid in an
Isotropic Material

Figures 4–6 should be referred to Equations (B1) to (B8). The FDTD updating equation for

determining En+1
α in terms of En

α , Hn− 1
2

β , Hn+ 1
2

β , Hn− 1
2

γ and Hn+ 1
2

γ can be obtained, by plugging in Ex,
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Ey and Ez from Equations (18a), (19b), and (19c) in the FDTD updating equation for the rectangular
grid [14].

En+1
α (iα, iβ, iγ) = Cea(iα, iβ, iγ)× En

α(iα, iβ, iγ)

+
Ceb(iα′ , iβ′ , iγ′) sec Ωβ

∆β
×
(

Hn+ 1
2

γ′ (iα′ , iβ′ , iγ′)− Hn+ 1
2

γ′ (iα′ , iβ′ − 1, iγ′)

)
−

Ceb(iα′ , iβ′ , iγ′)

∆γ
×
(

Hn+ 1
2

β′ (iα′ , iβ′ , iγ′)− Hn+ 1
2

β′ (iα′ , iβ′ , iγ′ − 1)
)

− Ceb(iα′ , iβ′ , iγ′)× Jn+ 1
2

α (iα, iβ, iγ)

(B1)

The updating coefficients Cea(iα, iβ, iγ) and Ceb(iα′ , iβ′ , iγ′) can also be derived from the updating
coefficients for the rectangular grid [14].

Cea(iα, iβ, iγ) =

(
2ε(iα, iβ, iγ)− σe(iα, iβ, iγ)∆t

2ε(iα, iβ, iγ) + σe(iα, iβ, iγ)∆t

)
(B2a)

Ceb(iα′ , iβ′ , iγ′) =

(
2∆t

2ε(iα′ , iβ′ , iγ′) + σe(iα′ , iβ′ , iγ′)∆t

)
(B2b)

The FDTD updating equation for determining En+1
β in terms of En

β , En+1
α , En

α , Hn− 1
2

α , Hn+ 1
2

α , Hn− 1
2

γ

and Hn+ 1
2

γ can be obtained, by plugging in Ex, Ey and Ez from Equations (18b), (19a), and (19c) in the
FDTD updating equation for the rectangular grid.

En+1
β (iα, iβ, iγ) = Cea(iα, iβ, iγ)× En

β(iα, iβ, iγ)

− Cea(iα, iβ, iγ) sin Ωβ × En
α(iα, iβ, iγ) + sin Ωβ × En+1

α (iα, iβ, iγ)

+
Ceb(iα′ , iβ′ , iγ′)

∆β
×
(

Hn+ 1
2

α′ (iα′ , iβ′ , iγ′)− Hn+ 1
2

α′ (iα′ , iβ′ , iγ′ − 1)
)

+
Ceb(iα′ , iβ′ , iγ′) sin Ωβ

∆β
×
(

Hn+ 1
2

β′ (iα′ , iβ′ , iγ′)− Hn+ 1
2

β′ (iα′ , iβ′ , iγ′ − 1)
)

−
Ceb(iα′ , iβ′ , iγ′)

∆γ
×
(

Hn+ 1
2

γ′ (iα′ , iβ′ , iγ′)− Hn+ 1
2

γ′ (iα′ − 1, iβ′ , iγ′)

)
− Ceb(iα′ , iβ′ , iγ′)× Jn+ 1

2
β (iα, iβ, iγ)

+ Ceb(iα′ , iβ′ , iγ′) sin Ωβ × Jn+ 1
2

α (iα, iβ, iγ)

(B3)

The FDTD updating equation for determining En+1
γ in terms of En

γ, Hn− 1
2

α , Hn+ 1
2

α , Hn− 1
2

β and Hn+ 1
2

β

can be obtained, by plugging in Hx, Hy and Ez from Equations (18c), (19a), and (19b) in the FDTD
updating equation for the rectangular grid.

En+1
γ (iα, iβ, iγ) = Cea(iα, iβ, iγ)× En

γ(iα, iβ, iγ)

+
Ceb(iα′ , iβ′ , iγ′) cos Ωβ

∆β
×
(

Hn+ 1
2

β′ (iα′ , iβ′ , iγ′)− Hn+ 1
2

β′ (iα′ − 1, iβ′ , iγ′)

)
−

Ceb(iα′ , iβ′ , iγ′)

∆γ
×
(

Hn+ 1
2

α′ (iα′ , iβ′ , iγ′)− Hn+ 1
2

α′ (iα′ , iβ′ − 1, iγ′)
)

−
Ceb(iα′ , iβ′ , iγ′) sin Ωβ

∆γ
×
(

Hn+ 1
2

β′ (iα′ , iβ′ , iγ′)− Hn+ 1
2

β′ (iα′ , iβ′ − 1, iγ′)

)
− Ceb(iα′ , iβ′ , iγ′)× Jn+ 1

2
γ (iα, iβ, iγ)

(B4)
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The FDTD updating equation for determining Hn+ 1
2

α′ in terms of Hn− 1
2

α′ , Hn− 1
2

β′ , Hn+ 1
2

β′ , En
β, En

α ,
En

γ, Mn
α′ and Mn

β′ can be obtained, by plugging in Hx, Ey, Ez and Mx from Equations (18b), (18c),
(19a), and (19f) in the FDTD updating equation for the rectangular grid. Notice that the present

value of the magnetic field component in β̂′ (Hn+ 1
2

β′ ) is required to calculate the present magnetic field

component in the α̂′ direction. Therefore, in the computer program, Hn+ 1
2

β′ should be computed before

computing Hn+ 1
2

α′ .

Hn+ 1
2

α′ (iα′ , iβ′ , iγ′) = Cha(iα′ , iβ′ , iγ′)× Hn− 1
2

α′ (iα′ , iβ′ , iγ′)

+

(
Cha(iα′ , iβ′ , iγ′)× Hn− 1

2
β′ (iα′ , iβ′ , iγ′)− Hn+ 1

2
β′ (iα′ , iβ′ , iγ′)

)
sin Ωβ

+
Chb(iα, iβ, iγ)

∆β
×
(

En
β(iα, iβ, iγ + 1)− En

β(iα, iβ, iγ)
)

−
Chb(iα, iβ, iγ) sin Ωβ

∆β
×
(
En

α(iα, iβ, iγ + 1)− En
α(iα, iβ, iγ)

)
−

Chb(iα, iβ, iγ)
∆γ

×
(

En
γ(iα, iβ + 1, iγ)− En

γ(iα, iβ, iγ)
)

− Chb(iα, iβ, iγ)×Mn
α′(iα′ , iβ′ , iγ′)

− Chb(iα, iβ, iγ) sin Ωβ ×Mn
β′(iα′ , iβ′ , iγ′)

(B5)

The updating coefficients Cha(iα′ , iβ′ , iγ′) and Chb(iα, iβ, iγ) can be derived from the updating
coefficients for the rectangular grid.

Cha(iα′ , iβ′ , iγ′) =

(
2µ(iα, iβ, iγ)− σm(iα, iβ, iγ)∆t

2µ(iα, iβ, iγ) + σm(iα, iβ, iγ)∆t

)
(B6a)

Chb(iα, iβ, iγ) =

(
2∆t

2µ(iα′ , iβ′ , iγ′) + σm(iα′ , iβ′ , iγ′)∆t

)
(B6b)

The FDTD updating equation for determining En+1
β in terms of En

β , En+1
α , En

α , Hn− 1
2

α , Hn+ 1
2

α , Hn− 1
2

γ

and Hn+ 1
2

γ can be obtained, by plugging in Ex, Ey and Ez from Equations (18b), (19a) and (19c) in the
FDTD updating equation for the rectangular grid.

Hn+ 1
2

β′ (iα′ , iβ′ , iγ′) = Cha(iα′ , iβ′ , iγ′)× Hn− 1
2

β′ (iα′ , iβ′ , iγ′)

+
Chb(iα, iβ, iγ) sec Ωβ

∆β
×
(

En
γ(iα, iβ, iγ + 1)− En

γ(iα, iβ, iγ)
)

−
Chb(iα, iβ, iγ)

∆γ
×
(
En

α(iα, iβ + 1, iγ)− En
α(iα, iβ, iγ)

)
− Chb(iα, iβ, iγ)×Mn

β(iα′ , iβ′ , iγ′)

(B7)
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The FDTD updating equation for determining En+1
γ in terms of En

γ, Hn− 1
2

α , Hn+ 1
2

α , Hn− 1
2

β and Hn+ 1
2

β

can be obtained, by plugging in Hx, Hy and Ez from Equations (18c), (19a), and (19b) in the FDTD
updating equation for the rectangular grid.

Hn+ 1
2

γ′ (iα′ , iβ′ , iγ′) = Cha(iα′ , iβ′ , iγ′)× Hn− 1
2

γ′ (iα′ , iβ′ , iγ′)

+
Chb(iα, iβ, iγ) cos Ωβ

∆β
×
(
En

α(iα, iβ + 1, iγ)− En
α(iα, iβ, iγ)

)
−

Chb(iα, iβ, iγ)
∆γ

×
(

En
β(iα + 1, iβ, iγ)− En

β(iα, iβ, iγ)
)

+
Chb(iα, iβ, iγ) sin Ωβ

∆γ
×
(
En

α(iα + 1, iβ, iγ)− En
α(iα, iβ, iγ)

)
− Chb(iα, iβ, iγ)×Mn

α(iα′ , iβ′ , iγ′)

(B8)
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