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Abstract: The application of partitioned schemes to fluid–structure interaction (FSI) allows the use
of already developed solvers specifically designed for the efficient solution of the corresponding
subproblems. In this work, we propose and describe a loosely coupled partitioned scheme based on
the recently introduced generalized-structure additively partitioned Runge-Kutta (GARK) framework.
The resulting scheme combines implicit-explicit (IMEX) and multirate approaches while coupling of
the subproblems is realized both on the level of the discrete time steps and at the level of interior
Runge-Kutta stages. Specifically, we allow for varying micro step sizes for the fluid subproblem and
therefore extend the multirate GARK framework based on constant micro steps. Furthermore, we
derive the order conditions for this extension allowing for coupled time integration schemes of up to
third order and discuss specific choices of the Runge-Kutta coefficients complying with the geometric
conservation law. Finally, numerical experiments are carried out for uniform flow on a moving grid
as well as the classical FSI test case of a moving piston.
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1. Introduction

Coupled systems as in the context of fluid–structure interaction (FSI) often consist of subsystems
with significantly different time scales. These subsystems may also deviate considerably in terms
of their stiffness. In this context, using the same explicit time integration scheme with synchronous
time steps for all subsystems might enforce very small step sizes which correspond to the small time
scale components or those responsible for stiffness. On the other hand, a purely implicit method
yields a large (possibly non-linear) coupled system of equations to be solved per time step. Therefore,
it is reasonable to allow each subsystem of the coupled problem to advance with its preassigned
time integration scheme which is adapted to its stiffness and time scales. In addition, it is sensible to
evaluate slow components less often than fast ones.

In the context of fluid–structure interaction, several forms of mixed time integration approaches
have been suggested. For example in [1], an implicit-explicit (IMEX) approach based on partitioned
Runge-Kutta schemes allows for explicit coupling of the two physical fields, whereas the same implicit
scheme for fluid and structure equations is used. A similar IMEX procedure is used in [2]. In [3,4],
a multirate scheme referred to as subcycling is used to advance the fluid with small explicit time steps
while an implicit scheme is used to discretize the structure equations using large time steps. Hereby,
different forms of the subcycling procedure with respect to the treatment of the pressure forces at the
fluid-structure interface and the sequencing of fluid and structure solves are investigated in terms of
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energy conservation. These algorithms fall into the category of loosely coupled partitioned methods.
Generally, numerical approaches to the simulation of FSI phenomena can be classified into monolithic
and partitioned solvers. Thereby, monolithic solvers are based on the direct discretization of the fully
coupled problem which may then be linearized, e.g., by Newton’s method as in [5]. In partitioned
approaches, suitable subsolvers, often already available, are used for each subsystem and suitable
coupling conditions are devised, e.g., in [6,7]. While in the latter works, strong coupling is enforced
using Newton’s method or fixed point iteration, respectively, a high order combined interface boundary
treatment is devised in [8] in order to enhance the stability of loosely coupled schemes.

Similar to [1,2], we investigate the application of partitioned Runge-Kutta methods to
fluid-structure interaction. Hence, this work fits into the category of loosely coupled partitioned
schemes as no iterative methods are used for the coupling procedure itself. Nonetheless, as for the
IMEX-Runge-Kutta approach in [1,2], the subsolvers are coupled at the level of interior Runge-Kutta
stages in addition to the time levels corresponding to the chosen time step sizes. Furthermore, we
combine the IMEX approach with the concept of multirate schemes which allows for different time
step sizes of the subsolvers, corresponding to the subcycling strategy in [3,4].

The classical multirate idea for systems of ordinary differential equations dates back to
the late fifties and was first studied by Rice [9]. Early multirate approaches were based on
Runge-Kutta schemes [10,11], backward differentiation formulas [12–14], extrapolation schemes [15]
or Rosenbrock-Wanner methods [16,17]. A drawback of these aforementioned early schemes is the
fact that the coupling between slow and fast components of the system is done by interpolating
and extrapolating state variables. This complicates the implementation into existing simulation
packages [18]. Kværnø and Rentrop overcame this shortcoming by developing a concise theory
of explicit multirate Runge-Kutta schemes and obtained promising results for electrical network
simulations [19]. Deriving information by interpolation and extrapolation was circumvented by
using the internal Runge-Kutta stages for coupling the integration schemes for the subsystems. In [18],
a generalization to stiff problems was proposed. In that work, explicit Runge-Kutta schemes integrating
the (nonstiff) fast system component are combined with linearly implicit Rosenbrock-Wanner schemes
integrating the (stiff) slow system component.

IMEX partitioning is often used to term-split the corresponding partial differential equation, e.g.,
in the context of advection-diffusion-reaction equations, advection terms are classically discretized
explicitly while viscous terms or stiff reaction is discretized by an implicit scheme [20–22]. IMEX-RK
schemes have also been used in domain-based splittings, e.g., in [23] or based on eigenvalue estimates
of the space discrete operators as in [24].

Very recently, Sandu and Günther [25] constructed a generalized-structure approach to additively
partitioned Runge-Kutta (GARK) methods. This approach comes with a high level of flexibility and
allows for different Runge-Kutta stage values as arguments of different components of the problem’s
additively partitioned right-hand side. In addition, it combines different Runge-Kutta schemes with
inter-component coupling based on the Runge-Kutta stages. In particular, it is possible to combine
both the IMEX and the multirate approach. The GARK framework gives the intuition necessary
to define new classes of additive schemes and eases the construction of additive schemes which
preserve the order of the base ones. Günther and Sandu made use of the GARK framework to derive
a multirate scheme solely based on implicit and explicit Runge-Kutta schemes [26]. Günther and
Sandu’s multirate GARK scheme carries out just one so-called macro step of a “large” step size H
within the slow component per iteration while at the same time carrying out several so-called micro
steps of a “small” step size h < H within the fast component per iteration, until both components
“meet up” again. Hence, several equidistant micro time steps are carried out for one macro time step.
The GARK formalism includes a variety of well-known schemes for partitioned problems, like the
classical implicit-explicit (IMEX) Runge-Kutta schemes [20,23], as well as former multirate methods as
in [19,21]. Furthermore, Günther, Hachtel and Sandu showed the feasibility of the multirate GARK
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approach for both implicit-implicit and implicit-explicit pairing of basic schemes [27] in the context of
thermal-electrical coupling.

Concerning fluid–structure interaction, the time scales of the fluid subsystem are typically much
shorter than the ones of the structure subsystem which makes the multirate GARK framework an
attractive candidate. In contrast to the original application from electrical circuit simulation [18,19]
and the test examples from thermal-electrical coupling [27], the fluid is expected to be stiff in many
applications, which is the reason why implicit schemes often need to be applied to the fast fluid part.
In case of (partially) explicit time integration of the fluid equations, e.g., in advection-dominated flow,
the time steps may be requested to change gradually as a consequence of changes of the characteristic
speeds. In case of implicit time integration, the fast fluid step sizes (the micro steps) may have to vary
during the structure step (the macro step) due to the convergence behavior of the nonlinear solver or
due to error control.

Therefore, in this work, we seek to overcome the major restriction of keeping the micro step sizes
constant, by allowing varying micro step sizes that may be adapted according to error or stability
requirements. The multirate GARK framework is thus extended towards the adaptive choice of
micro time steps within one macro time step. In this work, the corresponding order conditions are
derived. Furthermore, we investigate the choice of coupling coefficients which allows the combined
method to preserve the order of the single schemes within the partitioned approach. We then derive
specific multirate GARK schemes applicable to mechanical fluid–structure interaction, give details
regarding compliance with the geometric conservation law and show numerical results for the classical
fluid–structure interaction problem of a moving piston.

This paper is structured as follows. Section 2 reviews the concept of partitioned Runge-Kutta
schemes for partitioned ordinary differential equations including the recently introduced GARK
approach. In Section 3, the concept of adaptive micro step sizes is introduced in order to obtain flexible
multirate GARK (MGARK) schemes for coupled problems. We then derive the corresponding order
conditions for this extension of the multirate GARK scheme given in [26]. Thereafter, we formulate
the adaptive micro step MGARK scheme for mechanical fluid-structure interaction and discuss the
resulting restrictions to the specific structure of the base methods as well as to the coupling coefficients.
Our approach to time adaptivity based on embedded error estimation is then presented in Section 3.4.
Numerical experiments are presented in Section 4. Here, compliance with the geometric conservation
law is demonstrated for uniform flow on an artificially moving grid, the viability of adaptive micro
steps is shown by an investigation of the step size statistics and finally, we investigate the efficiency
of higher order time integration for small tolerances by a comparison of first, second and third order
schemes in terms of error vs. CPU time.

2. Partitioning Systems of Ordinary Differential Equations

We may generally distinguish two kinds of partitioned systems of ordinary differential equations.
The complete system under consideration may be composed of D ∈ N different subsystems,
each subsystem containing a specific subset of the given equations. The system is then partitioned
by component. Else, if the right hand side of the ODE contains different terms of very different
character as in the context of conservation laws containing convective and diffusive fluxes, usually the
right hand side of the ODE is additively partitioned as in the following definition.

Definition 1. Let [0, T] ⊆ R and f {k} : Rm → Rm for k = 1, . . . , D. A system of (autonomous) ordinary
differential equations of the form

u′(t) =
D

∑
k=1

f {k}(u(t)), t ∈ [0, T], (1)
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for u ∈ C1([0, T],Rm) is called an additively partitioned system of ordinary differential equations. Adding
initial conditions

u(0) = u0 ∈ Rm, (2)

we obtain an additively partitioned initial value problem.

Every component-partitioned system may obviously be rewritten as an additively partitioned
system of the same dimension inserting zeros into suitable positions of the right hand side terms.
Therefore, we will restrict the discussion to the more general case of additively partitioned systems at
this point.

For the numerical solution of additively partitioned initial value problems, Kennedy and
Carpenter [22] constructed specific Runge-Kutta schemes called additive Runge-Kutta schemes (ARK).
The ARK schemes apply different Runge-Kutta methods (A{k}, b{k}), k = 1, . . . , D, to the terms on the
right hand side of the ODE in the following form:

Un,i = un + h
D

∑
k=1

s

∑
j=1

a{k}i,j f {k}(Un,j), i = 1, . . . , s, (3)

un+1 = un + h
D

∑
k=1

s

∑
i=1

b{k}i f {k}(Un,i), (4)

with the corresponding Butcher table

A{1} A{2} · · · A{D}

b{1}T b{2}T · · · b{D}T
,

in which the individual Runge-Kutta schemes (A{k}, b{k}) have the same number of stages s. For the
special case of D = 2, an equivalent class for the solution of component-partitioned systems is given
by Hairer et al. ([28], [II.15]). Sandu and Günther [25,26] extended the ARK schemes to the so-called
generalized-structure additively partitioned Runge-Kutta (GARK) schemes. The most general form of
a GARK scheme is given by the following definition.

Definition 2. A GARK scheme for the numerical solution of a D-times partitioned initial value problem (see
Definition 1) with d ≤ D GARK stages and step size h is given by

U{q}n,i = un + h
D

∑
k=1

s{k}

∑
j=1

a{q,k}
i,j f {k}(U{J(k)}

n,j ), i = 1, . . . , s{q}, q = 1, . . . , d (5)

un+1 = un + h
D

∑
k=1

s{k}

∑
i=1

b{k}i f {k}(U{J(k)}
n,i ), (6)

where J : {1, . . . , D} → {1, . . . , d} is a map which determines which of the stage values U{J(k)}
n,i is assigned to

the k-th right hand side term. We denote this scheme by GARK(D, d, J).

The corresponding generalized Butcher table reads

A{1,1} A{1,2} · · · A{1,D}

A{2,1} A{2,2} · · · A{2,D}
...

...
. . .

...
A{d,1} A{d,2} · · · A{d,D}

b{1}T b{2}T · · · b{D}T

.
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In [25], Sandu and Günther have shown that GARK schemes are equivalent to ARK schemes in
the sense that, on the one hand, every ARK(D) scheme can be written as GARK(D, 1, J) scheme with
J given by the map {1, . . . , D} 3 x 7→ 1, and on the other hand, every GARK(D, d, J) scheme can be
written as an (artificially enlarged) ARK(D) scheme.

As an example illustrating the generality of the GARK formulation, we may consider the
classical fractional-step-θ scheme introduced in [29] which is widely used for time integration of
the Navier-Stokes equations. Given an additively split ordinary differential equation

u′(t) = f {1}(u(t)) + f {2}(u(t)),

the fractional-step-θ method reads

un+θ − un

θh
= f {1}(un+θ) + f {2}(un),

un+1−θ − un+θ

(1− 2θ)h
= f {1}(un+θ) + f {2}(un+1−θ),

un+1 − un+1−θ

θh
= f {1}(un+1) + f {2}(un+1−θ).

Setting Un,1 = un, Un,2 = un+θ , Un,3 = un+1−θ , Un,4 = un+1, we may rewrite this scheme as a
four-stage ARK scheme as defined in Equations (3) and (4) using the Butcher table

A{1} A{2}

b{1}T b{2}T
=

0 0
0 θ θ 0
0 1− θ 0 θ 0 1− 2θ

0 1− θ 0 θ θ 0 1− θ 0
0 1− θ 0 θ θ 0 1− θ 0

.

There are several ways to write the fractional-step-θ method as a GARK scheme. A trivial way of
achieving that is to set d = 1, A{1,1} = A{1}, A{1,2} = A{2} and J(1) = J(2) = 1, which results in a
GARK(2, 1, J) scheme with the generalized Butcher table

A{1,1} A{1,2}

b{1}T b{2}T
.

Another possible representation of the fractional-step-θ method within the GARK framework
that makes use of different GARK stages is given by setting U{1}n,1 = un+θ , U{1}n,2 = un+1, U{2}n,1 = un,

U{2}n,2 = un+1−θ . With these GARK stage values the scheme can be written as a GARK(2, 2, id) scheme
with the corresponding generalized Butcher table

A{1,1} A{1,2}

A{2,1} A{2,2}

b{1}T b{2}T
=

θ 0 θ 0
1− θ θ θ 1− θ

0 0 0 0
1− θ 0 θ 1− 2θ

1− θ θ θ 1− θ

.

This formulation gets rid of the zero columns of the above ARK/trivial GARK formulation
of the scheme.

GARK schemes which assign to each term of the right hand side of Equation (1) a specific stage
value are particularly convenient, as the general definition further simplifies.
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Definition 3. GARK schemes with separate stage value for each right hand side term of a D-times partitioned
initial value problem (see Definition 1) result from the choice d = D and J = id within the general GARK
scheme. They are given by

U{q}n,i = un + h
D

∑
k=1

s{k}

∑
j=1

a{q,k}
i,j f {k}(U{k}n,j ), i = 1, . . . , s{q}, q = 1, . . . , D (7)

un+1 = un + h
D

∑
k=1

s{k}

∑
i=1

b{k}i f {k}(U{k}n,i ). (8)

We denote this scheme by GARK(D) = GARK(D, D, id).

3. Multirate GARK (MGARK) Schemes

For splittings into two time scales, i.e., for D = 2, which is a reasonable starting point for problems
in the context of fluid–structure interactions, we now define the multirate generalized-structure
additively partitioned Runge-Kutta (MGARK) schemes as follows.

Definition 4 (MGARK scheme). An MGARK scheme using N ∈ N micro steps of step size hλ ≤ H
(λ = 1, . . . , N) for fast components and a macro step of step size H for slow components is given by

U{s}n,i = un +
N

∑
λ=1

hλ

s{f}

∑
j=1

a{s,f,λ}
i,j f {f}(U{f,λ}n,j ) + H

s{s}

∑
j=1

a{s,s}
i,j f {s}(U{s}n,j ), i = 1, . . . , s{s}, (9)

U{f,λ}n,i = un +
λ−1

∑
`=1

h`
s{f}

∑
j=1

b{f}j f {f}(U{f,`}n,j ) + hλ

s{f}

∑
j=1

a{f,f}i,j f {f}(U{f,λ}n,j )

+ H
s{s}

∑
j=1

a{f,s,λ}
i,j f {s}(U{s}n,j ), i = 1, . . . , s{f}, λ = 1, . . . , N, (10)

un+1 = un +
N

∑
λ=1

hλ

s{f}

∑
i=1

b{f}i f {f}(U{f,λ}n,i ) + H
s{s}

∑
i=1

b{s}i f {s}(U{s}n,i ). (11)

Thus, one step of an MGARK scheme includes one macro step of step size H as well as all of the
N micro steps having potentially different step sizes hλ. In order to apply the order theory for GARK
schemes as in Theorem 1 to MGARK schemes, we would like to reformulate the MGARK method
as a GARK scheme using separate stage values for fast and slow components as in Definition 3. As
the classical form of GARK schemes depends on constant micro step sizes within one macro step,
the step size of the micro steps will be denoted by hλ = mλ H, λ = 1, . . . , N using the coefficients
mλ ∈ (0, 1]. Substituting these step sizes into Equations (9)–(11) and considering the coefficients mλ as
modifications to the Runge-Kutta coefficients A{f,f}, A{s,f,λ} and b{f}, we obtain

U{s}n,i = un + H
N

∑
λ=1

s{f}

∑
j=1

(
mλa{s,f,λ}

i,j

)
f {f}(U{f,λ}n,j ) + H

s{s}

∑
j=1

a{s,s}
i,j f {s}(U{s}n,j ), i = 1, . . . , s{s} (12)

U{f,λ}n,i = un + H
λ−1

∑
`=1

s{f}

∑
j=1

(
m`b

{f}
j

)
f {f}(U{f,`}n,j ) + H

s{f}

∑
j=1

(
mλa{f,f}i,j

)
f {f}(U{f,λ}n,j )

+ H
s{s}

∑
j=1

a{f,s,λ}
i,j f {s}(U{s}n,j ), i = 1, . . . , s{f}, λ = 1, . . . , N, (13)

un+1 = un + H
N

∑
λ=1

s{f}

∑
i=1

(
mλb{f}i

)
f {f}(U{f,λ}n,i ) + H

s{s}

∑
i=1

b{s}i f {s}(U{s}n,i ). (14)



Aerospace 2017, 4, 8 7 of 33

From Equations (12)–(14) it is in fact obvious that the MGARK scheme is equivalent to a GARK(2)
scheme with the corresponding generalized Butcher table

A{f,f} A{f,s}

A{s,f} A{s,s}

b{f}T b{s}T

=

m1 A{f,f} A{f,s,1}

m11b{f}T m2 A{f,f} A{f,s,2}

...
...

. . .
...

m11b{f}T m21b{f}T · · · mN A{f,f} A{f,s,N}

m1 A{s,f,1} m2 A{s,f,2} · · · mN A{s,f,N} A{s,s}

m1b{f}T m2b{f}T · · · mNb{f}T b{s}T

(15)

containing the coefficients mλ.

3.1. Order Conditions for MGARK Schemes with Variable Micro Steps

The order conditions of GARK schemes have been explicitly derived by Sandu and Günther up
to schemes of 4th order, see [25]. The derivation is based on the application of the theory of N-trees
by Araújo et al. [30] on the representation of the GARK scheme in Equations (5) and (6). In order to
obtain simple formulations for these order conditions, we denote by “·” the usual scalar product of two
vectors as well as the usual matrix vector product while the symbol “∗” denotes a component-wise
multiplication of two vectors.

Theorem 1 (GARK order conditions; Sandu and Günther ([25], Theorem 2.6)). For i, j ∈ {1, . . . , D},
we define c{J(i),j} := A{J(i),j} · 1. We have the following order conditions for the GARK(D, d, J) scheme as in
Definition 2, where i, j, k ∈ {1, . . . , D}:

First order

b{i}T · 1 = 1 (16)

Second order

b{i}T · c{J(i),j} = 1
2 , (17)

Third order

b{i}T ·
(

c{J(i),j} ∗ c{J(i),k}
)
= 1

3 , (18)

b{i}T · A{J(i),j} · c{J(j),k} = 1
6 , (19)

Fourth order

b{i}T ·
(

c{J(i),j} ∗ c{J(i),k} ∗ c{J(i),l}
)
= 1

4 , (20)(
b{i} ∗ c{J(i),j}

)T
· A{J(i),k} · c{J(k),l} = 1

8 , (21)

b{i}T · A{J(i),j} ·
(

c{J(j),k} ∗ c{J(j),l}
)
= 1

12 , (22)

b{i}T · A{J(i),j} · A{J(k),l} · c{J(k),l} = 1
24 . (23)

Now, the application of the GARK order conditions to the Butcher table given in Equation (15)
yields the following assertion.
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Theorem 2 (MGARK order conditions). We define c{f} := A{f,f} · 1, c{s} := A{s,s} · 1, c{f,s,λ} :=
A{f,s,λ} · 1, c{s,f,λ} := A{s,f,λ} · 1. The following conditions are sufficient to obtain the desired order of an
MGARK scheme.

First order

b{f}T · 1 = 1, (24)

b{s}T · 1 = 1, (25)
N

∑
λ=1

mλ = 1 (26)

Second order

b{f}T · c{f} = 1
2 , (27)

b{s}T · c{s} = 1
2 , (28)

b{f}T ·
N

∑
λ=1

mλc{f,s,λ} = 1
2 , (29)

b{s}T ·
N

∑
λ=1

mλc{s,f,λ} = 1
2 (30)

Third order

b{f}T · diag(c{f}) · c{f} = 1
3 , (31)

b{s}T · diag(c{s}) · c{s} = 1
3 , (32)

b{f}T · A{f,f} · c{f} = 1
6 , (33)

b{s}T · A{s,s} · c{s} = 1
6 , (34)

b{f}T ·
N

∑
λ=1

mλ A{f,s,λ} · c{s} = 1
6 , (35)

b{s}T ·
N

∑
λ=1

mλ A{s,f,λ} ·
(λ−1

∑
`=1

m`1 + mλc{f}
)
= 1

6 (36)

b{f}T ·
N

∑
λ=1

mλ diag(c{f,s,λ}) ·
(λ−1

∑
`=1

m`1 + mλc{f}
)
= 1

3 , (37)

b{f}T ·
N

∑
λ=1

mλ diag(c{f,s,λ}) · c{f,s,λ} = 1
3 , (38)

b{s}T · diag
( N

∑
λ=1

mλc{s,f,λ}
)
· c{s} = 1

3 , (39)

b{s}T · diag
( N

∑
λ=1

mλc{s,f,λ}
)
·

N

∑
λ=1

mλc{s,f,λ} = 1
3 , (40)

b{f}T ·
N

∑
λ=1

mλ

(λ−1

∑
`=1

m`c
{f,s,`} + mλ A{f,f} · c{f,s,λ}

)
= 1

6 , (41)
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and

b{f}T ·
N

∑
λ=1

mλ A{f,s,λ} ·
N

∑
`=1

m`c
{s,f,`} = 1

6 , (42)

b{s}T ·
N

∑
λ=1

mλ A{s,s} · c{s,f,λ} = 1
6 , (43)

b{s}T ·
N

∑
λ=1

mλ A{s,f,λ} · c{f,s,λ} = 1
6 . (44)

Remark 1. In [26], order conditions for multirate GARK schemes using constant micro step sizes within the
macro step are presented. These order conditions require that all micro steps taken in the same macro step have
the same step size. Of course, micro step sizes may change after the macro step is completed. The conditions
given in Theorem 2 are thus more general because they allow for varying micro step sizes also within the macro
step. In the special case of constant micro step sizes per macro step we recover the order conditions in [26].

Proof of Theorem 2. We apply the order conditions of Theorem 1 to the Butcher table of the MGARK
scheme given in Equation (15). Herein, the conditions have to be applied to the underlined quantities.
The assertion is proven if each order condition of Theorem 1 holds due to an equivalent order condition
or due to a subset of order conditions formulated in Theorem 2. First, we remark when requiring the
conditions (24), (27), (31) and (33) we assume in particular that the corresponding fast base method
(A{f,f}, b{f}) is at least of the same order as the coupled scheme.

• First order conditions: If Equations (24)–(26) are fulfilled, we directly obtain

N

∑
λ=1

mλb{f}T · 1 = 1, b{s}T · 1 = 1,

due to the third condition ∑N
λ=1 mλ = 1. Hence, the Equation (16) are fulfilled for i ∈ {f, s}.

• Second order conditions: Equation (17) for (i, j) = (f, f) can be rewritten as

N

∑
λ=1

mλb{f}T ·
(λ−1

∑
`=1

m`1 + mλc{f}
)
= 1

2 ⇐⇒ 1 =
N

∑
λ=1

(λ−1

∑
`=1

2mλm` + m2
λ

)
=
( N

∑
λ=1

mλ

)2
,

using Equations (24) and (27). The corresponding condition on the right hand side is then fulfilled
due to Equation (26). Equation (17) for (i, j) = (f, s) and for (i, j) = (s, f) is directly equivalent to
Equations (29) and (30), respectively, while (i, j) = (s, s) leads to Equation (28).

• Third order conditions (Part 1): Equation (18) for (i, j, k) = (f, f, f) rewrites as

N

∑
λ=1

mλb{f}T ·
((λ−1

∑
`=1

m`1 + mλc{f}
)
∗
(λ−1

∑
`=1

m`1 + mλc{f}
))

= 1
3 .

Using Equations (24), (27) and (31) this is equivalent to

1 =
N

∑
λ=1

(
m3

λ + 3mλ

(λ−1

∑
`=1

m`

)2
+ 3m2

λ

λ−1

∑
`=1

m`

)
=
( N

∑
λ=1

mλ

)3
.

As before, this condition is valid due to Equation (26). For (i, j, k) = (f, s, f) and (i, j, k) = (f, f, s),
Equation (18) yields

N

∑
λ=1

mλb{f}T ·
(

c{f,s,λ} ∗
(λ−1

∑
`=1

m`1 + mλc{f}
))

= 1
3 .
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Due to the equality a ∗ a = diag(a) · a for an arbitrary vector a, this condition is equivalent to
Equation (37). For (i, j, k) = (f, s, s), Equation (18) directly rewrites as Equation (38). The two
choices (i, j, k) = (s, f, s) and (i, j, k) = (s, s, f) for Equation (18) lead to the Equation (39). The
remaining choices of (i, j, k) in Equation (18) finally yield the condition (40) for (i, j, k) = (s, f, f)
and the condition (32) for (i, j, k) = (s, s, s).

• Third order conditions (Part 2): Equation (19) for (i, j, k) = (f, f, f) can be rewritten as

N

∑
λ=1

mλb{f}T·
[
m11 · b{f}T, · · · , mλ−11 · b{f}T, mλ A{f,f}, 0, · · · , 0

]
·
[ν−1

∑
`=1

m`1 + mνc{f}
]

ν=1,...,N
= 1

6 .

Using Equations (24), (27) and (33) this is equivalent to

1 =
N

∑
λ=1

(
m3

λ + 3mλ

λ−1

∑
`=1

m2
` + 6mλ

λ−1

∑
`=1

`−1

∑
µ=1

m`mµ + 3m2
λ

λ−1

∑
`=1

m`

)
=
( N

∑
λ=1

mλ

)3
,

i.e., validity follows from Equation (26). For (i, j, k) = (f, f, s), Equation (19) rewrites as

N

∑
λ=1

mλb{f}T ·
(λ−1

∑
`=1

m`1b{f}T · c{f,s,`} + mλ A{f,f} · c{f,s,λ}
)
= 1

6 .

Considering Equation (24), this is equivalent to Equation (41). Furthermore, for (i, j, k) = (f, s, f),
(i, j, k) = (f, s, s), (i, j, k) = (s, f, f), (i, j, k) = (s, f, s), (i, j, k) = (s, s, f) and (i, j, k) = (s, s, s),
Equation (19) rewrites as Equations (42), (35), (36), (44), (43) and (34), respectively.

The order conditions as in Theorem 2 include the assumptions that the fast base method
(A{f,f}, b{f}) is at least of the same order as the coupled scheme and that the sum of micro step
sizes is equal to the size of the macro step. This assumption is incorporated into the Equations (24),
(27), (31), (33), respectively, depending on the considered order, as well as the Equation (26). Thus,
the MGARK order conditions of Theorem 2 are sufficient, but not necessary. In fact, this degree of
freedom within the MGARK scheme can already be observed in the method formulation given in
Equations (12)–(14) as well as on the left side of the right hand side Butcher table in Equation (15).

However, in this work, we will only consider MGARK schemes which fulfill the above
assumptions. In this case, the conditions in Theorem 2 become necessary and the order of the complete
MGARK scheme is restricted by the minimum order of the respective base methods. In order to achieve
this maximum order, the coupling Equations (29) and (30), (35) and (36), (37)–(44) have to be fulfilled.
This can be achieved by a suitable choice of the coupling coefficients A{f,s} and A{s,f}.

In addition, we would prefer internally consistent MGARK schemes as they already fulfill a
significant number of the order conditions in Theorem 2 which leads to a considerable simplification.
According to [25], internally consistent GARK schemes are defined as follows.

Definition 5. A GARK(D, d, J) scheme given by Definition 2 is internally consistent, if

A{q,1} · 1 = A{q,2} · 1 = . . . = A{q,D} · 1 =: c{q}

holds for all q = 1, . . . , d.

According to the notation of MGARK schemes used in Definition 4 and specified by the
generalized Butcher table in Equation (15), the above definition of internal consistency takes the
form A{f,f} · 1 = A{f,s} · 1 = c{f} and A{s,f} · 1 = A{s,s} · 1 = c{s} in case of an MGARK scheme. For
internally consistent MGARK schemes, the order conditions in Theorem 2 simplify to
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Theorem 3 (Order conditions for internally consistent MGARK schemes). An internally consistent
MGARK scheme as specified by Definitions 4 and 5 is at least of first order if Equations (24)–(26) hold.
The scheme is at least of second order, if in addition to the first order conditions the Equations (27) and (28) hold.
The scheme is at least of third order, if in addition to the second order conditions the third order conditions for the
individual schemes, i.e., Equations (31)–(34) as well as the coupling Equations (35) and (36) are fulfilled.

Proof. Let c{f,s,λ} := A{f,s,λ} · 1, c{s,f,λ} := A{s,f,λ} · 1. For an internally consistent MGARK scheme,
Definition 5 and the subsequent remark yield

A{f,f} · 1 = A{f,s} · 1 = c{f},

A{s,f} · 1 = A{s,s} · 1 = c{s}.

These two above conditions are equivalent to

λ−1

∑
`=1

m`1 + mλc{f} = c{f,s,λ} for λ = 1, . . . , N, (45)

N

∑
λ=1

mλc{s,f,λ} = c{s}. (46)

We will show that the sufficient conditions stated in Theorem 2 are fulfilled. For first order, nothing
has to be shown as the above first order conditions are precisely the ones in Theorem 2.

• Second order conditions: Only the validity of Equations (29) and (30) needs to be proven.
The Equation (29), combined with Equations (24), (27) and (45), reduces to

N

∑
λ=1

(λ−1

∑
`=1

2mλm` + m2
λ

)
=
( N

∑
λ=1

mλ

)2
= 1,

which is fulfilled due to Equation (26). Validity of the Equation (30) directly follows from
Equations (28) and (46).

• Third order conditions (Part 1): The validity of Equations (37)–(40) needs to be shown. Both of the
Equations (37) and (38), in combination with Equation (45), reduce to

b{f}T ·
N

∑
λ=1

mλ diag
(λ−1

∑
`=1

m`1 + mλc{f}
)
·
(λ−1

∑
`=1

m`1 + mλc{f}
)
= 1

3 .

Due to Equations (24), (27) and (31), the above equations further reduce to

N

∑
λ=1

(
m3

λ + 3mλ

(λ−1

∑
`=1

m`

)2
+ 3m2

λ

λ−1

∑
`=1

m`

)
=
( N

∑
λ=1

mλ

)3
= 1,

which is fulfilled due to Equation (26). Furthermore, the validity of the Equations (39) and (40)
immediately follows from Equations (32) and (46).

• Third order conditions (Part 2): Finally, the validity of Equations (41)–(44) remains to be shown.
Using Equations (24), (27), (33) and (45), Equation (41) reduces to

N

∑
λ=1

(
m3

λ + 3mλ

λ−1

∑
`=1

m2
` + 6mλ

λ−1

∑
`=1

`−1

∑
µ=1

m`mµ + 3m2
λ

λ−1

∑
`=1

m`

)
=
( N

∑
λ=1

mλ

)3
= 1

and is thus fulfilled due to Equation (26). The validity of the Equation (43) follows from
Equations (34) and (46). Considering Equations (45) and (46), Equations (42) and (44) are
equivalent to Equations (35) and (36), respectively.
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The only coupling Equation (26) of the general MGARK scheme is thus required also for internally
consistent MGARK schemes. However, the two second order coupling conditions are automatically
fulfilled for internally consistent MGARK schemes without requiring additional conditions. The large
number of third order coupling conditions of the general MGARK scheme given in Theorem 2 now
reduces to only the two coupling Equations (35) and (36).

Concerning the concrete choice of an MGARK scheme in practice, we notice that the computational
effort needs to be low enough in order to not exceed the cost of solving the coupled system with
constant micro step sizes per macro step. Coupling the calculation of the slow components to all micro
steps seems impractical from this point of view. The reasonable partial decoupling of the macro step
calculation from the micro step computations has already been suggested by Günther et al. [18,26].
Their approach consists in coupling the macro step only to the first micro step. Formally this is realized
by setting A{s,f,λ} = 0 for λ > 1.

3.2. Specific Coupling Conditions Retaining the Order of the Base Schemes

In the following, we consider specific choices of base methods (A{f,f}, b{f}) and (A{s,s}, b{s}) and
the corresponding choice of coupling conditions which retain the order of the base methods. Herein,
we always assume that the Equation (26) holds, i.e., we have ∑N

λ=1 hλ = H. We consider the following
cases which are ordered from general to specific ones.

(a) The base methods both have s stages and the macro step may be coupled to all of the N
micro steps.

(b) The base methods both have s stages and the macro step is only coupled to the first of the N
micro steps.

(c) The base methods may be either explicit first stage, singly diagonal implicit Runge-Kutta
(ESDIRK) or explicit methods having 4 stages and the macro step is only coupled to the first of
the N micro steps. With c{f} = A{f,f} · 1, c{s} = A{s,s} · 1 we additionally assume c{f}2 6= c{f}3 ,

c{s}2 6= c{s}3 , b{f}4 6= 0, b{s}4 6= 0.

From Theorem 2 we immediately obtain

Corollary 1 (First order coupling). For all of the cases (a)–(c), the MGARK scheme is at least of first order if
this is true for the base methods—irrespective of the concrete choice of coupling.

Corollary 2 (Second order coupling). If the coupling is realized as
Choice A

A{f,s,λ} = mλ A{f,f} +
λ−1

∑
`=1

m`I (47)

and
A{s,f,λ} = A{s,s}, in case (a), (48)

or
A{s,f,1} = 1

m1
A{s,s}, A{s,f,λ} = 0, λ > 1, in cases (b) and (c), (49)

or
Choice B

a{f,s,1}
i,j =

{
m1c{f}i , if j = min{i− 1, s{s}},
0, otherwise,

(50)

a{f,s,λ}
i,j =

{
∑λ−1
`=1 m` + mλc{f}i , if j = min{i, s{s}},

0, otherwise,
, λ > 1, (51)
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and

a{s,f,1}
i,j =

{
1

m1
c{s}i if j = min{i− 1, s{f}}

0 otherwise
, A{s,f,λ} = 0, λ > 1 (52)

then the MGARK scheme is at least of second order, if this is true for the base methods.

Proof. With the Equation (47), the Equation (45) is fulfilled and with Equation (48) or (49), respectively,
also Equation (46) holds, which is equivalent to the internal consistency of the MGARK scheme.
Equations (50)–(52) obviously lead to an internally consistent MGARK scheme as well. According to
Theorem 3, internally consistent MGARK schemes do not have to fulfill additional coupling conditions
in order to achieve second order.

Corollary 3 (Third order coupling). If in case (c) the coupling is realized as

A{f,s,λ} =


α
{λ}
1 0 0 0

α
{λ}
2 0 0 0

0 α
{λ}
3 0 0

0 α
{λ}
4 α

{λ}
5 0

 , α
{λ}
1 = ∑λ−1

`=1 m`, α
{λ}
2 = α

{λ}
1 + mλc{f}2 ,

α
{λ}
3 = α

{λ}
1 + mλc{f}3 , α̃4 = 1

6 − b{f}T ·∑N−1
`=1 m`A{f,s,`} · c{s},

α
{λ}
4 =


0, λ < N,

1
mλ

α̃4−b{f}3 α
{λ}
3 c{s}2 −b{f}4

(
α
{λ}
1 +mλc{f}4

)
c{s}3

b{f}4

(
c{s}2 −c{s}3

) , λ = N,

α
{λ}
5 = α

{λ}
1 + mλc{f}4 − α

{λ}
4

(53)

and

A{s,f,1} =


0 0 0 0
β1 0 0 0
0 β2 0 0
0 β3 β4 0

 , β1 = 1
m1

c{s}2 , β2 = 1
m1

c{s}3 ,

β3 =

1
6m2

1
− b{s}3 β2c{f}2 − 1

m1
b{s}4 c{s}4 c{f}3

b{s}4
(
c{f}2 − c{f}3

) , β4 = 1
m1

c{s}4 − β3, (54)

A{s,f,λ} = 0, λ > 1, (55)

the MGARK scheme is at least of third order, if this is true for the base methods.

Proof. First we show that the above coupling strategy leads to an internally consistent MGARK
scheme, i.e., Equations (45)–(46) are fulfilled. Equation (45) is fulfilled due to

c{f,s,λ} = [α
{λ}
1 , α

{λ}
2 , α

{λ}
3 , α

{λ}
4 + α

{λ}
5 ]T =

λ−1

∑
`=1

m`1 + mλ[0, c{f}2 , c{f}3 , c{f}4 ]T =
λ−1

∑
`=1

m`1 + mλc{f},

and Equation (46) holds due to

N

∑
λ=1

mλc{s,f,λ} = m1[0, β1, β2, β3 + β4]
T = [0, c{s}2 , c{s}3 , c{s}4 ]T = c{s}.
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Hence, the validity of Equations (35) and (36) remains to be shown. We have

b{f}T·
N

∑
λ=1

mλ A{f,s,λ} · c{s} =
N

∑
λ=1

mλ

(
b{f}3 α

{λ}
3 c{s}2 + b{f}4 α

{λ}
4 c{s}2 + b{f}4 α

{λ}
5 c{s}3

)
=

N

∑
λ=1

mλ

((
b{f}3 c{s}2 + b{f}4 c{s}3

) λ−1

∑
`=1

m` + mλb{f}3 c{f}3 c{s}2 + b{f}4 α
{λ}
4
(
c{s}2 − c{s}3

)
+ mλb{f}4 c{f}4 c{s}3

)
=

N

∑
λ=1

mλ

((
b{f}3 c{s}2 + b{f}4 c{s}3

) λ−1

∑
`=1

m` + mλb{f}3 c{f}3 c{s}2 + mλb{f}4 c{f}4 c{s}3

)
+ α̃4 −mN

((
b{f}3 c{s}2 + b{f}4 c{s}3

) N−1

∑
`=1

m` + mNb{f}3 c{f}3 c{s}2 + mNb{f}4 c{f}4 c{s}3

)
= 1

6 ,

which proves Equation (35) due to the definition of α̃4. As the slow component is only coupled to the
first micro step of the fast component, we have

b{s}T·
N

∑
λ=1

mλ A{s,f,λ} ·
(λ−1

∑
`=1

m`1 + mλc{f}
)
= m2

1b{s}T · A{s,f,1} · c{f}

= m2
1
(
b{s}3 β2c{f}2 + b{s}4 β3c{f}2 + b{s}4 β4c{f}3

)
= m1

(
b{s}3 c{s}3 c{f}2 + m1b{s}4 β3

(
c{f}2 − c{f}3

)
+ b{s}4 c{s}4 c{f}3

)
= 1

6 ,

proving Equation (36).

The advantage of the presented coupling strategies is given by the fact that neither the micro step
size hλ (and thus mλ) nor the final number N of micro steps per macro step needs to be known a priori.
Only the macro step size H is provided while the micro step sizes may be varied adaptively in the
process of taking micro steps. For each micro step, the coupling coefficients will be newly adapted
to the micro step size. Switching on the coefficient α

{N}
4 in the last micro step ensures the coupling

condition Equation (35). The number of micro steps is thereby irrelevant, the scheme only has to
identify the last micro step. Since the slow component is only coupled to the fast component within the
first micro step, the corresponding coupling condition Equation (36) is already fulfilled by the specific
choice of the parameter β3 in the first micro step.

3.3. Application of MGARK to Coupled Problems of Fluid–Structure Interaction

For mechanical fluid–structure interaction, the fluid domain is time-dependent. In order to deal
with such moving fluid domains, the arbitrary Lagrangian-Eulerian(ALE) formulation for the fluid
variables u : Ω× [0, T] → Rd on a time-dependent domain Ω(t) =

⋃
i∈AΩi(t) is used in this work.

The ALE formulation is given by

d
dt

∫
Ωi(t)

u dx = −
∮

∂Ωi(t)
FALE(u, ẋ) · n dσ, FALE(u, ẋ) · n = F (u) · n− u(ẋ · n),

see [1,31]. The fluid equations will then be discretized by a finite volume method based on the cell
means of the conservative variables and cell volume, i.e.,

ūi =
1
Vi

∫
Ωi

u dx, Vi = vol(Ωi) =
∫

Ωi

1 dx.
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Rewriting the discretized right hand side as a function R(ū, V , ẋ), which incorporates a numerical
flux function, we obtain a system of ordinary differential equations of the form

(Vū)′ = −R(ū, V , ẋ), V = [Vi]i∈A, ū = [ūi]i∈A, Vū = [Viūi]i∈A. (56)

Herein, the fast components are given by the fluid variables, i.e., u{f} = Vū and the slow
components will be obtained from the deformation of a structure which influences the fluid domain
and thus determines the cell sizes, i.e., V = V(u{s}). Thus, Equation (56) may be written as

u{f}
′
= f {f}(u{f}, u{s}, ẋ), (57)

where ẋ denotes grid velocities which will be determined by the so-called geometric conservation
law (GCL). The GCL basically states that constant solutions ū = const. have to be preserved by the
discretization, i.e., constant states are exact solutions of Equation (56). This can be formulated by the
condition

ūV ′ = −R(ū, V , ẋ) = ūR̄(ẋ) ⇐⇒ V ′ = R̄(ẋ), (58)

where R̄ denotes the discretization of ∮
∂Ω(t)

ẋ · n dσ

corresponding to R, see [31]. The application of a Runge-Kutta scheme (A{f,f}, b{f}) with step size h
to the system on the right hand side of Equation (58) yields

V n,i = V n + h
s{f}

∑
j=1

a{f,f}i,j R̄(ẋn,j), i = 1, . . . , s{f}, (59)

V n+1 = V n + h
s{f}

∑
i=1

b{f}i R̄(ẋn,i). (60)

In case of an explicit method with a{f,f}i+1,i 6= 0 for i = 1, . . . , s{f} − 1, Equation (59) provides a

successive determination of grid velocities ẋn,1, . . . , ẋn,s{f}−1. In addition, if b{f}
s{f}
6= 0, the final grid

velocities ẋn,s{f} can be calculated from Equation (60). Thus, the grid velocities are solely determined by

the cell volumes at internal stage time levels tn1+ hc{f} and hence by the corresponding structure states.
We have to keep in mind that the determination of ẋn,i for i = 1, . . . , s{f} − 1 needs the cell volumes
V n,i+1 at the successive Runge-Kutta stage i + 1 following the current stage i while the velocities ẋn,s{f}

are determined from the cell volumes Vn+1 at the end of the Runge-Kutta step. The precise calculation
of these values in the context of an MGARK scheme is given in Algorithm 1 and the corresponding
description. As in [31] we may require Equations (59) and (60) to hold face-wise, i.e.,

(V n,i − V n)E = h
s{f}

∑
j=1

a{f,f}i,j (ṅn,j)E, i = 1, . . . , s{f}, (61)

(V n+1 − V n)E = h
s{f}

∑
i=1

b{f}i (ṅn,i)E, (62)

where (ṅ)E = (ẋ · n)E is the face integrated grid velocity and (V n,i − V n)E and (V n+1 − V n)E, denote
the volume change due to the moving face E at the i-th Runge-Kutta stage and at time tn+1, respectively.
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In particular, in the situation of one spatial dimension, we obtain a relation to the grid point
positions xk,

xn,i
k − xn

k = h
s{f}

∑
j=1

a{f,f}i,j ẋn,j
k , i = 1, . . . , s{f}, (63)

xn+1
k − xn

k = h
s{f}

∑
i=1

b{f}i ẋn,i
k . (64)

In the context of fluid–structure interaction, we rewrite the MGARK method in the more
convenient component partitioned form. In addition, we explicitly use the intermediate values u{f,λ}n

of the fast components at the intermediate micro step times and introduce the stage derivatives k{f,λ}n,i

and k{s}n,i in order to avoid unnecessary function evaluations.
The MGARK scheme with N ∈ N micro steps of step sizes hλ ≤ H (λ = 1, . . . , N) for the fast

components and a macro step of step size H for the slow component is then given by

u{f,0}n = u{f}n , (65)

u{f,λ}n = u{f,λ−1}
n + hλ

s{f}

∑
i=1

b{f}i k{f,λ}n,i , λ = 1, . . . , N, (66)

u{f}n+1 = u{f,N}n , (67)

u{s}n+1 = u{s}n + H
s{s}

∑
i=1

b{s}i k{s}n,i , (68)

with stage derivatives

k{s}n,i = f {s}(U{s,f}
n,i , U{s,s}

n,i ), i = 1, . . . , s{s}, (69)

k{f,λ}n,i = f {f}(U{f,f,λ}n,i , U{f,s,λ}
n,i ), i = 1, . . . , s{f}, λ = 1, . . . , N, (70)

based on the stage vectors

U{s,f}
n,i = u{f}n +

N

∑
λ=1

hλ

s{f}

∑
j=1

a{s,f,λ}
i,j k{f,λ}n,j , i = 1, . . . , s{s}, (71)

U{f,f,λ}n,i = u{f,λ−1}
n + hλ

s{f}

∑
j=1

a{f,f}i,j k{f,λ}n,j , i = 1, . . . , s{f}, λ = 1, . . . , N, (72)

U{f,s,λ}
n,i = u{s}n + H

s{s}

∑
j=1

a{f,s,λ}
i,j k{s}n,j , i = 1, . . . , s{f}, λ = 1, . . . , N, (73)

U{s,s}
n,i = u{s}n + H

s{s}

∑
j=1

a{s,s}
i,j k{s}n,j , i = 1, . . . , s{s}. (74)

In case of fluid–structure interaction problems, where the evaluation of the fluid right hand side
depends on the grid velocities, Equation (70) needs to be replaced by

k{f,λ}n,i = f {f}(U{f,f,λ}n,i , U{f,s,λ}
n,i , ẋ{λ}n,i ), λ = 1, . . . , N, (75)

where the grid velocities ẋ{λ}n,i need to be computed in accordance with the GCL.
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We note that the MGARK scheme in the above form given in Equations (65)–(75) may be still be
fully coupled, i.e., in order to compute the stage derivatives k{f,λ}n,i and k{s}n,i the iterative solution of the
above coupled equations may be necessary.

Hence, in the following, we consider an efficient implementation of the MGARK scheme given
in Equations (65)–(75) for the numerical solution of coupled fluid-structure interaction. As base
methods, we choose an explicit method for the fast components, i.e., the fluid variables, as well
as a diagonally implicit Runge-Kutta (DIRK) scheme for the slow components, i.e., the structure
variables. For efficiency reasons, we couple the macro step only to the first micro step. In this way, the
stage derivatives k{s}n,i of the slow component are calculated together with the corresponding stage

derivatives of the fast components k{f,1}n,i in the first micro step. In the subsequent micro steps (λ > 1),

only the remaining stage derivatives k{f,λ}n,i of the fast components need to be calculated.

Algorithm 1 MGARK algorithm for coupled problems with moving grids respecting the GCL.

1: procedure MGARK(u{f}n , u{s}n , H, N, h)

2: u{f,0}n ← u{f}n

3: for λ← 1 to N do loop over micro steps

4: for i← 1 to max(s{f}, s{s}) do loop over Runge-Kutta stages

5: if λ = 1 then

6: if i ≤ s{s} then calculation of MGARK stage derivatives of the structure

7: U{s,f}
n,i ← u{f}n + h1 ∑s{f}

j=1 a{s,f,1}
i,j k{f,1}n,j

8: U{s,s}
n,i ← u{s}n + H ∑s{s}

j=1 a{s,s}
i,j k{s}n,j

9: k{s}n,i ← f {s}(U{s,f}
n,i , U{s,s}

n,i )

10: end if

11: if i = s{s} then

12: u{s}n+1 ← u{s}n + H ∑s{s}
j=1 b{s}j k{s}n,j macro update of the structure

13: end if

14: end if

15: if i ≤ s{f} then calculation of MGARK stage derivatives of the fluid

16: U{f,f,λ}n,i ← u{f,λ−1}
n + hλ ∑s{f}

j=1 a{f,f}i,j k{f,λ}n,j

17: U{f,s,λ}
n,i ← u{s}n + H ∑s{s}

j=1 a{f,s,λ}
i,j k{s}n,j

18: ẋ{λ}n,i ← MESHVELOCITY GCL-compliant grid velocities

19: k{f,λ}n,i ← f {f}(U{f,f,λ}n,i , U{f,s,λ}
n,i , ẋ{λ}n,i )

20: end if

21: if i = s{f} then

22: u{f,λ}n ← u{f,λ−1}
n + hλ ∑s{f}

j=1 b{f}j k{f,λ}n,j micro update of the fluid

23: end if

24: end for

25: end for

26: u{f}n+1 ← u{f,N}n macro update of the fluid

27: return u{f}n+1, u{s}n+1

28: end procedure
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Algorithm 2 Computation of GCL-compliant mesh velocity.

1: procedure MESHVELOCITY

2: if i < s{f} then not the last stage within current micro step

3: Ũ
{f,s,λ}
n,i ← u{s}n + H ∑s{s}

j=1 a{f,s,λ}
i+1,j k{s}n,j

4: ẋ{λ}n,i ← Solve 1
hλ

(
V(Ũ

{f,s,λ}
n,i )− V(U{f,s,λ}

n,1 )
)
= ∑i

j=1 a{f,f}i+1,jR̄(ẋ{λ}n,j ) for ẋ{λ}n,i

5: else

6: if λ < N then last stage within current micro step, not the last micro step within current macro step

7: Ũ
{f,s,λ}
n,i ← u{s}n + H ∑s{s}

j=1 a{f,s,λ+1}
1,j k{s}n,j

8: else last stage within current micro step, last micro step within current macro step

9: Ũ
{f,s,λ}
n,i ← u{s}n+1

10: end if

11: ẋ{λ}n,i ← Solve 1
hλ

(
V(Ũ

{f,s,λ}
n,i )− V(U{f,s,λ}

n,1 )
)
= ∑i

j=1 b{f}j R̄(ẋ{λ}n,j ) for ẋ{λ}n,i

12: end if

13: return ẋ{λ}n,i

14: end procedure

Algorithms 1 and 2 summarize the concrete procedure for the implementation of the MGARK
scheme for fluid–structure interaction including GCL-compliant grid velocities. The preservation of
the GCL is guaranteed by computing the grid velocities in accordance with Equations (59) and (60).
In Algorithm 1, line 18, the velocities are determined by the procedure MESHVELOCITY defined in
Algorithm 2.

The efficiency and practicability of the scheme formulated in the above Algorithms 1 and 2
requires additional conditions concerning the chosen base methods and the coupling coefficients.

1. The decision to couple the structure macro step solely to the first fluid micro step for efficiency
reasons reduces the second condition Equation (46) of internal consistency to

m1c{s,f,1} = c{s}. (76)

In order to access only the already determined fluid stage derivatives of the first micro step when
calling Algorithm 1, line 7 the condition a{s,f,1}

i,j = 0 for i ≤ j is necessary, in particular, we need

to set a{s,f,1}
1,j = 0 for j = 1, . . . , s{f}. This does only agree with Equation (76) if c{s}1 = 0 holds,

i.e., if the first stage of the slow base method (A{s,s}, b{s}) is an explicit stage. This requires using
an E(S)DIRK scheme instead of an (S)DIRK scheme if internal consistency is to be guaranteed.
However, without internal consistency, determining suitable coupling coefficients would require
significantly more effort, as can be seen in Theorems 2 and 3.

2. In order to access only the already determined structure stage derivatives when calling

Algorithm 1, line 17, the condition a{f,s,1}
i,j = 0 for i < j is necessary. For the coefficients

A{f,s,λ} with λ > 1 no additional conditions have to be fulfilled as at the end of the first micro
step, all structure stage derivatives have been calculated and can be accessed.

3. The construction of suitable structure states for the determination of GCL-compliant mesh
velocities according to Algorithm 2 poses additional restrictions to the choice of the (f, s) coupling
parameters. From line 3, we obtain the stronger condition a{f,s,1}

i,j = 0 for 1 < i ≤ j. From line 7,
we also obtain a condition for the coupling parameters of the second micro step which takes the
form a{f,s,2}

1,j = 0 for j > s{f}. However, this condition is only relevant in the case s{s} > s{f}.

4. The first condition Equation (45) of internal consistency for λ = 1 is given by

m1c{f} = c{f,s,1},
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which in combination with the above points leads to the additional condition a{f,s,1}
1,1 = 0.

5. In Algorithm 2, line 9 the value of u{s}n+1 is accessed if i = s{f}, λ = N. If N > 1, this value has
already been determined in Algorithm 1, line 12. However, if N = 1 this value is only available
if s{s} ≤ s{f}.

6. For an explicit base method (A{f,f}, b{f}), the computation of mesh velocities in Algorithm 2,

lines 4 and 11 requires nonzero entries of a{f,f}i,i−1, i = 2, . . . , s{f} and b{f}
s{f}

.

In summary, we may specify the structure of the base methods in the following form, visualized
in Figure 1 for s{f} = 4, s{s} = 6. Here, the gray-colored blocks ( ) denote zero entries while the red
ones ( ) denote entries required to be non-zero in agreement with our strategy of enforcing the GCL
and the green-colored blocks ( ) symbolize arbitrary entries.

Looking at the required structures of A{f,s,1} and A{s,f,1} in Figure 1, suitable coupling parameters
to achieve overall second order are given by the choice of A{f,s,λ} according to Equations (50) and (51)
and of A{s,f,λ} according to Equation (52), while the choice given by Equations (47) and (49) does not
conform to items 1, 3 and 4 given in the above discussion. Concerning third order MGARK schemes,
the coupling conditions given by Equations (53)–(55) agree to all of the above requirements.

We further remark that the determination of k{s}n,i in Algorithm 1, line 9 may be implicit.
Prescribing an (E)SDIRK scheme as slow base method, a potentially nonlinear system of equations has
to be solved for i > 1, given by

k{s}n,i = f {s}(U{s,f}
n,i , u{s}n + H ∑i

j=1 a{s,s}
i,j k{s}n,j ), (77)

combining lines 8 and 9 in Algorithm 1.

A{f,f}

b{f}T
= , A{s,s}

b{s}T
= , A{f,s,1} = ,

A{f,s,2} = , A{f,s,λ} = , λ > 2, A{s,f,1} = .

Figure 1. Required structure of base methods. Gray-colored blocks denote zero entries, red-colored
blocks denote entries required to be non-zero, green-colored blocks symbolize arbitrary entries.

3.4. Time Adaptivity

Efficiency for practical applications needs time adaptivity. Hence, the macro and micro step sizes
will be adaptively chosen depending on an error estimator based on embedded Runge-Kutta methods.
The discrete macro time levels are then given by

tn+1 = tn + Hn+1, i.e., tn = t0 +
n

∑
i=1

Hi, n = 0, 1, 2, . . .
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and the discrete micro time levels are

τn,λ+1 = τn,λ + hn,λ+1 i.e., τn,λ+1 = τn,0 +
λ+1

∑
`=1

hn,`, λ = 0, . . . , Nn − 1,

where Nn is the number of micro steps within the n-th macro step and the micro time levels relate to
the macro time levels as τn,0 = tn and τn,Nn = tn+1.

Figure 2 illustrates the potential positions of discrete macro and micro time levels. The concrete
computation of macro and micro step sizes depends on error control using the parameters α ∈ (0, 1),
α > 1 and β ∈ (0, 1) as well as the relative and absolute tolerances TOLr ∈ (0, 1) and TOLa > 0
according to Algorithms 3 and 4.

Since the final number of micro steps Nn within the n-th macro step is not known a priori,
Algorithm 4 is devised to work without this information. For the present adaptivity strategies, the first
macro step size H1 as well as the first micro step size h0,1 ≤ H1 need to be prescribed. All other step
sizes are then automatically calculated by the given Algorithms. This time step calculation can then be
combined with CFL based time step computation depending on the specific set-up of a numerical test
case. The corresponding details will be clarified in Section 4.

t
tn tn+1Hn+1

hn,1 τn,1 hn,2 τn,2 hn,3 τn,3 τn,Nn−1 hn,Nn
τn,0 τn,Nn

Figure 2. Depiction of macro and micro step sizes including corresponding notation.

Algorithm 3 Adaptive step size determination for macro step tn−1 → tn with step size Hn.

1: procedure ADAPT_MACRO_STEP_SIZE(Hn, u{s}n−1, k{s}n−1, TOLr, TOLa, α, α, β)

2: TOL← TOLr‖u{s}n−1‖+ TOLa

3: ε← Hn
∥∥∑s{s}

i=1
(
b{s}i − b̂{s}i

)
k{s}n−1,i

∥∥
4: if ε ≤ TOL then

5: H̃ ← Hn min{α, β(TOL/ε)1/( p̂+1)}
6: Hn+1 ← min{H̃, T − tn}
7: Accept solution and employ step size Hn+1 in the next macro step tn → tn+1

8: else

9: Hn ← Hn max{α, β(TOL/ε)1/( p̂+1)}
10: Repeat macro step tn−1 → tn with new step size Hn

11: end if

12: end procedure
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Algorithm 4 Adaptive step size determination for micro step τn,λ−1 → τn,λ with step size hn,λ.

1: procedure ADAPT_MICRO_STEP_SIZE(hn,1, . . . , hn,λ, u{f,λ−1}
n , k{f,λ−1}

n , TOLr, TOLa, α, α, β)

2: TOL← TOLr‖u{f,λ−1}
n ‖+ TOLa

3: ε← hn,λ
∥∥∑s{s}

i=1
(
b{f}i − b̂{f}i

)
k{f,λ−1}

n,i

∥∥
4: if ε ≤ TOL then

5: h̃← hn,λ min{α, β(TOL/ε)1/( p̂+1)}
6: h← ∑λ

`=1 hn,`

7: if h < Hn+1 then not the last micro step within current macro step

8: hn,λ+1 ← min{h̃, Hn+1 − h}
9: Accept solution and employ step size hn,λ+1 in the next micro step τn,λ → τn,λ+1

10: else last micro step within current macro step

11: hn+1,1 ← min{h̃, Hn+2}
12: Accept solution and employ step size hn+1,1 in the first micro step τn+1,0 → τn+1,1

of the next macro step tn+1 → tn+2

13: end if

14: else

15: hn,λ ← hn,λ max{α, β(TOL/ε)1/( p̂+1)}
16: Repeat micro step τn,λ−1 → τn,λ with new step size hn,λ

17: end if

18: end procedure

4. Numerical Experiments

In the following numerical experiments, the considered MGARK schemes are constructed from
base methods of second and third order, respectively. These base methods are given in the form

A

bT

b̂
T

where (A, b̂) denotes the embedded method to the base method (A, b) such that if p is the order of the
base method and p̂ denotes the order of the embedded method, we have 0 < p̂ < p.

Second order base methods

A second order MGARK scheme is derived from the explicit Heun method (p = 2, p̂ = 1) and the
implicit trapezoidal rule (p = 2, p̂ = 1) which is an ESDIRK scheme.

0 0
1 0

1/2 1/2
0 1

Explicit Heun scheme

0 0
1/2 1/2

1/2 1/2
0 1

Implicit trapezoidal rule

Third order base methods

A pair of third order base methods from which we construct the third order MGARK scheme is
given by the following four-stage RK schemes of order p = 3 and embedded order p̂ = 2 which is
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taken from [32]. The corresponding IMEX scheme is denoted by IMEXRKCB3c in that work.

RK explicit 3rd order

0 0 0 0
3375509829940
4525919076317 0 0 0

0 272778623835
1039454778728 0 0

0 673488652607
2334033219546

1660544566939
2334033219546 0

0 673488652607
2334033219546

493801219040
853653026979

184814777513
1389668723319

449556814708
1155810555193 0 210901428686

1400818478499
480175564215

1042748212601

(78)

3rd order DIRK scheme

0 0 0 0

0 3375509829940
4525919076317 0 0

0 −11712383888607531889907
32694570495602105556248

566138307881
912153721139 0

0 673488652607
2334033219546

493801219040
853653026979

184814777513
1389668723319

0 673488652607
2334033219546

493801219040
853653026979

184814777513
1389668723319

0 366319659506
1093160237145

270096253287
480244073137

104228367309
1017021570740

(79)

4.1. Constant Flow with Prescribed Grid Movement

First, to check the viability of our implementation concerning the preservation of the GCL,
we apply the MGARK approach to constant flow with an artificial grid movement.

Hence, we consider constant solutions u : Ω× [0, T]→ Rm of the initial value problem

∂tu + ∂x f (u) = 0, u(x, 0) = u0(x).

If the initial conditions is given by a constant initial state u(x, 0) = u0, x ∈ Ω, the exact solution
is constant in time and space, u(x, t) = u0 for (x, t) ∈ Ω × [0, T], hence we expect the numerical
approximation of u to be constant as well. Starting from an initial grid Ωi(0), i ∈ A = {1, . . . , K},
the method runs on a time-dependent spatial discretization

Ω = [0, 1] =
⋃

i∈A
Ωi(t), t ∈ [0, T],

where the grid points are moved according to the rule

xi(t) = αi sin(ωπt) + xi(0), i = 1, . . . , K + 1, (80)

αi =


ξR−ξL

2π sin
(

π
ξR−ξL

(
xi(0)− ξL

))
, xi(0) ∈ (ξL, ξR),

0, otherwise,
(81)

with the parameters ω > 0 and 0 ≤ ξL < ξR ≤ 1. The grid cells are then determined from
the grid points according to Ωi(t) = [xi(t), xi+1(t)]. Hence, in this set-up the grid points with
xi(0) ∈ [0, ξL] ∪ [ξR, 1] are fixed while the grid points with xi(0) ∈ (ξL, ξR) oscillate in form of a sine
wave in time with frequency ω. The choice of the amplitude αi according to Equation (81) guarantees
that the grid cells do not overlap, i.e., for all t ∈ [0, T], we have xi(t) < xi+1(t). Figure 3 depicts the
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corresponding grid motion for an equidistant initial grid with K = 30 cells, a frequency of ω = 100
and a confined region of grid movement bounded by ξL = 0.1, ξR = 0.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.00

0.01

0.02

0.03

x

t

Figure 3. Time evolution of an equidistant initial grid under the grid motion given in Equations (80)
and (81) until time T = 0.035.

In order to illustrate the importance of calculating mesh velocities which are consistent with the
GCL, Figure 4 depicts the error with respect to density, velocity and pressure of the explicit Euler
scheme applied to the fluid equations. More precisely, the right hand side of Figure 4 shows the result
for mesh velocities computed according to Equations (59) and (60) while the left hand side depicts the
corresponding errors obtained by grid velocities determined from differentiation of Equations (80)
and (81) with respect to t. In the first case the constant initial state is preserved in accordance with the
theoretical considerations while the second case does not lead to a numerical method consistent with
the GCL.

Now we simulate this test case using the proposed MGARK scheme. In order to obtain a
partitioning in fast and slow components, we consider the autonomous coupled system composed
of the fluid variables as the fast components and the grid points as well as the time variable as slow
components. Therefore, the grid motion given in Equations (80) and (81) is not prescribed exactly but
provides a differential equation for the slow components of the coupled system. The slow components
are hence evolved according to

x′i(t) = αiωπ cos(ωπt), t ∈ (0, T],

starting from a given initial state xi(0). Due to the ALE formulation Equation (56) of the fluid
equations, the fast components u{f} are given by the products of the cell averages of the conservative
fluid variables with the corresponding cell volumes. By the construction just described, the slow
components are given by u{s} = [t, x1, . . . , xK+1]

T and the coupling between these subsystems now
takes the form f {f} = f {f}(u{f}, u{s}) and f {s} = f {s}(u{s}), which shows that the evolution of slow
components is actually independent of the fast ones in this case.
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Figure 4. Global error with respect to density, velocity and pressure at time T = 0.035 for explicit Euler
scheme with step size h = 10−3 applied to constant flow. Left: Use of exact grid velocities; Right:
Computation of grid velocities consistent with the geometric conservation law (GCL).

Figure 5 depicts the experimental order of convergence obtained by two different choices of base
methods. The results on the left hand side are obtained by choosing the IMEXRKCB3c explicit/implicit
schemes (78) and (79), i.e., the explicit third order scheme for the fast fluid component and the implicit
third order scheme for the slow mesh movement component together with coupling conditions as
given in Corollary 3. The right hand side shows the results obtained when replacing the explicit
IMEXRKCB3c scheme with first order explicit Euler scheme for the fluid equations and setting all
coupling coefficients to zero.
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Figure 5. Experimental order of convergence. Left: Base methods IMEXRKCB3c (explicit/implicit)
of third order; Right: Explicit Euler scheme for fast components, third order implicit base method of
IMEXRKCB3c for slow components.

First of all, we observe that the chosen coupling strategies lead to an experimentally obtained
convergence of third order. Though at first sight, it is striking that a global convergence of third order
is also obtained using a fluid time discretization of only first order, we recall that our GCL-consistent
MGARK scheme does not produce any disturbances of the constant fluid state, independent of the
order of the fast base method. Hence, the global error is only determined by the slow base method
which approximately determines the grid positions. Thus, the slow method solely determines the
order of the coupled scheme in this case. However, in general, the accuracy of the coupled scheme
reduces to first order if one of the base methods is only of first order.

4.2. The One-Dimensional Piston Problem

The interaction between a piston which is attached to a spring and an inviscid fluid which is
contained in a chamber is a classical test case in the context of fluid–structure interaction [33,34].
The coupled piston problem and its one-dimensional set-up are illustrated in Figure 6.
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fluid chamber

piston

x1 x2 xi xi+1 xK xK+1

Ω1 Ωi ΩK

L0 0 q(t)

Figure 6. One-dimensional piston problem.

In the mathematical formulation, the fluid is described by the one-dimensional inviscid Euler
equations while the displacement of the piston is modelled by an undamped harmonic oscillator.
In non-dimensional form we obtain a coupled system of the fluid equations given by

∂tu + ∂x f (u) = 0, u(x, 0) = u0(x), (x, t) ∈ Ω× [0, T]

with

u =

 ρ

ρv
ρE

 , f (u) =

 ρv
ρv2 + p

ρEv + pv

 , p = (γ− 1)ρ(E− 1
2 v2), γ = 1.4,

where ρ, v, E and p denote density, velocity, specific total energy and pressure of the fluid, respectively,
while γ denotes the adiabatic coefficient, and the structure model for the piston displacement q(t)
given by

mq′′ + kq = A(pI − pA), q(0) = q0, q′(0) = r0,

where the parameters in this non-dimensional formulation correspond to the mass m and the stiffness
k of the spring as well as the cross-sectional area A of the piston as well as its initial displacement q0

and velocity r0. The piston displacement determines the length of the time-dependent fluid domain
Ω(t) according to

Ω(t) = [0, L0 + q(t)] =
⋃

i∈A
Ωi(t), t ∈ [0, T], A = {1, . . . , K}.

This domain is discretized by a constant number of grid cells, cf., Figure 6. Let xi denote the
grid points such that Ωi(t) = [xi(t), xi+1(t)]. The influence of the fluid subsystem on the structure
subsystem is given by the difference of the fluid pressure pI(t) = p(xK+1, t) acting on the piston at the
fluid-structure interface, i.e., the right boundary of the fluid domain and the ambient pressure pA.

The specific setting of the piston parameters m, k, A and pA and the initial length L0 of the fluid
domain as well as the initially constant fluid variables ρ0, v0, p0 and the initial piston displacement q0

and velocity r0, which have been used in this test case are summarized in Table 1.

Table 1. Parameters and initial conditions for piston problem.

m k A pA L0 ρ0 v0 p0 q0 r0

0.6154 0.0781 0.02 1.0 1.0 1.0 0.0 1.0 0.05 0.0

We may now take a closer look at the difference in time scales for the fluid and structure
subsystems in this set-up. The characteristic time scale of a fluid is given by the time needed by
a pressure wave to traverse the chamber, i.e.,

T{f}(t) =
L(t)
c(t)

=
(

L0 + q(t)
)√ 1

γ

ρ(t)
p(t)

,
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where c denotes the sound speed. For the values given in Table 1 we obtain T{f}(0) ≈ 0.887.
The characteristic time scale of the structure is determined by the oscillation period, i.e.,

T{s} = 2π

√
m
k

,

whereby we obtain T{s} ≈ 17.640 for the values in Table 1.
The one-dimensional Euler equations in ALE formulation are then discretized by a finite volume

method which yields

(ūiVi)
′ = hALE(ūi−1, ūi, ẋi)− hALE(ūi, ūi+1, ẋi+1), i = 2, . . . , K− 1, (82)

for interior grid cells, using a suitable numerical flux function hALE. At the two boundaries of Ω(t)
given by the grid points x1 and xK+1, boundary conditions are required. As there is no movement of
fluid particles through the boundaries of the fluid chamber (no-slip conditions), we demand that at
the boundaries, the fluid moves with the same velocity as the corresponding boundary grid point.
Suitable boundary conditions may be posed either as strong or as weak boundary conditions. Strong
boundary conditions usually modify the numerical solution in a suitable way in order to satisfy the
no-slip conditions. Weak boundary conditions usually modify the numerical flux in a suitable way.
In comparison to strong boundary conditions, weak boundary conditions often lead to an improved
convergence speed regarding iterative solvers and may also lead to an improved robustness, see [35–37].
Concerning weak boundary conditions, both weak prescribed and weak Riemann approaches are
common. In this work, we use the weak prescribed approach, i.e., the boundary fluxes are explicitly
prescribed according to

(ū1V1)
′ = f fw(ū1, ẋ1)− hALE(ū1, ū2, ẋ2), (83)

(ūKVK)
′ = hALE(ūK−1, ūK, ẋK)− f fw(ūK, ẋK+1), (84)

with

f fw(ū, ẋ) = f ALE(ūfw(ū, ẋ), ẋ), ūfw(ū, ẋ) =

 ρ̄fw
ρ̄fwv̄fw
ρ̄fwĒfw

 =

 ρ̄

ρ̄ẋ
p̄

γ−1 + 1
2 ρ̄ẋ2

 .

For all of our numerical tests, we initially chose an equidistant discretization of the fluid chamber
consisting of 100 finite volume cells and the numerical flux function hALE is given by the well known
Lax-Friedrichs flux. The nonlinear systems of equations within the implicit stages of the RK scheme
applied to the structure component (see Equation (77)) are solved using a Newton-Krylov scheme.
In order to introduce non-uniformity into this test case, the deformation of the fluid domain by the
piston movement is transferred to the individual grid points in a non-uniform manner. In this set-up,
the spatial grid is only equidistant at those time levels where the piston achieves its initial maximal
displacement. In general, the computational grid is compressed near the piston. The results depicted
in Figures 7–9 are obtained by adaptive determination of time step sizes for both macro and micro
steps according to the strategies described in Section 3.4, i.e., solely based on embedded error control.
The parameters for time adaptivity are set to α = 0.3, α = 2, β = 0.8 for both micro and macro step
sizes, and TOLr = TOLa = 10−5 for the macro step sizes as well as TOLr = TOLa = 3× 10−5 for the
micro step sizes. The simulation is carried out until the final time T = 30. Figures 7 and 8 show the
numerical results for the MGARK scheme based on the explicit Heun scheme for the fluid and the
implicit trapezoidal rule for the structure. The coupling procedure is given by Choice B in Corollary 2.
In the representations on the right hand side of Figure 7, the piston movement at the right chamber
boundary is visible as well.
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Figure 7. Time evolution of density, velocity and pressure.
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Figure 9. Statistics of the micro step sizes used by an error-controlled macro and micro step adaptive
2nd order multirate generalized-structure additively partitioned Runge-Kutta (MGARK) approach
for solving the piston problem. Left: Mean value µ and standard deviation σ of micro step sizes;
Right: Coefficients of variation.

Now we would like to pay more attention to our strategy to allow for adaptive non-constant
micro step sizes within one macro step. In this regard, Figure 9 collects the statistics of the computed
macro and micro step sizes. For the micro step sizes, the left part of Figure 9 shows the time evolution
of the mean value µ and the standard deviation σ calculated as

µ(hn) =
1

Nn − 1

Nn−1

∑
λ=1

hn,λ, σ(hn) =

√√√√ 1
Nn − 2

Nn−1

∑
λ=1

(
hn,λ − µ(hn)

)2

for hn = [hn,1, . . . , hn,Nn ]
T. Herein, the last micro step size of each macro step usually will be suitably

shortened in order to add up to the macro step size, see Algorithm 4, line 8 and is hence not included
into the calculation of the statistics. The coefficients of variation V1 and V2 relate the standard deviation
as well as the maximum deviation to the mean value, i.e.

V1(hn) = σ(hn)/µ(hn), V2(hn) = max
λ=1,...,Kn−1

|hn,λ − µ(hn)|/µ(hn).

Hence, from these coefficients we obtain a measure of the extend of variability in relation
to the mean.

As shown by the results on the right hand side of Figure 9, there are time sections with significant
variability of the micro step sizes, i.e., there are sections with V1 > 0.5 and sections with V2 > 0.5.
Thus, the application of variable micro step sizes instead of constant ones is justified for this test case.
A multirate scheme using constant micro step sizes might have used the smallest micro step size
to comply with the given error tolerances which would have led to a larger amount of micro steps
per macro step compared to the adaptive choice of micro steps. For the time sections with higher
coefficients of variation this means a higher computational effort and thus a lower efficiency compared
to the adaptive case.

In Figure 10, an efficiency study regarding numerical error versus CPU time is depicted comparing
the described MGARK schemes up to third order. Computations were carried out for the explicit
Euler method coupled with the implicit Euler method and coupling coefficients set to zero (order 1),
the explicit Heun scheme coupled with implicit trapezoidal scheme and second order coupling
coefficients according to Corollary 2, choice B, and the IMEXRKCB3c base methods with third order
coupling according to Corollary 3.

A spatial discretization of 100 FV cells and a final time of T = 30 has been used in all
test cases. The computations were carried out for different macro step sizes. During each
computation, the macro step size was held constant while the micro step sizes were chosen with
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respect to the Courant-Friedrichs-Lewy (CFL) condition, with a CFL-number of 0.8, i.e., according the
error-controlled approach described in Section 3.4. In order to compute the numerical error depicted
in Figure 10, a reference solution was calculated using the 3rd order explicit IMEXRKCB3c scheme to
solve the fluid–structure system as a whole in a monolithic manner with a suitably small time step size
and without the use of different step sizes for the subsystems.
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Figure 10. Error vs. CPU time for first, second and third order MGARK scheme applied to the moving
piston test case.

We remark that the reference solution is obtained on the same spatial grid as the numerical
simulations. Therefore, we in fact measure the time integration error of the MGARK variants applied
to the semi-discrete system which is generated by finite volume space discretization Equation (82) of
first order. As the focus of this work is on time integration, we expect this to be a reasonable measure
for the quality of the time integration process. Of course, the full discretization error, which may be
measured with respect to a reference solution on a refined spatial grid, will be affected by both spatial
discretization method and time integration scheme.

We may observe that the second order coupled time integration is most efficient for moderate
to small tolerances in the range of about 10−3 to 10−6. For even smaller tolerances, the third order
coupled procedure starts to become efficient for this specific test case.

An efficiency study regarding run time and accuracy was carried out for the 2nd order MGARK
scheme described above. The results are summarized in Tables 2 and 3 on page 30. Again, we
approximated the error using a reference solution obtained by an explicit 3rd order in time monolithic
approach using a suitably small constant time step size. Within Table 2, the macro step size is denoted
by H and is held constant, N denotes the number of micro steps per macro step, e{f} respectively e{s}

denote the error of the fast respectively slow system component measured in L2 norm, N is the average
number of micro steps per macro step in case of a micro step size adaptive approach and TOL denotes
the relative and absolute tolerances in case of error-controlled adaptivity. The remaining parameters
needed by error-controlled adaptivity were always set to α = 0.3, α = 2 and β = 0.8 for both micro
and macro step sizes.

For the computations with an error-controlled micro step size, an initial step size of h0,1 = H1/10
has been used. A dash indicates that the scheme diverged for the specified settings. The right part of
Table 3 was computed using the minimum micro step size given by comparing the error-controlled
approach to a CFL-compliant step size computation with a CFL number of 0.9.

We observe that the best error achieved with constant macro and micro step sizes is undercut
by the error obtained with both of the fully-adaptive approaches (i.e., adaptive macro step sizes
and adaptive micro step sizes, see Table 3) with suitably small tolerances. At the same time the
fully-adaptive approaches also perform better regarding run time. In addition to the results shown in
Figure 9 these results demonstrate the efficiency of our approach to time adaptive MGARK schemes
and show its potential to be successfully applied to more sophisticated real-world problems.
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Table 2. Comparison of run time and error of different time step adaptation strategies of the 2nd order MGARK scheme applied to the piston problem, Part I. Further
explanations are given in the text.

H Constant Micro Step Sizes CFL-Compliant Micro Step Sizes Error Controlled Micro Step Sizes

N Run Time (s) e{f} e{s} CFL Number N Run Time (s) e{f} e{s} TOL N Run Time (s) e{f} e{s}

5.00× 10−2

1 − − − 0.9 9.03 79.2 4.41× 10−5 2.75× 10−4 3.0× 10−1 − − − −
2 − − − 0.5 15.93 138.3 4.38× 10−5 2.72× 10−4 3.0× 10−2 − − − −
4 − − − 3.0× 10−3 7.45 75.2 6.43× 10−4 4.79× 10−4

8 − − − 3.0× 10−4 7.38 75.8 1.26× 10−4 2.55× 10−4

16 137.1 4.38× 10−5 2.72× 10−4 3.0× 10−5 7.41 75.6 4.42× 10−5 2.76× 10−4

2.50× 10−2

1 − − − 0.9 4.84 88.7 1.43× 10−5 1.26× 10−4 3.0× 10−1 − − − −
2 − − − 0.5 8.16 147.2 1.48× 10−5 1.28× 10−4 3.0× 10−2 − − − −
4 − − − 3.0× 10−3 3.82 76.9 4.33× 10−4 2.66× 10−4

8 139.2 1.48× 10−5 1.28× 10−4 3.0× 10−4 3.82 76.1 1.31× 10−4 1.11× 10−4

16 272.0 1.49× 10−5 1.28× 10−4 3.0× 10−5 3.80 74.9 1.64× 10−5 1.21× 10−4

1.25× 10−2

1 − − − 0.9 2.57 96.6 7.58× 10−6 6.82× 10−5 3.0× 10−1 − − − −
2 − − − 0.5 4.28 155.5 7.67× 10−6 6.77× 10−5 3.0× 10−2 − − − −
4 144.1 7.67× 10−6 6.75× 10−5 3.0× 10−3 2.06 81.4 1.07× 10−4 7.18× 10−5

8 279.8 7.72× 10−6 6.75× 10−5 3.0× 10−4 2.06 83.3 5.54× 10−5 7.16× 10−5

16 552.5 7.74× 10−6 6.75× 10−5 3.0× 10−5 2.08 81.0 7.87× 10−6 7.15× 10−5

Table 3. Comparison of run time and error of different time step adaptation strategies of the 2nd order MGARK scheme applied to the piston problem, Part II. Further
explanations are given in the text.

Error Controlled Macro and Micro Step Sizes Error Controlled Macro and Micro Step Sizes and CFL-Compliant Micro Step Sizes

Macro Step TOL Micro Step TOL N Run Time (s) e{f} e{s} Macro Step TOL Micro Step TOL N Run Time (s) e{f} e{s}

1.0× 10−5 3.0× 10−4 7.94 72.9 2.06× 10−4 4.10× 10−4 1.0× 10−5 3.0× 10−4 9.90 83.9 1.67× 10−4 4.37× 10−4

1.0× 10−5 3.0× 10−5 8.14 76.2 1.68× 10−4 4.39× 10−4 1.0× 10−5 3.0× 10−5 10.23 86.4 1.67× 10−4 4.37× 10−4

1.0× 10−6 3.0× 10−4 2.62 78.0 4.47× 10−5 9.62× 10−6 1.0× 10−6 3.0× 10−4 3.67 101.0 2.87× 10−6 1.90× 10−5

1.0× 10−6 3.0× 10−5 2.69 78.2 3.47× 10−6 1.74× 10−5 1.0× 10−6 3.0× 10−5 3.67 100.4 3.13× 10−6 1.89× 10−5
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5. Concluding Remarks

In this work, we extended the multirate GARK framework to allow for varying micro step
sizes and applied the resulting coupled time integration schemes of first, second and third order to
mechanical fluid–structure interaction. The computation of mesh velocities satisfying the discrete
geometric conservation law is quite straightforward as long as the coefficients of the fluid base method
are correctly accounted for as in Equations (59) and (60) and Algorithm 2. In case of an explicit
fluid base method, demanding an internally consistent partitioned scheme requires an explicit first
stage of the structure base method as well, e.g., use of an E(S)DIRK scheme. While compliance with
the geometric conservation law is demonstrated for uniform flow on an artificially moving grid,
we furthermore demonstrated the viability of adaptive micro steps by investigating the step size
statistics for the moving piston test case. Efficiency of higher order time integration is investigated
by a comparison of first, second and third order schemes in terms of error vs. CPU time where the
second order coupled approach seems to be most efficient for moderate tolerances. In a comparison of
various step size selection strategies, we observe a better performance of the fully-adaptive approaches
choosing macro and micro step sizes based on embedded error control.

The adaptive micro step MGARK scheme could hence be an alternative to lower order coupling
approaches also for more complex applications in the context of fluid–structure interaction. For this
purpose, a detailed study of the stability properties of the proposed MGARK schemes is required.
Corresponding studies for the given schemes as well as for alternative candidates within the MGARK
framework are subject to future work.
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