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Abstract: In this paper, we use differential evolution (DE), with best-evolved results refined using
a Nelder–Mead optimization, to solve boundary-value complex problems in orbital mechanics
relevant to low Earth orbits (LEO). A class of Lambert-type problems is examined to evaluate the
performance of this evolutionary method in its application to solving nonlinear boundary value
problems (BVP) arising in mission planning. In this method, we evolve impulsive initial velocity
vectors giving rise to intercept trajectories that take a spacecraft from given initial position in space to
specified target position. The positional error of the final position is minimized subject to time-of-flight
and/or energy (fuel) constraints. The method is first validated by demonstrating its ability to recover
known analytical solutions obtainable with the assumption of Keplerian motion; the method is then
applied to more complex non-Keplerian problems incorporating trajectory perturbations arising
in low Earth orbit (LEO) due to the Earth’s oblateness and rarefied atmospheric drag. The viable
trajectories obtained for these challenging problems demonstrate the ability of this computational
approach to handle Lambert-type problems with arbitrary perturbations, such as those occurring in
realistic mission trajectory design.
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1. Introduction

The planning of orbital maneuvers and/or trajectories for spacecraft represents a design
optimization problem that is associated with multiple engineering constraints (e.g., time of flight,
fuel consumption, and positional accuracy). Aside from the inherently nonlinear equations of
orbital motion, modern problems of practical interest are further complicated by various sources
of perturbations such as planetary oblateness, atmospheric drag for low Earth orbits (LEO), and solar
radiation pressure among others. With the emergence of satellite formation-flying mission concepts,
additional constraints are often required in order to achieve satisfactory performance. For example,
the satellite formation topology may be required to satisfy a specified criterion during a finite portion
of the orbit for the purposes of coordinated measurements. NASA’s Magnetospheric Multi-Scale
Mission (MMS) provides an excellent example of such constraints. [1] The MMS mission consists
of four satellites that need to be in a tetrahedral arrangement during the region of measurement
performance; this region is defined by a symmetric range of anomaly about apogee.

Owing to the multiple objectives and system complexity, analytical approaches to trajectory
optimization are generally not available and numerical optimization is required. To this end,
various evolutionary approaches for trajectory optimization have been explored over the past
two decades. evolutionary computing (EC) and optimization has since emerged as a means
for dealing with highly constrained mission profiles for primarily interplanetary trajectories.
Evolutionary methods utilized have included genetic algorithms [2,3], particle swarm optimization [4],
monotonic basin hopping [5], simulated annealing [6], and differential evolution [7]. To a lesser extent,
EC methods have also been leveraged for in-orbit trajectory planning about planets [8–10].
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Particularly relevant studies involving the use of genetic algorithms include the following.
Cacciatore and Toglia [11] examined minimum fuel orbital trajectories resulting from a finite series of
impulsive thrusts using a genetic algorithm. Lee et al. [12] also used multi-objective versions of genetic
algorithms (GAs) to evolve orbital elements (semi-major axis, eccentricity, inclination) instead of an
initial trajectory velocity. As such, their approach was necessarily limited to the idealized two-body
problem of Keplerian theory and lacked the ability to incorporate sources perturbations that arise
in LEO scenarios. More recently, Englander et al. [3] and Izzo et al. [8] utilized EC to design highly
complex mission trajectories. Specifically, Englander et al. devised a computational methodology using
multi-objective genetic algorithms to perform automated interplanetary mission design, whereas Izzo
et al. designed a mission trajectory among the Galilean moons of Jupiter that optimized observational
conditions at time of spacecraft at the time of flyby.

For problems where the decision variables are real-valued, the other evolutionary algorithms,
such as differential evolution (DE) [13], can provide superior performance over genetic algorithms.
Bessette and Spencer [14] used DE and covariance matrix adaptation evolution strategy (CMA-ES) [15]
approaches to optimize multi-objective Keplerian orbital transfers in LEO; in their study, the optimal
trajectory was based on the simultaneous considerations of fuel consumption and time of flight.
Casalino and Sentinella [16] used both GA and DE approaches to examine interplanetary orbit
trajectory optimization (e.g., as opposed to LEO maneuvers) involving intermediate planetary
fly-by gravitational assists. Olds and Kluever [17] also focused on interplanetary trajectory design,
analyzing the effects of altered DE tuning parameters of four interplanetary trajectory test problems.
A derivative of DE was proposed by Vasile et al. [7] that added a localized population restart to
DE reminiscent of monotonic basin hopping. Vasile and Locatelli [18] also applied elements of
search similar to DE in a domain decomposition search approach to interplanetary trajectory design
with success. The above operated on values that defined the trajectory via analytical relations, and none
evolved the velocity of the craft directly in a simulated environment.

A key component of most mission trajectory planning is the solution of Lambert-type orbital
boundary value problems (BVP). Specifically, the classic Lambert problem is a nonlinear BVP wherein
a trajectory is sought that connects two points in space (Figure 1) subject to a specified constraint
on the time-of-flight. Energy constraints may also be imposed as an alternative to the time-of-flight.
Significant research has been devoted to the numerical solution of this nonlinear BVP over the years.
In broad terms, the solution approaches can be categorized as those based on ‘geometric’ approaches
and those employing ‘universal variable’ approaches. In the geometric approaches, the BVP is
transformed into an equivalent Lambert equation (e.g., Reference [19]) involving orbital elements
that is solved via iteration [20–24]. The direct geometry approaches are typically limited to elliptical
orbits; furthermore, some approaches cited are restricted to a trajectory transfer angle of less than
one orbit, whereas others may be extended to multiple revolutions. In contrast, the universal
variable-based approaches were developed to provide numerical methods that are valid for all orbit
conics (i.e., elliptical and hyperbolic. The universal variable approach is based on a transformation of
the orbit anomalies to an auxiliary variable that leads to a new ‘universal’ time-of-flight equation [25].
Numerous methods for efficiently solving this transformed equation have been proposed [26–30].

In the present study, the evolutionary computing methodology of Differential Evolution (DE) is
used to solve a class of ‘Lambert-type’ orbital boundary-value problems. The DE-based approach,
in contrast to the methods described previously, directly solves the two-body equation of motion
for the spacecraft by iterating on the initial velocity vector at P1 (see Figure 1). As such, it is valid
for all orbit conics. Perturbation effects of planetary oblateness and rarefied atmospheric drag are
included in this study to reflect realistic conditions in low Earth orbit (LEO). The end condition of the
arrival at P2 may involve a simple positional requirement (intercept trajectory) or a positional and
velocity requirement (rendezvous trajectory). Multiple objectives may include minimizing positional
accuracy of the trajectory endpoint (i.e., relative to P2), fuel consumption, and time-of-flight accuracy.
In particular, the fuel constraint has historically represented a key limitation in orbit planning. In this
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work, we combine these objectives into a single weighted fitness function, with various weights
depending on the particular problem being solved. The resulting fitness function thus represents
a trajectory optimization problem.

Figure 1. Schematic diagram of the classical Lambert problem involving the orbital transfer from
an initial position P1 to a new location P2 with a prescribed time-of-flight ∆t.

This investigation consists of three essential parts. In the first part, we show that it is possible to
recover classic solutions to Lambert’s problem for either (1) a specified time-of-flight or (2) a minimum
energy orbital transfer, thus validating the evolved trajectories against known analytical results.
In the second part, we evolve trajectories in the presence of orbital perturbations arising from the
oblateness of the Earth and rarefied atmospheric drag for which there are no known analytical solutions.
Lastly, the intercept problem is then extended to a multi-orbit scenario in which the only perturbing
force is planetary oblateness. The capability of the Differential Evolution technique for solving
Lambert’s problem with complex physics (perturbations) is demonstrated, suggesting that the
DE-based method offers a viable option for realistic mission planning.

2. Overview of Governing Physics

A Newtonian gravitational potential is the canonical model used in orbital mechanics.
In this model, gravity is assumed to be a spherically-symmetric, attractive force that is inversely
proportional to the square of the distance between the centers of mass between two bodies.
For problems involving a spacecraft and the Earth, the mass of the spacecraft is inconsequential
and the gravitational constant is given by µ = G Me where G is the universal gravitational constant
and Me is the mass of the Earth. The governing equation for the spacecraft motion relative to a frame
centered at the Earth is given by

r̈ = − µ

|r|3 r, (1)

where r is the position vector of the spacecraft from the Earth’s center and µ is the gravitational
parameter defined above. In reality, many trajectories arising in actual mission planning are subject to
non-negligible perturbation forces that result in non-Keplerian motion. For low Earth orbits (LEO),
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for example, two important perturbations are gravitational variations due to planetary oblateness
and rarefied atmospheric drag. The mathematical form of these perturbations are included below
for completeness.

2.1. Oblateness Perturbation in Low Earth Orbits (LEO)

The fact that the Earth is actually an oblate spheroid, as a consequence of its axial rotation,
gives rise to an axisymmetric gravitational potential that can be formally expressed in terms of a series
expansion of zonal spherically harmonics [31]. For the Earth, the oblateness perturbation can be
well modeled by the addition of a single correction term, called the second zonal harmonic J2, to the
spherically symmetric Newtonian potential. The corresponding perturbation acceleration aoblate is
given by [31]:

aoblate = 3
2

J2µR2
E

|r|5
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where RE is the equatorial radius of the Earth and i, j, k are unit vectors aligned in the directions of
the Cartesian coordinate axes. Specifically, the vector k is aligned with the north pole of the Earth’s
rotation axis and the vector i lies within the equatorial plane and points towards the First Point of
Ares; the direction of the vector j then immediately follows. The magnitude of this perturbation
is zero at the equator and increases with latitude; furthermore, the magnitude is seen to diminish
with the fourth-power of the altitude. Therefore, its effect is most pronounced for LEO scenarios
and especially those with higher inclinations. A dynamical consequence of this perturbation is that
a slow precession of the orbit results—that is, the orbit is no longer closed as in Keplerian motion.
Although the precession rate is typically no more that a few degrees per orbit, over the span of many
orbits, the impact of this perturbation effect becomes significant.

2.2. Rarefied Atmospheric Drag in LEO

The so-called ‘Karman line’, defined to be at an altitude of 100 km above the Earth, is commonly
regarded as the boundary between the Earth’s atmosphere and space. In reality, the density of the
Earth’s atmosphere undergoes a significant decay beginning at an altitude of 20 km and a highly
rarefied vestige of the atmosphere extends well beyond the Karman line and into the region of LEO,
as illustrated in Figure 2. As a consequence, spacecraft in very low orbits are subject to a ballistic
drag force from the residual atmosphere. While small in magnitude, the effect of atmospheric drag is
to reduce the velocity of an orbiting object and, given sufficient time, leads to an orbital decay and
eventual atmospheric reentry. A model of ballistic drag adrag is typically employed to describe this
effect and is given by [32]:

adrag = −1
2

ρ

B
|vrel|2 vrel, (3)

where ρ is the altitude-dependent atmospheric density and B is the ballistic coefficient for the
spacecraft geometry. The relative velocity vrel is that between the spacecraft velocity and the
atmospheric velocity at the instantaneous latitude:

vrel = v−ω× r, (4)

where v is the spacecraft velocity, r is its position vector, and ω is the angular velocity vector of the
Earth’s rotation. As this effect is a retarding force, the acceleration is always negative and in the
direction opposite of the current velocity. For a small spacecraft (‘nano sat’), which underlies the
motivation for the present study, a typical value for the ballistic coefficient is B ∼ 50 [32].
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Figure 2. Atmospheric density data showing a power-law decay with altitude. The data shown was
extracted from Wong et al. [32].

3. Computational Methods

3.1. The Differential Evolution Algorithm

An evolutionary algorithm (EA) is a population-based, bio-inspired optimization method,
modeled loosely after the process of evolutionary adaptation in biological systems [33]. Populations of
candidate solutions (typically encoded as vectors of decision variables) undergo an iterative
process of reproduction with variation, competition for limited space in the population,
and fitness-based selection. Over iterations, the population evolves solutions that are
increasingly fit. There are many flavors of EAs [33] that vary in the details of the algorithm.
For example, genetic algorithms (GAs) rely primarily on discrete recombination of decision variables
(a.k.a. crossover) to introduce new variation, so GAs work best when decision variables have small
discrete alphabets and GAs require relatively large population sizes to ensure adequate sampling of the
search space. On the other hand, differential evolution (DE) [34] was explicitly designed to work well
with real-valued decision variables. DE primarily introduces new variation by computing weighted
differences of existing candidate solutions and then adding scaled versions of these difference vectors
to other existing candidate solutions. Thus, when individuals in the population are far from each other
(as in an initially random population), the difference vectors are large and new candidate solutions
sample the search space broadly (the so-called exploration phase of the evolution), but, as the better
solutions are selected and the population begins to converge, the step sizes of the search become
smaller and the algorithm automatically shifts to a more local search (the so-called exploitation phase
of the evolution) to fine-tune the remaining solutions. DE is simple to implement, requires relatively
small populations, has low computational overhead per generation, and performs well even in the
presence of correlated decision variables and noise [13]. Consequently, DE has rapidly gained traction
in the evolutionary computation community for real-valued optimization [35].

It is worthwhile to mention that another type of EA that is also well-suited to optimization
of real-valued decision variables is covariance matrix adaptation evolution strategy (CMA-ES) [36].
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However, in preliminary testing on other trajectory optimization problems [9], it was found that,
while CMA-ES converged more quickly, it had a greater tendency to become trapped in local minima.
In contrast, DE more consistently converged to the correct solutions. Thus, in this study, we opted to
use a DE approach implemented within the Matlab software programming language (Matlab v2015b,
Mathworks, Natick, MA, USA) with the source code available at http://www1.icsi.berkeley.edu/
~storn/code.html).

3.2. Hybrid Evolutionary Approach

For this work, we have employed the form of DE originally developed by Price et al. [13].
For completeness, a brief summary of the algorithm is as follows. Suppose x is a candidate solution
vector in the current population. An intermediate vector (v) is created using three candidate solutions
a, b, c from the current population as

v = a +F (b− c), (5)

where the scaling factor F is typically between 0 and 1. Next, a new candidate vector u is formed by
binary crossover process wherein each component of u is randomly selected from either v or x based
on a crossover probability Cr. The original candidate x is replaced by the newly constructed candidate
u in the next generation if the fitness u is better than or equal to the fitness of x. This procedure is
repeated for all candidate solutions in the current generation. For all experiments reported here, we
used a scaling parameter of F = 0.85, a crossover rate of Cr = 0.8, and population size of N = 5×M,
where M is the number of decision variables. These parameter settings were chosen based on limited
preliminary experimentation using recommended ranges by Storn and Price [34].

The Differential Evolution method was used to find approximate solutions that fell within in
the correct basin of attraction of the global optimum. Once the DE stage had terminated, the single
best solution from the DE run was then refined using Matlab’s fminsearch function (a Nelder–Mead
unconstrained nonlinear optimization method). The use of the gradient-based solver permitted more
rapid convergence to an accurate solution once a potential solution was in the correct basin of attraction.

In general, the initial population was seeded using random distributions of the decision
variables defined within a realistic range of values. However, in some non-Keplerian cases—notably
Test Problem #4 (see below)—it was found that such an unrefined initial population led to poor
success rates. For this case, a more strategic initial population was implemented so as to seed
the population with better initial candidate solutions. Reasoning that the incorporation of LEO
perturbations should not deviate dramatically from the unperturbed case, the initial velocity population
could then be a statistical distribution about the classical Lambert solution. Specifically, the initial
population was made by applying Gaussian noise of standard deviation 1 km/s to the corresponding
unperturbed initial velocity vector. The standard deviation of 1 km/s was determined empirically
as an acceptable value. If one selected a very small value of the deviation, this could overly restrict
the initial population about a sub-optimum; in effect, this would operate counter to the notion
of evolutionary optimization. On the other hand, too large of a value of the deviation might
not sufficiently sample about the direct solution foregoing the intended benefit of this intuitive
pre-population.

3.3. Test Problems

A set of five test problems was identified for the application of the evolutionary algorithm.
Described below, these problems consist of both Keplerian motion, for which analytical solutions exist,
and non-Keplerian motion:

Problem 1: Classical Lambert Problem for a Given Time of Flight. In this problem, only Keplerian
physics are considered, resulting in an idealized two-body problem. The goal is to
minimize positional error at the target point P2 for some pre-specified time of flight ∆t.

http://www1.icsi.berkeley.edu/~storn/code.html
http://www1.icsi.berkeley.edu/~storn/code.html
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Only the initial velocity vector is evolved. The exact analytical solution for this problem
is known.

Problem 2: Minimum Energy Lambert Transfer Ellipse. This is a variation of Problem #1 except
that, in this case, the goal is to minimize the amount of energy necessary associated with
the transfer ellipse from P1 to P2. Here, the time of flight along the desired trajectory is
not know a priori, thus both the initial velocity vector and the time of flight are evolved.
The exact analytical solution for this problem is also known.

Problem 3: Intercept Trajectory Accounting for Oblateness and Drag. In this non-Keplerian
version of Problem #1, perturbations are introduced through the inclusion of the J2

correction for non-spherical oblateness of the Earth Equation (2) as well as the correction
for atmospheric drag Equation (3). The time of flight is specified, so only the initial
velocity vector is evolved. The goal is to minimize positional error at P2 for some
pre-specified time of flight ∆t. No analytical solution exists for this problem.

Problem 4: Multi-Orbit Intercept Trajectory Accounting for Oblateness. In this problem,
the Keplerian orbit is perturbed through the inclusion of a J2 gravitational correction
for non-spherical oblateness of the Earth. A pre-specified time of flight is imposed
that will require the spacecraft to complete multiple orbits of the Earth before
reaching the target position. Here, we considered instances of 5-orbit, 20-orbit,
and 100-orbit intercepts that hereafter will be referred to as Problems #4a, #4b and
#4c, respectively. This was chosen to examine the computational success rate for
two different levels of oblateness perturbation, with the effect growing with the
number of orbits. While perturbations due to atmospheric drag could be included
as incorporated as in Test Problem #3, when drag is present, it is impossible to guarantee
that a trajectory exists that will reach the target without entering the Earth’s atmosphere.
Thus, in this proof-of-concept study where we wish to quantify how often we can find
a correct solution, we neglected perturbations due to atmospheric drag for this problem
to ensure that a solution existed. The time of flight is specified, so only the initial velocity
vector is evolved. The goal is to minimize positional error at P2 for some pre-specified
time of flight. No analytical solution exists for this problem. As discussed in Section 3.2,
experiments with both ‘random’ and ‘strategic’ initial populations were performed.

3.4. Fitness Functions

A fitness function must be evaluated at each stage of the evolutionary process to evaluate the
‘quality’ of the current generation. The particular form of the fitness function is, of course, dependent on
the objectives and constraints of the specific problem. Recalling that the problem being solved is that of
a nonlinear boundary value problem, there were two essential forms of the fitness function used in this
study. For cases where a specified time-of-flight is given, the ‘fitness function’ defaults to minimizing
the positional error of the trajectory at the terminal location. In cases where the energy of the orbital
maneuver is to be minimized, the fitness function will involve the magnitudes of the velocities at the
endpoints of the trajectory.

Lambert Intercept Problems #1–4. The final position of the spacecraft P̂2 is estimated
by integrating the governing equations using a Runge–Kutta method with variable time step
(Matlab’s ODE45 function) based on the evolved initial velocity vector v̂1 and the prescribed or
evolved time-of-flight ∆t̂. Because the fitness function is necessarily based on this simulation of
flight trajectories, the time required to evaluate fitness is proportional to the time of flight of the
trajectory being simulated, which varies for different individuals in the population. We created a single
objective fitness function f to be minimized by weighting multiple objectives as follows:

f = w1‖(P̂2 − P2)‖+ w2‖(v̂1 − vp)‖2 + w3 min(C, 0). (6)
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In the above, wi are the weights for each term and ‖...‖ denotes the 2-norm of the vector (Euclidean
distances between estimates and targets). The quantity ‖(P̂2 − P2)‖ represents the positional error
relative to the target location P2. The square of the necessary change in velocity relative to the initial
velocity ‖(v̂1 − vp)‖2 is proportional to the amount of energy required to change the velocity of the
spacecraft for the new trajectory. The final term is a crash penalty, where C is the maximum depth
of P̂2 below the surface of the Earth (this term is only non-zero when the spacecraft has crashed,
and helps provide a gradient back to the feasible region). The values of the three weights wi vary with
the particular test problem (and are sometimes zero), as described in Section 3.5.

3.5. Numerical Experiments

3.5.1. Lambert Intercept Cases (Problems #1–4)

For all experiments in Problems #1–4 reported here, we used the same initial and final locations,
P1 and P2. Centering a three-dimensional Cartesian coordinate system at the center of the Earth,
the initial position was specified to be P1 = 〈6500, 0, 0〉 km. This places the spacecraft approximately
122 km above the surface of the Earth, a value for a very low Earth orbit. The final position
was specified to be P2 = 〈−3591.7, 4024.3, 4024.3〉 km, which has a classical Lambert solution of
v1 = 〈0, 5.6, 5.6〉 km/s, for a specified time of flight ∆t = 30 min (used in Problems #1 and #3).
For Problems #4a and #4b, the times of flight are ∆t = 479.895 min and ∆t = 1829.58 min, which forces
the trajectory to orbit the Earth five and twenty times, respectively, before arriving at the target
location P2. For Problem 2, the ending velocity vector vp is specified as 〈0, 1, 1〉 and the evolving
∆t is prevented from going negative; note that vp is not needed for the other Problems #1,3,4.
Appropriate values for the weights wi were determined empirically, since accurate normalization of
the ranges of the terms was not found to be possible. Note that we have set some weights to zero so
that not all terms are used in all test problems. This parametric data is summarized in Table 1.

Table 1. Parameter values for the Test Problems #1–4 (NA = not applicable).

Problem Decision Variables ∆t (min) w1 w2 w3

1 3 30 10 0 0
2 4 NA 1 25 0
3 3 30 1 0 106

4a (5 orbits) 3 479.895 1 0 106

4b (20 orbits) 3 1829.58 1 0 106

4c (100 orbits) 3 9027.90 1 0 106

The test problems were each run for 12 repetitions from different initial random populations.
The rationale was to demonstrate the viability of the DE method to yield an acceptable solution to the
problem given a limited number of attempts. Using a small batch of simulations also better emulates
the method’s use in practical applications. The intention here was not to generate statistics for the
expected outcomes based on a large set of runs.

The Problems #4a, 4b and #4c also used initial populations based on classical Lambert solutions.
Typical DE runs were allocated a maximum CPU time before automatic termination of unsuccessful
or stagnating cases; however, successful runs were allowed to terminate early if either (i) the
maximum absolute error of any dimension in the evolving estimate of the initial velocity vector
v̂1 was less than 0.01 km/s (for those cases where the true vi was known) or (ii) fitness f fell
below 10−9. For the simulations involving five or less orbits (Problems #1–4a), a default time
limit of 20 min of CPU was used and found to be a conservative value, as all cases were found
to terminate via other stopping criteria. In the cases of Problem #4b and #c, with the 20-orbit and
100-orbit intercept requirements, a greater CPU time limit was necessary since these cases were more
computationally intensive. As the appropriate CPU time limit was not known a priori, simulations
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were run and results examined for different time limits. In Problem #4b, time limits of 20 min
and 60 min were tested, and, for Problem #4c, time limits of 120 min and 180 min were used. In the
latter case, the 180 min runtime results did not improve significantly over the 120 min results, indicating
that the difficulty in trials of 120 min and greater lies in the problem and not in the evolution being
stopped prematurely. We then applied fminsearch to the best evolved solution for 200 iterations
(with all tolerances and other options left at the default settings). A trial was considered successful
if the final best solution was within 1 m of the target location (this is a conservative criterion for real
LEO missions).

For the DE, we used a scaling parameter F = 0.85, a crossover rate of Cr = 0.8, and population
size of N = 5× M, where M is the number of objective variables. These parameter settings were
chosen based on limited preliminary experimentation using recommended ranges in [13]. For example,
we experimented with crossover rates between 0.1 and 1.0 in increments of 0.1 and found that Cr = 0.8
performed the best for this problem (gave lower fitnesses in a shorter amount of time). We also
experimented with population sizes N based on using either five or ten individuals per gene, but did
not see appreciable differences in resulting fitnesses and so went with the smaller population sizes.

4. Results

Upon examination of the results, three types of results were apparent: (i) infeasible trajectories that
ended up at P2 but that intersected the Earth (this occurred only once, for Problem #1), (ii) trajectories
that ended up hundreds or thousands of km from P2 (this occurred in 7 of the 12 trials of the multi-orbit
Problem #4a without Lambert-based initialization), and (iii) feasible trajectories that ended close to the
target location P2 (in all but one case, these were much less than 1 m from the target and were therefore
considered successful trials).

Histograms of the positional error ‖(P̂2 − P2)‖ are shown in Figure 3 for all solutions after the DE
phase and without refinement (i.e., before fminsearch) that were within 40 km of the target. Note that
Problem #4b data for the 20 min and 60 min run times and Problem #4c data for the 60 min and
120 min run times are also included. For comparison, Figure 4 shows solution meters of the target
after refinement using fminsearch to highlight the improvement yielded by the hybrid evolutionary
approach. The histograms of Figures 3 and 4 reflect random initialization of the populations. For more
complicated multi-orbit intercept cases, the value of the Lambert-based population initialization is
apparent when applied to the five-orbit intercept case (Figure 5).

Quantitative results for all successful runs of DE + fminsearch are summarized in Table 2.
The positional errors represent the average Euclidean distance (in m) between P̂2 and P2 for all
successful runs. For Problems #1–3, we were able to find successful solutions in all but two trials
(see Table 2). In the one unsuccessful trial for Problem #1, the solution was in a local optimum that sent
the spacecraft on a trajectory through the Earth (note that this could have been precluded if we had
explicitly formulated the fitness function to guard against such trajectories, but we opted to check for
this in post-processing rather than further slow down the fitness function). In the one trial considered
unsuccessful for Problem #2, the final positional error was still only 4.6 m from the target; this level of
error may actually be within tolerance, depending on the mission, and probably could have been further
reduced with additional iterations of fminsearch, although we did not try the latter. For the more
difficult multi-orbit Problems #4a and #4b, we were still able to find successful solutions in the majority
of the cases: 100% for a five-revolution intercept with Lambert-based initialization and over 50% for
a twenty-orbit intercept. Note also from Table 2 that increasing the CPU time for the twenty-orbit
intercept increased the success rate from 42% to 58%. For Problem #4c, the lack of successful runs for
the 20 min time limit is indicative of that time being insufficient for this implementation (Matlab) to
find solutions within a basin of attraction for a successful run; the DE solutons would also have to be
sufficiently close such that their placement allowed the fminsearch to find the successful run.
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Figure 3. Histograms of the positional error ‖(P̂2 − P2)‖ (in km) in the test Problems #1–4 after
differential evolution (DE) but before refinement with fminsearch, for all trials that were within 40 km
of the target after DE. There were 12 trials performed for each of the test problems.

If one views the 12 trials as restarts, the best solutions found are quite impressive, as summarized
in the rightmost column of Table 2. Here, it can be seen that final positional errors of the best solutions
found were negligible. For Problem #1, the analytical solution for the initial velocity was recovered to
within nine decimal places of accuracy (in km/s), and, for Problem #2 the analytical solution for the
optimal time-of-flight was recovered to within 4.8 s.
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Figure 4. Histograms of the positional error ‖(P̂2 − P2)‖ (in m) in the test Problems #1–4 after DE
followed by refinement with fminsearch.

Table 2. Number of successful trials (out of 12), average positional of successful trials, positional error
of best trial out of 12 for the various test cases.

Test Problem Successful Trials Avg Pos Err (m) Best Pos Err (m)

1 11 0.023 9.3 ×10−3

2 11 0.071 6.7 ×10−6

3 12 0.003 9.6 ×10−4

4a 12 2.66 ×10−3 9.63 ×10−4

4b (20 min) 5 3.04 ×10−3 1.12 ×10−3

4b (60 min) 7 1.17 ×10−3 9.43 ×10−4

4c (60 min) 0 104200.7 3.40
4c (120 min) 4 81424.7 1.16 ×10−3
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Figure 5. Histograms of the positional error ‖(P̂2 − P2)‖ (in mm) in the test Problem #4a showing the
improvement in success rate between random population initialization (top) and initial population
based on the Lambert solution (bottom).

The corresponding trajectories for all successful runs for Problems #1–3 appear in
Figures 6–8, respectively. In some cases, trajectories lie on top of each other and are not
visually distinguishable. The right-hand panels of Figures 6–8 show close-ups of the successful
trajectories after DE but before refinement with fminsearch (note the zoomed in scales of the axes).
After refinement with fminsearch, the successful trajectories are all <0.3 m from the target, so they
would appear indistinguishable on these figures. For Problem #4a, we show all five orbits of only
the single best trajectory in Figure 9; note the precession of the orbits toward the target point P2.
The precession is even more noticeable in the trajectory for the twenty-orbit intercept of Problem #4b
(Figure 10).
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Figure 6. Trajectories of the 11 successful runs for Problem #1. The analytical trajectory is shown
in black. (left): earth scale view; (right): close up of the best solutions from DE (before fminsearch)
near target P2.
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Figure 7. Trajectories of the 11 successful runs for Problem #2. The analytical trajectory is shown
in black. (left): earth scale view; (right): close up of the best solutions from DE (before fminsearch)
near target P2.
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Figure 8. Trajectories of the 12 successful runs for Problem #3. (left): earth scale view; (right): close up
of the best solutions from DE (before fminsearch) near target P2.
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Figure 9. Trajectory of the most successful run for Problem #4a. To avoid confusion, only the five orbits
of the most successful trials are shown. (left): earth scale view; (right): close up of the best solution
from DE (before fminsearch) near target P2.



Aerospace 2017, 4, 47 15 of 20

Figure 10. Trajectory of the most successful run for Problem #4b with a 20-orbit intercept. The precession
of the orbit due to the inclusion of oblateness perturbation is evident. (top) earth scale view;
(bottom) close up of the best multi-orbit solution from DE (before fminsearch) near target P2.

5. Discussion

The focus of this study has been to investigate the utility of a DE-based approach for spacecraft
trajectory planning under the realistic orbital conditions that would be present in the LEO and
Earth–Moon system environments. With this in mind, it is appropriate to examine both the performance
and limitations of the present model within the context of actual mission planning performed by space
agencies such as NASA.
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5.1. Traditional Mission Planning Approaches

Historically, the computational design of mission trajectories has been based on problem-specific
algorithms that employed classical numerical approaches for orbital mechanics (e.g., boundary-value
problems [37]). Within the past decade or so, however, there has been an effort to develop more
generalized and robust trajectory design approaches including optimization. Johnson et al. [38]
developed the Copernicus program for NASA Johnson Space Center that incorporated many existing
case-specific NASA trajectory codes into a single mission design and optimization tool. Beginning in
the 1990s, modern dynamical systems approaches using invariant manifolds were introduced for
mission planning in perturbed systems [39]; this approach was realized in mission planning for
the NASA Genesis mission launched in 2001 [40]. Most recently, NASA Goddard Space Flight
Center has introduced the Evolutionary Mission Trajectory Generator software, which designs and
optimizes complex interplanetary trajectories involving multiple planetary flybys using a GA [41].
However, to date, these methods have largely focused on planning orbital trajectories for problems
where near-Earth perturbations are negligible.

With the recent increase in small satellites in LEO (e.g., ‘cubesats’ and ‘nanosats’), as well as
formation-flying mission architectures, it is important to extend automated design approaches to
include realistic LEO perturbations. The current study serves as proof-of-concept that DE can be
effective in automating accurate LEO trajectory planning, which represents a new contribution to the
current astrodynamics literature.

5.2. Trajectory Accuracy

In real LEO maneuvers, the required positional accuracy for modern trajectory planning is on the
order of meters [42]. Of course, the specific error tolerance is necessarily dependent on the particular
mission. In the results presented here, all successful runs had positional errors of less than 0.3 m
(with best runs out of 12 trials within 0.01 m of the target position) for all four problems (Table 2);
these positional errors are well within the required tolerances for LEO missions.

5.3. Opportunities for Model Improvement

Although the computational model presented in this work has incorporated a number of realistic
and important perturbations for LEO maneuvers, there remain opportunities for further improvement,
including: (a) incorporating additional perturbations; (b) solving more difficult LEO problems, such as
multi-impulse, trajectories, continuous thrust trajectories, and multi-spacecraft swarm trajectories;
(c) evolving Pareto sets of non-dominated solutions with respect to the multiple objectives;
and (d) trajectory design applied to formation-flying of multiple satellites. We discuss these areas below.

There are two particular sources of perturbation that are not accounted for in the present model.
The first is the effect of solar radiation (photon) pressure, which can either accelerate or decelerate
the spacecraft depending on its orientation. For very low orbits, this effect is small compared to
atmospheric drag; however, for higher orbits, the reverse is true. The second source of perturbation
is caused by gravitational effects of the Sun. This effect is negligible for LEO scenarios but may be
relevant for higher orbits (e.g., geosynchronous orbits, GEO) and within the Earth–Moon system.
Therefore, to extend the capabilities of the current framework beyond LEO, the inclusion of solar
gravity may be appropriate.

The current version of the model is restricted to trajectories produced by a single initial impulse.
While this is acceptable for preliminary orbit design, it excludes the possibility of mid-course
correction(s) to account for perturbation effects. A more flexible and realistic approach would be to
allow for a finite number of impulses during the trajectory. One could also allow for the possibility
of a continuous thrust trajectory, where the spacecraft produces a thrust during the entire maneuver.
Continuous thrust maneuvers are consistent with spacecraft utilizing electric propulsion systems
(e.g., ion engines) as well as solar sails.
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Another area of interest is the design of trajectories of small constellations of LEO spacecraft flying
together; these spacecraft must not only reach a particular target area, but must also remain within
certain distances of each other and, in some cases, maintain specific formations. One contemporary
example is NASA’s Magnetospheric Multi-Scale (MMS) mission consisting of four satellites flying in
a tetrahedral configuration at the measurement site in the orbit [1]. Efforts on the use of DE applied to
such topological problems have reported in recent works by our group [10,43–45].

In the current approach, we chose to combine the multiple objectives into a single weighted
fitness function, and have emphasized trajectory planning where the primary objective is either
time-of-flight or fuel considerations. Realistic mission planning could benefit from a multi-objective
version of DE (e.g., [46]) that returns a relatively uniformly spaced set of non-dominated solutions.
Mission planners could then consider the trade-offs between the various objectives and constraints in
selecting an appropriate trajectory to implement.

In the study described here, the numerical model was implemented in the Matlab
programming software. This selection was made for expediency and without any attempt to improve
and/or optimize the code for speed. A CPU time limit of 20 min was imposed for all cases except
those with multiple revolutions; this time limit corresponded to approximately 12,500 generations
being rendered. Within the context of actual mission planning, this represents an insignificant amount
of computation time. Nonetheless, improving the efficiency of the code (e.g., converting to a language
such as C/C++) would likely prove beneficial when coupling the simulations to a higher-order ordinary
differential equation solver or a higher fidelity forward trajectory simulator, such as NASA’s publicly
available GMAT code (http://gmat.gsfc.nasa.gov).

6. Conclusions

In this study, Differential Evolution (DE) was investigated as a tool for solving a class of
nonlinear orbital boundary value problems—Lambert’s Problem—with time or energy constraints.
The accuracy of the technique was first demonstrated in two different test cases involving Keplerian
orbits that could be benchmarked against known solutions. The method was then applied to single
and multi-revolution cases involving non-Keplerian orbits arising from J2 oblateness and rarefied
atmospheric drag perturbations.

The hybrid DE evolutionary approach was found to be very promising in that it was rarely
trapped in local optima and was often able to get sufficiently close to the error-minimizing trajectory
such that subsequent refinement with Nelder–Mead optimization was able to reduce final positional
errors to within mission tolerance. For this study, the positional error was set to 0.3 m, which is
well within the acceptable tolerance for real LEO mission planning. In more challenging problems,
such as the multi-orbit problem studied here, it was found that multiple restarts may be required;
however, even in this difficult problem, a success rate of 58% was achieved.

In this method, only the initial velocity and possibly time of flight are evolved. As such, additional
complex perturbation effects can be readily incorporated into fitness evaluation without affecting
the remainder of the evolutionary code demonstrated, suggesting that the DE-based method offers
a viable option for realistic mission planning. We therefore conclude that a hybrid method using DE
to find the global basin of attraction, followed by refinement with a local optimization method such
as Nelder–Mead to hone in on the global optimum, is a promising approach to mission design and
optimization of LEO and related trajectories.
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