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Abstract: The design and development of morphing (shape shifting) aircraft wings—an innovative
technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures
of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of
the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation
revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized
morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and
15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4%
respectively when compared with the conventional wing. Simulations also showed that there is
a significant improvement on pressure distribution over the lower surface of the morphing wing
aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along
the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced.
A morphing wing reduced the size of the vortices and therefore the noise levels measured were
reduced by up to 50%.

Keywords: shape shifting wings; morphing wing; aerodynamics enhancements; experimental
aerodynamics; computational fluid dynamics; NACA009

1. Introduction

The aircraft industries are constantly looking for newer and more innovative ways to increase
aerodynamic efficiency to reduce fuel consumption. In recent years, this has become more challenging
as conventional aircraft configurations have been pushed to the very limit of aerodynamic efficiency.
This implies that non-conventional technology and design needs to be developed [1] to have a
substantial effect of increasing aerodynamic efficiency.

In recent years “morphing” has received great interest [2–5]. Morphing implies the change of
shape of aircraft structures tailored to optimize aircraft performance. This is because conventional
aircraft design is a compromise to meet various flight conditions—for example a design to optimize
take-off is not necessarily compatible with the optimal design for cruise mission. The definition
of wing morphing is the continuous smooth and flexible change of the wing shape in order to
maximize aerodynamic efficiency. A comprehensive review on morphing technologies was conducted
by Rodriguez [4]. Two morphing aircraft structure concepts were developed through DARPA funding.
The first concept was developed by Lockheed Martin in which the structure has the ability to reduce the
wing area while transitioning from loiter to high speed Mach number [6] and the second concept—the
NextGen MFX-1 aircraft—is based on flexible skin [7], which provides the capability for the wings
to change shapes tailored to the specific mission profile. Wing morphing can be accomplished in
multitude of directions, one direction is changing the wing spar and this has been demonstrated by the
university of Maryland development of pneumatic telescopic spar for a UAV [8]. The other direction is
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the change of camber of the wing, this could improve the flying performance of the aircraft including
the lift and drag capabilities mainly during take-off and landing manoeuver [9–14].

In the past, a number of approaches have been proposed for sealing the gaps between high lift
devices and the wing—a brief overview of these approaches is provided in order to demonstrate
the complexities of the proposed designs and the challenges associated with their implementations,
which highlights the urgent need for innovative solutions to address this problem. Kunz [15] patented
a mechanical device consisting of additional flap connected to the main flap via a sliding interface.
Diller and Miller [16] later on, patented mechanical/compliant transition to cover the span-wise and
end-chord partial dislocations between the flap and wing. Their design is somehow cumbersome due
to compliant Silicone elastomer skins that are reinforced by sliding mechanical rod acting to support
the variable length of skin transitions. Caton et al. [17] patented a similar design of two short rods
sliding into the elastomer skin as compared to the mechanical one rod mechanism of Diller and Miller.
This design change meant the addition of a component to cover the joints which makes the design
even more complicated. In 2013, Boeing [18] introduced the concept of multiple ribs that slide in and
out of a spanwise rod embedded within the wing—the main feature of the covered elastomer skin
sliding ribs is to cover the changing transition length dislocations between the flap and the wing.
The patented design introduced the ribs rotating tip concept to extend the rib trailing edge length.
Another concept was introduced by NASA Langley in 2012 [19], of wedge elastomer skin to bridge the
span-wise gap between the flap and wing. This concept was tested [20] and noise reduction of 3 dB or
higher for deflected flap was measured and aerodynamic efficiency enhancement were verified but not
quantified in wind tunnel tests. Furthermore, recent advances in designing and proposing solutions
based on an active camber morphing—the Fish Bone Active Camber (FishBAC) [21]—concept showed
promising results in wind tunnel tests [22] of increased lift-to-drag ratio, making it a good candidate
for pairing with other end transition morphing concepts. The FishBAC concept was extended [23]
to introduce material structures to seal the gaps created at the end of an active control morphing
surface. A Morphing Elastically LofteD (MELD) transition was introduced [23], which is capable
of bending and twisting to perform smooth continuous deformation between connection ends of
the active morphing camber surface and the fixed wing structure. Initially morphing structures
were implemented on military aircrafts, however in recent years the focus has shifted towards small
aircrafts such as UAVs [24], this is due to lower aerodynamic loads which makes the development and
implementation processes more efficient and diverse. Also, the time line for new product introduction
is shorter, due to less rigor certification procedures and fewer testing. A review study [24] discussed
actuation systems categorized by the actuation method and implemented on airofoil wing morphing
using conventional (lumped) actuators, SMA-like actuators and PZT actuators to induce camber
change and thus provide lift augmentation.

This paper explores the design and development of a new type of wing technology called
shape shifting or morphing aircraft wings. Morphing aircraft wings are based on the dynamics of a
bird wing, fundamentally ensuring that flow remains smooth and disruption is minimized. This is
accomplished by eliminating the surface dislocations between the wing and the flaps, reducing
and delaying the formation of vortices caused by lift-induced drag. These benefits will further
increase aircraft performance by reducing take-off distances, landing distances, increasing climb rates,
increasing stability and reducing the overall noise generated by the airframe. In addition, the increase
in lift can also lead to a reduction in wing size, which implies a reduction in overall weight and a
further reduction in fuel consumption.

2. Current Sophisticated Morphing Wing Technology

Morphing wing technology had received renewed attention during recent years due to material
and actuation systems rapid development. Few papers published primarily focused on mechanical
structures and dielectric smart polymers. These are experimental and have a predicted timeline
of 50 years until integration—currently the only company in the testing phase is Flexsys and their
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compliant control surfaces are designed in conjunction with NASA and the US Air Force, however,
their research is not published publicly. Currently the only competition for morphing wing technology
is a company called Flexsys, they are developing a compliant control surface. Flexsys compliant
control surfaces works with a combination of monolithic joint-less mechanisms and flexible material to
achieve a flap which changes the camber of the wing rather than a mechanical flap. Flexsys claim their
compliant control surface can achieve a 2% reduction in drag when retrofitted and up to 12% with a
complete trailing edge redesign, as well as an increase in lift by 14% [25].

2.1. Mechanical Monolithic Joint-Less Mechanism

Monolithic joint-less structures for morphing wings are designs [26,27] that uses materials elastic
properties to create a function, such as actuation or deflection. A monolithic joint-less mechanism [3] are
designed so that the structure doesn’t have any joints and loads are equally distributed throughout the
entire structure [26]. This load distribution ensures that no single joint experiences excessive loading,
which leads to failure. This structure allows large deflections while minimizing strain. The main
advantages to this type of structure are, minimal assembly required, high reliability on repeated action,
no joints, therefore no need for lubrication and no friction, can be designed using any resilient material,
cyclic fatigue resistant [26]. Issues that can arise with this technology are improper design and external
loads. Should the structure not be designed correctly loading may not be distributed equally across
the entire structure leading to failure from excessive loading or fatigue. The structure also needs to
be designed to ensure it can withstand the external loads experienced throughout flight; these can be
considerably high which might lead to sudden unexpected failure [27].

2.2. Rib Based Morphing Trailing Edge

The rib based morphing trailing edge design is a complex multi-component structural addition to
the ribs already installed in an aircraft wing. It consists of four blocks connected to each other by a
rotating joint along the camber line; each block is also attached to a link rod. The blocks are capable of
rotating upwards and downward, this allows the blocks to act as a flap control surface [28]. When the
blocks are assembled and attached onto the wings ribs an elastomer skin is attached along the entire
trailing edge, covering the blocks. This achieves a smooth surface and allows the structure to deform
without causing any breaks in the surface of the wing [28]. The advantages of this design are that each
rib has a degree of freedom, therefore any block that is stopped from moving causes the trailing edge
to not change shape. Should the actuator move then all the blocks will move, causing a change in wing
shape. In addition, this design also solves external loading issues as the block assembly is directly
attached onto the wings internal main structure, which means loads, will be transferred to wing.

2.3. Dielectric Smart Polymer Morphing Wing

Smart polymer, specifically dielectric smart polymer, is a material that changes shape. These are
also known as electroactive smart polymers and they work by passing an electric current though
them, this creates an actuation force in the form of material deformation [29]. The advantages of using
dielectric smart polymers is that they are very light weight and can have relatively large strains during
actuation, they also have very fast response times and large actuation forces [29]. The disadvantage of
dielectric smart polymers is that they act as a capacitor when a current is run through them; therefore,
they need to be properly insulated to ensure safe operation [29].

2.4. Transition Regions

To ensure morphing wings aerodynamic performance, transition regions are implemented
between the wing and the flap to ensure smooth flow. Transition regions designs ensure no gaps
are created when the flap moves, preventing high pressure air flow towards a low-pressure region.
In addition to creating a smoother flow over the wing, transition regions also reduce the size, and delay
the formation, of vortices on the flaps, which reduces noise, drag and increases lift.



Aerospace 2017, 4, 52 4 of 24

3. Concept Analysis

Both design concepts shown in Table 1, are excellent choices for a morphing wing, each offer their
own advantages and disadvantages but neither of them are equal. The decision on which, is chosen is
based on which has the highest score for each of the different subcategories.

Table 1. Concept design analysis.

Concept Feature Dielectric Smart Polymer Elastomer Skin

Cost 2 5
Maintainability 5 5

Performance 5 3
Installation Ease 2 5
Ease of assembly 2 3

Weight 5 4
Environment Resistance 5 3

Safety 3 3
TOTAL 29 31

The dielectric smart polymer design offers a lot of benefits but its primary disadvantage is
relatively more complex to assemble and install. This implies that it would require a long installation
time as well as special training to install and maintain properly, this increases costs related to its
operation. Another issue with the dielectric smart polymers is, related to safety concerns which require
strict and proper fuel storage insulation. The main advantage of this design is the reduction of aircraft
weight by eliminating the requirement for mechanical flaps and actuators.

The elastomer skin design is simple but can achieve the same effects as the dielectric smart
polymer design. The elastomer skin design would be slightly heavier than the smart polymer design
because it would still require the mechanical flap structure. This is counteracted by the low costs,
ease of maintenance, ease of installation and overall safety. Installing an elastomer design only requires
the wing to be covered in an elastomer skin which is attached using an adhesive. Maintenance would
be as simple as visual inspections for cracking and then complete replacement of the skin when the
material has reached its fatigue limit.

When considering safety, the elastomer skin design is superior because if failure occurs then there
is still a working flap to generate lift. If the smart polymer fails due to damage or loss of an electric
current then the aircraft won’t have any working high lift devices.

Based on the above discussion elastomer skin design had been pursued.

4. Initial Experimental Analysis

4.1. Wind Tunnel Testing

Wind tunnel testing was carried out on two of the three models, the conventional NACA 009 wing
and the optimized morphing wing. All wings have the same span and chord as well as the same flap
dimensions: Wing Span—0.3 m, Aerofoil Chord—0.15 m, Flap Span—0.172 m, Flap Chord—0.055 m,
Flap Angle—25◦ (remains the same throughout testing), Wing rotated at a point of 26.7% of chord
(thickest point along the chord) to accommodate the fixture bar. This was also applied to CFD
simulation. AF100 low speed open loop wind tunnel (TecQuipment Ltd., www.tecquipment.com)
equipped with 3 components balance connected to a separate display unit to measure the forces acting
on the model was utilized. The wind tunnel test section dimensions, Length = 0.6 m, Width = 0.3 m
and Height = 0.3 m.

Aerofoil NACA 009 was selected primarily to reduce profile drag as much as possible, as this
study is concentrating on vortices being generated by the deployment of flaps. There were also
costing and simulation issues to consider, being self-funded cost had to be kept down for 3D printing

www.tecquipment.com
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models. The simulation was carried out on Ansys academic, therefore there was a limitation of
512,000 cells for meshing. It was noted that cambered aerofoils required a higher cell count, which
limited mesh refinement.

The models were 3D printed using the University printing facility rapid prototyping machine
and then sanded down to remove the rough surface created during the 3D printing process. Once the
model is finished, a 12 mm steel bar is installed at the aerodynamic centre, 40 mm from the leading
edge. The finished models are shown in Figure 1. Strict fabrication procedures where implemented to
ensure productions did meet the print specifications shown in Figure A1.
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optimized morphing aerofoil model.

Each model was installed in the wind tunnel test section and tested at 0, 5, 10, 15 and 20 degrees
angle of attack with a wind speed of 25 m/s. The data was collected at set intervals every 0.5 s for 20 s
at all degrees of angles of attack, this provides a large amount of data which can then be analysed to
ensure accurate results. Lift and drag data was then used to derive coefficient of lift and drag. Figure 2
shows the difference in coefficient of lift between the optimized morphing wing and the conventional
wing. The optimized morphing wing has an increase in coefficient of lift by 14.8%, 8.4%, 4% and 2.6%
at 0, 5, 10 and 15 degrees angle of attack respectively.
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4.2. Wind Tunnel Results Discussion

Wind tunnel tests showed that both the initial morphing wing and the optimized wing have
significant improvements over conventional wing. Although further improvement from the initial
morphing wing is minor and would cause an increase in overall cost and complexity for the design.
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The wind tunnel data confirmed that the morphing wing design has the potential to increase the
lift generated, by up to 14.8% at 0 degrees angle of attack.

Figures 3–6 show standard deviation for all the coefficient of lift and drag data collected during the
tests at the wind tunnel, including the interquartile range (indicated by green and brown). The green
and brown boxes indicate the difference between the 75th and 25th percentile or the middle 50% of the
data’s standard deviation, the maximum and minimum is also shown by the upper and lower whiskers
respectively. The experimental data was compared to NACA 009 profile wing with no flap and the
above results (with 25 degrees flap deflection) look reasonable see Figure A2 in the Appendix A.
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5.1. Ansys Solver Set-Up

Solver—Each wing was used in Ansys fluent with pressure based, steady state simulations.
Flow Domain—The flow domains geometry is shown in Figure 11, at the leading edge of the

aerofoil is a 1 m radius circle which is revolved, then extruded 1.5 m. This allows the formation of
vortices while staying within the software’s cell limit. The flow domains details are highlighted in
Figure 12.
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Turbulence Models—The turbulence models & boundary conditions for all simulations are
as follows:

• Energy—On.
• Viscous—K-epsilon, Realizable & Non-equilibrium Wall Functions.
• Boundary Conditions—Turbulent Intensity 5% & Turbulent viscosity ratio 10.

The turbulence models for the wing sections were selected based on information collected from
(Ansys, 2006, ANSYS Inc., Canonsburg, PA, USA). Realizable k-epsilon was selected because of the
possibility of increased accuracy on RNG k-epsilon. It was also selected because of its high accuracy
for high boundary layer separation and large vortices.

5.2. Conventional Wing Ansys Simulation

Figure 13 shows the pressure coefficients of the flow over the conventional aerofoil, the pressure
of the flow around the flap, vortices and in the vortices wake is slightly lower than the rest of the
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wings wake. The lift-induced drag reduced the pressure of the wing causing an increase in pressure
drag; this can be seen in Figure 13 as there is a significant pressure difference between the vortices
generated and the rest of the wings wake. The pressure coefficient in the centre of the vortices is
considerably lower than rest of the wake, shown in Figure 14. This creates pressure drag on the
wing, by pushing the flap downward reducing the overall lift production. In addition, as the angle
of attack is increased the vortex size and intensity were further increased. This was corroborated by
Figure 15. Figure 15, illustrates vortices generated for conventional wing with an angle of attack of 0
and 5 degrees respectively, showing a larger vortex being generated by the flap of the wing. This had
demonstrated that Ansys is simulating correctly the flow field and therefore ensuring accurate results
are being produced for further simulation.
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Figure 15. Images showing the vortex size for the conventional wing (a) at 0 degrees’ angle of attack
(b) at 5 degrees’ angle of attack.
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5.3. Initial Morphing Wing Ansys Simulation

Figure 16 shows the coefficient of lift data generated by Ansys, a significant increase in coefficient
of lift when comparing the initial morphing wing and conventional wing.
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wing and initial morphing wing.

The simulation data shows that at 0, 5, 10 and 15 degrees’ angle of attack, there is an increase in
lift by 10.8%, 4.3%, 3.4% and 1% respectively. Figure 17 is a Cd versus Cl graph. The data shows that
the initial morphing wing is more aerodynamically efficient than the conventional wing. The initial
morphing wing at 0, 5, 10 and 15 degrees angle of attack produces 10.8%, 4.3%, 3.4% and 1% more lift
respectively, as well as a maximum of 2.5% reduction in drag. Figure 18 shows the lift-to-drag ratio,
or glide ratio, this graph shows a wings ability to glide during flight. A higher glide ratio means the
aircraft will be able to travel further distance without losing as much altitude.

The initial morphing wing has a significantly higher glide ratio than the conventional wing,
especially at low angles of attack. This implies less engine power will be required during flight to
maintain altitude and therefore less fuel consumption. At 0, 5, 10 and 15 degrees angle of attack the
initial morphing wing has an increase in glide ratio of 13.6%, 5.3%, 5.8% and 3.1% respectively.
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Figure 18. A graph showing Lift/drag otherwise known as the glide ratio for the conventional wing
and initial morphing wing.

Figure 19 shows the pressure coefficients over the lower side of the conventional wing and initial
morphing wing respectively. The conventional wings pressure at the flap is slightly lower and became
suddenly lower at the flap dislocation from the wing surface. This is because of lift-induced drag,
which results in sudden pressure drop and therefore increases in pressure drag as well as reduction in
lift production.

The initial morphing wing in Figure 19 doesn’t suffer from this, because there is no gap between
the flap and the wing surface, the pressure distribution is enhanced along the lower surface of the wing.
The pressure on the lower surface of the initial morphing wing is also slightly higher as compared to
the conventional wing. The elimination of the gaps between flap and wing surface caused the pressure
along the bottom of the morphing wing to increase and pressure distribution enhancement was
experienced over the wings surface. Therefore, aerodynamic performance as compared to conventional
wing was enhanced due to lift increase and a reduction in pressure drag along the wing.
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Figure 19. The pressure coefficient (a) Conventional wing upper surface; (b) Initial morphing Wing
Upper Surface; (c) Conventional wing lower surface; (d) Initial morphing Wing lower Surface.

5.4. Optimized Morphing Wing Simulation

Figure 20 shows the coefficients of lift for all the wings, each design has a significant increase in
coefficient of lift, the highest being the optimized morphing wing. Overall at 0, 5, 10 and 15 degrees
angle of attack the optimized morphing wing have an increase in lift by 15.4%, 7.5%, 5% and 1.8%
respectively when compared to the conventional wing. At 0, 5, 10 and 15 degrees the optimized
wing has an increase of 4.6%, 3.2%, 1.7% and 0.9% respectively, when compared to the initial shape
shifting wing.
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Figure 20. A graph showing coefficient of lift for the conventional wing, initial morphing wing and
optimized morphing wing.

Figure 21 shows an efficiency graph for all three wing designs, using coefficient of drag over
coefficient of lift. Lift production for each of the morphing wings was enhanced compared with
conventional wing, while producing less drag. Conventional wing to the optimized morphing
wing comparison revealed up to 5% drag reduction was experienced by the optimized morphing
wing dependent on angle of attack. The optimized morphing wing to the initial shape shifting
wing comparison showed drag reduction by up to 2.7%. Figure 22 illustrates lift-to-drag ratio or
glide ratio highest magnitude increase is evident for the optimized morphing wing. At angles of
attack of 0, 5, 10 and 15 degrees the optimized wing has an increase in lift-to-drag ratio of 18.3%,
10.5%, 10.6% and 4% respectively, compared with the conventional wing. While the optimized wing
compared with the initial morphing wing has an increase of 4.7%, 5.3%, 4.8% and 0.9% at 0, 5, 10 and
15 degrees respectively.

Figure 23 shows the evolution of pressure distribution along the lower surface of each of the wing
configurations. Each wing has a different maximum pressure coefficient on its lower surface, 0.75 for
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the conventional wing, 0.904 for the initial morphing wing and 0.906 for the optimized morphing wing.
This shows that the optimized wing experienced a much higher pressure along its lower surface than
the conventional wing and the initial morphing wing.
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pressure at the leading edge (right side). The increase in pressure created higher lift which was 
experienced by the optimized wing, as well as the increase in flow smoothness due to the curvature 
of the transition regions. Furthermore, pressure drag is significantly reduced on the optimized wing 
because of regions with extremely low pressure on the conventional wing are almost eliminated.  

Upper surfaces comparison of the conventional, initial morphing and optimized morphing 
wings are illustrated in Figure 24. The pressure along the trailing edge of the wing (left side) increased 
significantly, due to vortex size reduction as well as a delay in the vortex formation. This effect 
reduced the pressure drag and caused significant changes to the pressure in the wake of the wing. 
The conventional wing (top left, Figure 24a) is compared to a morphing wing (top right and bottom 
middle, Figure 24b,c), the morphing wings experienced less chaotic behaviour and the pressure is 
more equalized resulting in less drag. One of the major benefits of the optimized wing is that the 
increased curvatures on the flap transition regions allowed smoother flow to occur, which reduced 
the pressure drag, vortex size and caused a delayed formation of the vortices on the wing. Figure 25 
shows the pressure coefficients above and below the surface of the wings, the red circles indicate the 
pressure of the vortex which is being generated by the flaps. The conventional wings vortex (top left, 
Figure 25a) is significantly lower in pressure and much larger in size than the morphing wings (top 

Figure 23. The pressure coefficient distribution (a) along the upper surface of the conventional wing;
(b) along the upper surface of the initial morphing wing; (c) along the upper surface of optimized
morphing wing; (d) along the lower surface of the conventional wing; (e) along the lower surface of
the initial morphing wing; (f) along the lower surface of optimized morphing wing.

Comparison pressure evaluation of the lower surface of the optimized wing with the initial
and conventional wing indicated significant differences in the overall pressure distribution. At the
trailing edge of the wing (left side), low pressure areas are significantly reduced, as well as much
higher pressure at the leading edge (right side). The increase in pressure created higher lift which was
experienced by the optimized wing, as well as the increase in flow smoothness due to the curvature
of the transition regions. Furthermore, pressure drag is significantly reduced on the optimized wing
because of regions with extremely low pressure on the conventional wing are almost eliminated.

Upper surfaces comparison of the conventional, initial morphing and optimized morphing wings
are illustrated in Figure 24. The pressure along the trailing edge of the wing (left side) increased
significantly, due to vortex size reduction as well as a delay in the vortex formation. This effect
reduced the pressure drag and caused significant changes to the pressure in the wake of the wing.
The conventional wing (top left, Figure 24a) is compared to a morphing wing (top right and bottom
middle, Figure 24b,c), the morphing wings experienced less chaotic behaviour and the pressure is more
equalized resulting in less drag. One of the major benefits of the optimized wing is that the increased
curvatures on the flap transition regions allowed smoother flow to occur, which reduced the pressure
drag, vortex size and caused a delayed formation of the vortices on the wing. Figure 25 shows the
pressure coefficients above and below the surface of the wings, the red circles indicate the pressure of
the vortex which is being generated by the flaps. The conventional wings vortex (top left, Figure 25a)
is significantly lower in pressure and much larger in size than the morphing wings (top right and
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bottom centre, Figure 25b,c), the optimized shape shifting wing has the highest-pressure vortex and
therefore an overall higher wing wake pressure and reduced pressure drag.

Figure 26 shows the pressure distribution along the upper and lower surface of each wing at the
location where vortices are generated on the flap. The conventional wing experienced a significant
drop in pressure on both the top and bottom surface of the wing as flow approached the trailing
edge (chord length = 0.04 to 0.11 m). This is due to the large vortex that is generated at this location,
it resulted the pressure to drop which consequently increased pressure drag. Comparison between the
conventional wing to the initial and optimized morphing wing, revealed a major difference between
the upper and lower surface pressures. With the morphing wings, as the flow approached the trailing
it increased instead, this is because of the reduction in vortex size and delay in formation.
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Figure 24. Images showing pressure coefficient for the flow over (a) the conventional wing; (b) Initial
morphing wing; (c) optimized morphing wing all at 5 degrees’ angle of attack.
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Figure 25. Images showing pressure cut plots at the location where vortices are generated on each wings
flap at 5 degrees’ angle of attack (a) the conventional wing; (b) Initial morphing wing; (c) optimized
morphing wing.

From Figure 26 there is a clear evidence of differences in pressure behaviour, the conventional
wing is much more chaotic than the morphing wings which further support the main explanation for
the efficiency increase.
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Figure 26. A graph showing the pressure distribution along each wing at the location where vortices
are generated on the flap at 5 degrees’ angle of attack.

5.5. Wind Tunnel Testing and Simulation Comparison (Validation)

Figure 27, illustrates the coefficient of lift versus angle of attack for wind tunnel and simulation
data. It is observed that the results are very similar. For the conventional wing at 0, 5, 10 and 15 degrees
Angle of Attack (AOA), the percentage differences between the simulation and wind tunnel tests are
1.87%, 0.04%, 1.8% and 0.86% respectively for coefficient of lift. Therefore, results obtained from Ansys
simulation are accurate within 1.87% of the wind tunnel tests. For the optimized wing the percentage
difference between the simulation and wind tunnel tests is 1.3%, 0.8%, 0.8% and 0.8% respectively.
This implies the optimized wing is accurate within 1.3%.



Aerospace 2017, 4, 52 18 of 24
Aerospace 2017, 4, 52  18 of 24 

 

 
Figure 27. A graph showing coefficients of lift for Ansys simulation and wind tunnel testing. 

Figure 28 shows the coefficient of drag data for both simulation and experimental data for the 
conventional wing and optimized morphing wing. At 0, 5, 10 and 15 degrees angle of attack the 
percentage difference between simulation and measured data for the conventional wing is 1.04%, 
6.75%, 1.43% and 4.19% respectively. For the optimised wing the percentage difference is 0.49%, 
3.91%, 1.24% and 2.08% respectively. Based on this, the drag data is accurate within 6.75%. Based on 
the data shown in Figures 18 and 19 it can be determined that the data produced from Ansys is 
accurate to real world conditions by 1.87% for coefficient of lift and 6.75% for coefficient of drag. 

 
Figure 28. A graph showing coefficient of drag for wind tunnel testing and Ansys Simulation. 

5.5. Ansys and Wind Tunnel Results Discussion 

The simulation results showed the morphing wings have a significant increase in aerodynamic 
efficiency compared to the conventional wing. The most efficient wing design was the optimized 
morphing wing, which because of increased flow smoothness allowed for higher pressure 
distribution over a larger area of the lower wing surface. This resulted in higher lift production and 
reduced pressure drag. 

The initial and optimized morphing wing also had the effect of reducing the size and delaying 
the formation of vortices in the wake of the wing, which reduced pressure drag. This occurred 
because the vortices are no longer generated on the flap and the pressure drop at the points where 
the flaps would usually dislocate from the wing surface is no longer available; this can be seen in 
Figure 24. 

The pressure data provided in Figures 25 and 26 reinforced the success of the morphing wing 
design. They showed no significant pressure drop along the trailing edge of the morphing wings and 
therefore, leading to a reduction in pressure drag as well as a reduction in vortex size. 

Figure 27. A graph showing coefficients of lift for Ansys simulation and wind tunnel testing.

Figure 28 shows the coefficient of drag data for both simulation and experimental data for the
conventional wing and optimized morphing wing. At 0, 5, 10 and 15 degrees angle of attack the
percentage difference between simulation and measured data for the conventional wing is 1.04%,
6.75%, 1.43% and 4.19% respectively. For the optimised wing the percentage difference is 0.49%, 3.91%,
1.24% and 2.08% respectively. Based on this, the drag data is accurate within 6.75%. Based on the data
shown in Figures 18 and 19 it can be determined that the data produced from Ansys is accurate to real
world conditions by 1.87% for coefficient of lift and 6.75% for coefficient of drag.
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5.6. Ansys and Wind Tunnel Results Discussion

The simulation results showed the morphing wings have a significant increase in aerodynamic
efficiency compared to the conventional wing. The most efficient wing design was the optimized
morphing wing, which because of increased flow smoothness allowed for higher pressure distribution
over a larger area of the lower wing surface. This resulted in higher lift production and reduced
pressure drag.

The initial and optimized morphing wing also had the effect of reducing the size and delaying
the formation of vortices in the wake of the wing, which reduced pressure drag. This occurred because
the vortices are no longer generated on the flap and the pressure drop at the points where the flaps
would usually dislocate from the wing surface is no longer available; this can be seen in Figure 24.

The pressure data provided in Figures 25 and 26 reinforced the success of the morphing wing
design. They showed no significant pressure drop along the trailing edge of the morphing wings and
therefore, leading to a reduction in pressure drag as well as a reduction in vortex size.
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6. Noise

One source of aircraft noise is generated by turbulent flow over the airframe. A considerable noise
signature is generated when an aircraft flaps are deployed, this is due to violent disruption of airflow
and the creation of turbulence. Therefore, if lift-induced drag vortices are reduced by the morphing
wing then noise is reduced. To test this, noise level readings were taken during wind tunnel tests to
determine any noise level reductions.

Each wing has a noise level reading taken at 0, 5, 10, 15 and 20 degrees angle of attack. Based on
the measured data shown in Table 2 and Equation (1) after performing baseline wind tunnel noise
level correction, the sound pressure level produced by the wing only was obtained. The actual noise
levels of the wing as a function of AOA are shown in Figure 29.

Noise level(dB) = 20 log10
P1

P0
, (1)

where: P1 = Sound pressure Pa (What the microphone detects), P0 = Reference Pressure (Threshold of
hearing 2 × 10−5 Pa).

Table 2. Noise levels produced by the conventional wing and morphing wing at different angles
of attack.

Angle of Attack
(AOA)

Conventional Wing
Noise Level

Shape Shifting
Wing Noise Level

Wind Tunnel Noise
Level (All AOA)

0 68 dB 63 dB

62 dB
5 68 dB 65 dB

10 69 dB 67 dB
15 70 dB 67 dB
20 71 dB 69 dB

Figure 29 shows there is a significant drop in noise level for the optimized wing, up to 40%
dependent on angle of attack. Although this data will not be 100% accurate because the wind tunnel
never maintains at constant speed so the noise level varies. The actual noise reduction value will be
between 30% and 40% less than the conventional wing value.
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Figure 29. A graph showing the difference in noise level between the conventional wing and optimised
morphing wing.

The noise was measured off the wing section using a sound level meter; it was placed inside the
wind tunnel 10 cm behind the wings trailing edge and 10 cm above. As the wind tunnel does not
maintain a set speed, multiple decibel readings were taken and an average of the data was used for
each angle of attack.
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The Figures 30–33 show the standard deviation and error bar charts for the data collected from
wing noise. The wind tunnel does not maintain a set speed therefore noise is not constant, five decibel
readings were taken per angle of attack shown to gain an average noise level.
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The figures below show standard deviation for noise data collected during tests conducted
at the wind tunnel, including the interquartile range (indicated by green and brown). The green
and brown boxes indicate the difference between the 75th and 25th percentile or the middle 50% of
the data’s standard deviation, the maximum and minimum is also shown by the upper and lower
whiskers respectively.

7. Conclusions

The main objective of this paper was to design and develop a morphing wing technology based
on implementation of transition regions between the wing and the flap, which was simpler than
the current sophisticated technology, ideally reducing the timescale for operational use. To achieve
this, wing models were created and tested through CFD simulation to determine the aerodynamic
performance of the wing. Also, wind tunnel tests were carried out to measure lift and drag coefficients
and to determine noise level reduction compared to conventional wing.

Simulation was carried out on Ansys Fluent for each of the models. Simulation revealed a 10.8%
coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as
compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees the optimized
wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared
with the conventional wing. Simulations also showed that there is a significant improvement on
pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow
smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing
which caused an increase in pressure on the lower surface. A morphing wing reduced the size of the
vortices and therefore the noise levels of the morphing wings based on data collected, was reduced by
up to 50%.
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