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Abstract: For staggered boxwings the predictions of induced drag that rely on common potential-flow
methods can be of limited accuracy. For example, linear, freestream-fixed wake models cannot resolve
effects related to wake deflection and roll-up, which can have significant affects on the induced drag
projection of these systems. The present work investigates the principle impact of wake modelling
on the accuracy of induced drag prediction of boxwings with stagger. The study compares induced
drag predictions of a higher-order potential-flow method that uses fixed and relaxed-wake models,
and of an Euler-flow method. Positive-staggered systems at positive angles of attack are found to
be particularly prone to higher-order wake effects due to vertical contraction of wakes trajectories,
which results in smaller effective height-to-span ratios than compared with negative stagger and thus
closer interactions between trailing wakes and lifting surfaces. Therefore, when trying to predict
induced drag of positive staggered boxwings, only a potential-flow method with a fully relaxed-wake
model will provide the high-degree of accuracy that rivals that of an Euler method while being
computationally significantly more efficient.
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1. Introduction

Induced drag is an inviscid phenomenon and originates in the opposed spanwise flow patterns on
the upper and lower wing surface that is the result of the spanwise pressure gradients of a finite wing
generating lift. The impact on aircraft performance is profound. For a commercial aircraft, induced drag
accounts for approximately 40% of the total drag during cruise flight and up to 90% during takeoff [1].
A marginal reduction in induced drag translates into considerable savings in fuel and emissions
or facilitates a range extension. Considering indirect effects associated with an improved climb
performance and a higher maximum takeoff mass, gains easily multiply [1]. Against the background
of the objectives set in Flightpath 2050 [2], measures that provide lower induced drag support the
efforts to attain a cutback in fuel consumption and climate reactive emissions.

A reliable induced drag prediction is thus important to attain efficient aircraft designs. This is
true already within the conceptual design phase because initial drag estimations dictate the selection
of specific concepts and affect the projected configuration dimensions and subsequent costs [3,4].
Commonly, induced drag is estimated using computational approaches based on linear potential-flow
theory. These provide computationally inexpensive induced drag estimates of acceptable accuracy.

An experimental drag investigation is not practical during the early design phases, but also not
feasible in principle to determine the induced drag, especially if higher-order wake effects are to be
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included [5]. A direct measurement of the induced drag is generally not possible. Drag measurements
contain the total drag that is composed of friction drag, pressure drag and induced drag. Pressure drag
and friction drag are both associated with viscosity. In order to determine the induced drag,
the contribution of the pressure drag and friction drag part must be separated by means of
two-dimensional measurements of airfoil sections. This however cannot be done with sufficient
accuracy to permit investigations into higher-order wake effects [5], but results in induced drag
estimates that contain three-dimensional pressure drag and friction drag contributions.

More generally, an accurate experimental investigation is prevented by the viscosity inherent
to real flow. Because tangential velocities around the side-edge of a wingtip can become very large,
a viscosity induced flow separation occurs. This causes initial roll-up of the wake and shifts the tip
vortex inwards [6], ultimately altering the trailing wake shed compared to an inviscid computational
solution. Acknowledging that it is the wake shape and its vorticity that define the induced drag [6],
it is apparent that the induced drag in a real, viscous flow and in a theoretical, inviscid flow-simulation
is fundamentally different.

Highly non-planar configurations, such as boxwings or c-wings, have the potential to significantly
reduce induced drag and, thus, have repeatedly been in the focus of research [7–12]. The inviscid
aerodynamic advantage of these configurations can primarily be related to the bound circulation
being distributed over a larger effective wingspan. This lowers the spanwise loading and reduces the
average downwash velocity of the system compared to that of an optimally-loaded planar wing of
equivalent span and lift [1]. Based on linear potential-flow theory, the boxwing achieves the highest
span efficiency or lowest induced drag for a given projected wingspan and lift [7,13–18].

1.1. Problem Definition

In order to fully asses the overall performance of a boxwing design, an accurate induced drag
prediction method is a prerequisite despite their clear induced drag advantage over equivalent
planar systems. Their total aerodynamic performance must be evaluated as a trade-off between
induced drag and contributions of other drag sources. For example, viscous drag penalties, associated
with the increased wetted area, diminish the advantage of induced drag savings [1,19]. For highly
non-planar configurations, potential-flow induced drag predictions can have limited accuracy.
Excluding compressiblity effects, this is primarily related to the linear freestream-fixed wake model
that insufficiently captures higher-order wake effects. Higher-order wake effect are considered as the
roll-up and deformation of the physical and force-free wake compared to the freestream-fixed wake
model. These can have significant impacts on the analysis of highly non-planar configurations [20].

The influence of these effects is dependent on the freestream angle of attack and the geometrical
arrangement of the lifting surfaces, in particular on height-to-span ratio and stagger. With regards
to height-to-span ratio, the sensitivity to higher-order wake effects is certainly more pronounced for
near-planar multi-surface configurations and progressively reduces with larger vertical separations.
Nevertheless, the effective vertical gap reduces for positive staggered systems with increasing
freestream angle of attack. This may therefore lead to stronger higher-order wake effects. As inferred
from the wake substitution concept [6], especially the influence of the longitudinal arrangement is
decisive for highly non-planar configurations like the boxwing. Stagger is favorable for practical
applications of the boxwing concept to attain high aerodynamic efficiency under static longitudinal
stability and trim constraints [10]. It also easily results in significant wake roll-up and deflection
between the trailing edges of two staggered lifting surfaces.

1.2. Contribution of Present Work

The present work explores the impact that trailing wake models of a potential-flow approach
have on the accuracy of induced drag predictions for boxwings with stagger. Besides quantifying
the extent of higher-order wake effects in correlation to the stagger factor and the angle of attack,
the underlying physical mechanisms are explored in order to gain deeper insight into the impact that
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higher-order or surrogate wakes have. The relaxed-wake results are compared with the predictions of
an Euler method. This high-fidelity, inviscid method allows the assessment of the accuracy of more
simplistic potential-flow methods that use surrogate wake models. The present new knowledge may
subsequently be used to develop design guidelines that take advantage of wake effects and enable
performance achievements beyond linear theory.

2. Relevant Theory

The boxwing represents the limiting case of a mutli-plane with an infinite number of lifting
surfaces [13]. Based on lifting-line theory [21], its optimum span efficiency factor is approximated as
follows [13]:

eBw, opt ≈
1.04 + 2.81 · (h/b)
1.00 + 0.45 · (h/b)

(1)

The optimum span efficiency factor of Equation (1) solely dependents on the height-to-span
ratio [13]. Similar correlations between optimum span efficiency and height-to-span ratio have been
presented in other references [14–18,22–25]. Although the asymptotic behavior of Equation (1) is
unclear [14,17,18], the expression agrees well with references [16,24] and generally is sufficient to
approximate the optimum span efficiency factor for the practical range of height-to-span ratios.
For other closed configurations, the variation of the optimum span efficiency factor with the vertical
extent of the system and minimum induced drag conditions were discussed by Cone [23].

Induced drag minimizations for boxwings were performed by von Karman [26], who also
provided an illustration of associated spanwise loadings. Optimum circulation distributions were
formally derived in references [17,18] and qualitatively confirmed the minimum induced drag
conditions that were assumed by Frediani and Montanari [24]. For small vertical separations of practical
interest, the optimal distribution is approximately composed of a constant and an elliptical part for both
horizontal wings, whereas on the vertical wings a butterfly-type shape is adopted. However, the shape
of the optimum distribution depends on the height-to-span ratio [17,18]. In particular, with increasing
height-to-span ratios, the spanwise distribution of horizontal wings is affected by a constant term,
whereas in the case of the vertical wings a linear term becomes dominant. Moreover, the optimum
circulation for boxwings is not unique [1,15,18,25]. Because induced drag is directly related to the
gradients of circulation, a constant amount of circulation can be added without an induced drag
penalty [18].

Based on lifting-line theory and provided that the circulation distribution on each individual
surface is maintained, reference [27] shows that the streamwise separation between the lifting elements
can be varied arbitrarily without changing the total induced drag of the system. It is referred to as
Munk’s Stagger Theorem. Despite being widely accepted, formal difficulties with the application of
this concept do exist. Due to the representation with a single bound vortex, the wake shed at the
trailing edge is commonly not equivalent to the quarter-chord condition that is assumed by classical
lifting-line theory [28]. The validity of the stagger theorem is therefore limited to the lifting-line concept
and in particular to the freestream-fixed wake model. Reference [20] shows that a derivation of the
stagger theorem based on the lifting-line concept is unnecessarily restrictive and presents a more
general approach by means of momentum conservation. The induced drag is found to be dependent
only on the shape of the wake and its vorticity distribution, rather than the shape of the lifting-line.
This indicates a difference towards lifting-line theory, but is still within linear potential-flow theory [6].

A key-design parameter of boxwings is the geometric height-to-span ratio that gives the relative
vertical distance between the trailing edges of the system. Another parameter is the stagger factor
that describes the longitudinal separation between the trailing edges of the horizontal lifting surfaces
normalized by the reference chord length (cref = 1.0 m). It is considered to be positive if the upper
wing is translated in the streamwise direction. The reference chord is defined as the mean chord of
the isolated wing. Both, the geometric height-to-span ratio and the stagger factor are described in
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a body-fixed xyz-reference frame. In contrast to other research efforts, in the herein presented work the
distinction is made between the geometric height-to-span ratio (i) (h/b), the freestream height-to-span
ratio (ii) (h/b)∞ and the effective height-to-span ratio (iii) (h/b)eff [29]. The freestream height-to-span
ratio is defined as the relative vertical extent of the system trailing edges perpendicular to the freestream
velocity vector, whereas the effective height-to-span ratio gives the relative aerodynamic gap of
the trailing wake trace on a downstream partition surface. The partition coincides with the most
downstream trailing edge of the system.

3. Computational Models

3.1. Test Cases

Two simplified boxwing configurations with single wing aspect ratios of Λ1,2 = 6.0 and positive or
negative stagger factor were investigated under subsonic flow conditions. Their individual planforms
are depicted in Figure 1. Closed lifting concepts with similar geometric characteristics were considered
in references [30–32]. The lifting systems are composed of two equivalent horizontal wings of constant
chord length, that are connected by two joints at their wing-tips to form a closed, box-like and
continuous surface. In this study, wing sweep, which in essence is a form of stagger, was omitted in
order to focus on induced drag effects purely due to stagger. Moreover, the lifting surfaces do not
incorporate camber, incidence or twist. Of course, in order to attain high aerodynamic efficiencies,
a careful design and selection of these parameters is required [33], which is, however, not an objective
of the herein presented study. Camber, wing incidence and twist may affect the relative sensitivity of
induced drag and freestream angle of attack in dependency of the stagger factor, which likely prevents
general conclusions of these correlations. The optimal spanwise load distribution of reference [18]
is therefore not adopted, but also not required in order to investigate the impact of the selected
wake-model approach on the induced drag prediction.

Stagger factors of l1→2 = ±3.0 between the trailing edges of the horizontal lifting surfaces
were used herein. These limits a realistic representation of the possible range of streamwise
separations. A height-to-span ratio value of (h/b) = 0.20 was selected, which is similar to that
of other references [7,11,31,32,34,35]. The lifting surfaces of the higher-order potential-flow model have
zero thickness, whereas the Euler-flow model uses a thin and symmetrical NACA 0004 airfoil.
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Figure 1. Boxwing planforms for a geometric height-to-span ratio of (h/b) = 0.20.

3.2. Higher-Order Potential-Flow Model

A higher-order potential flow method was used to model the lifting surfaces and their wakes
using Distributed Vorticity Elements (DVE). These trapezoidal sub-elements are planar, infinitely
thin and consist of a vortex filament along their leading and trailing edges, which are connected by
a vortex sheet. The lifting surfaces are represented by arranging several DVEs across the chord and
span. Dependent on the stagger and the selected wake model, about 12–16 chordwise elements and
10–16 spanwise elements were used.
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The main advantage of the chosen method over conventional potential-flow methods is its
numerical stability. A continuous vortex sheet represents the shear layer coming off the wing.
As a consequence of the continuous vortex sheet model, many of the singularity issues are avoided that
are otherwise typical for vortex-filaments representations. In the chosen model, the wake is modeled
either as a prescribed, drag-free or relaxed, force-free wake. It evolves using a time-stepping scheme.

The lift is computed along the continuous lifting lines that represent the wing, whereas the
induced drag is estimated by taking the cross product between the circulation that is shed into the
wake at the trailing edge and the velocity induced by the wake at this spanwise location [36,37].
A detailed discussion of the method is given in references [37,38].

3.3. Euler-Flow Model

The three-dimensional Euler equations were solved by means of the commercially-available,
cell-centered finite volume method STAR-CCM+, version 8.04.010 [39]. The spatial discretization of the
convective flux terms involved a second-order upwind scheme. Gradient computations were based on
a hybrid-Gauss least-squares method along with a Venkatakrishnan gradient reconstructing limiter
approach. The segregated-flow model was used.

The lift is computed by means of a surface pressure integration, whereas induced drag predictions
are based on a wake integration technique [40]. This is required because artificial viscosity, whether
introduced explicitly for stability reasons or implicitly due to mesh coarsening, affects the surface
pressure distribution especially near the leading and trailing edge of the wing, which distorts the
induced drag prediction [41]. The wake integration technique computes the induced drag by means of
a transverse plane (TP) that is located downstream of the lifting element as indicated in Figure 2.

xa
ya

za

~V∞

50 · cref

15 · cref

20 · cref

20 · cref

25 · cref

dTP

TP

Ωwake

Figure 2. Schematic illustration of the flowfield, transverse plane (TP) and the correction volume Ωwake
enclosing the wake region to compute the spurious entropy drag contribution.

However, the induced drag progressively decays as the transverse plane is moved downstream.
This is related to the creation of spurious entropy drag due to artificial viscosity and grid coarsening
downstream of the wing, numerically smearing the vortical wake. In order to correct the farfield
induced drag, the so-called axial velocity defect is separated into components correlating to reversible
or irreversible flow phenomena [40]. In an inviscid and subsonic flow, spurious entropy drag represents
the only irreversible source, whereas induced drag is related to a reversible process. Employing
thermodynamic properties, the axial velocity defect due to reversible phenomena can be described
as follows:

∆u∗ = u−V∞ + V∞ ·
(

1
κ ·M2

∞
· ∆s

R
· ∆H

V2
∞

)
(2)
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The induced drag on a transverse plane is given by:

Di =
∫∫
STP

(
~fi ·~n

)
dS (3)

with the vector ~fi:

~fi =
ρ∞

2
·

 v2 + w2 −
(
1−M2

∞
)
· ∆u∗2

−2 · v · ∆u∗

−2 · w · ∆u∗

 (4)

The spurious entropy is computed by a volume integration that contains only the trailing wake
bound between the trailing edge of the wing and the transverse plane (TP) as indicated in Figure 2.

DSp =
∫∫∫
Ωwake

~fSp dΩwake =
∫∫∫
Ωwake

(
∇ ·

(
ρ · ∆ū · ~V

))
dΩwake (5)

with the irreversible axial velocity defect ∆ū:

∆ū = V∞ ·

√√√√1 + 2 · ∆H
V2

∞
− 2

(γ− 1) ·M2
∞
·
((

e
∆S
R

) γ−1
γ − 1

)
−V∞ (6)

However, the estimation of the irreversible axial velocity defect based on Equation (6) is
problematic as noted by reference [42]. The radical may become negative at some location within the
domain and prevent a computation. Another possibility is indicated in [43] and shows that:

∇~fSp = −∇~fi (7)

As discussed in reference [40], this approach is preferred, as the vector ~fi exhibits a smoother
distribution within the computational domain. This finally leads to the expression for the spurious
entropy drag in the wake:

DSp =
∫∫∫
Ωwake

(
−∇~fi

)
dΩwake (8)

The corrected induced drag is then found by:

Di, cor = Di + DSp (9)

A trimmed-cell approach was selected to create predominately hexahedral, Cartesian-type grids.
The spatial convergence was investigated applying a constant grid refinement factor of r = 1.5.
This did produce cell counts between approximately 8× 106 and 61× 106. An asymptotic convergence
criterion was established that required an induced drag variation of less than ∆CDi = 1 × 10−5

for 100 consecutive iterations for each individual grid level. The computed grid convergence index
RGCI [44] for the three finest consecutive grid levels approached one, which confirms the solution to
be within the asymptotic range of convergence.

The accuracy of the implemented wake integral approach was investigated by means of
well-documented planar reference systems in reference [45]. Span efficiency factors attained for the
elliptical wing, the crescent wing and the split-tip wing [6] are found to be in excellent consistency
with relevant theory and other references.
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4. Results and Discussion

4.1. Spanwise Load Distribution

The spanwise load distributions that are based on the calculations using the higher-order
potential-flow method and the Euler solver, are shown in Figure 3 for the positive and
negative-staggered system. For the chosen vertical wing separation, the optimum loadings over
both horizontal wings resembles a superposition of a constant and an elliptical distribution, whereas
on the vertical wings, the spanwise lift-distribution can be approximated by a constant and a cubic
term [17,18].

Compared to the optimal condition, the predicted loadings of the horizontal surfaces are offset,
in particular of the downstream lifting surfaces, which is due to the stagger and results in an unequal
lift division between the upper and lower surfaces. This also affects the loading on the vertical wings.
Although an uneven load distribution between the two horizontal surfaces does not necessarily
preclude the achievement of minimum induced drag, [17,18,25], the shown loadings do not comply
with the theoretically optimum distribution. This is inherently related to the constant chord distribution
of the lifting surface without twist.

The spanwise load distributions are found virtually identical independently whether a relaxed
or fixed-wake model was used, which suggests a very limited sensitivity of lift to the choice of wake
model. A reasonable similarity exists with spanwise lift distributions that were determined using the
Euler-flow solver. Any differences between potential-flow and Euler-predictions, can be attributed to
thickness effects, which result in a steeper lift curve slope in the case of the Euler-flow approach.

4.2. Computed Span Efficiency Factor

Computed span efficiency factors are presented in Figure 4. In general, for any positive angle of
attack, negative stagger facilitates higher span efficiency factors than equivalent positive stagger. This is
due to the larger effective height-to-span ratios of a negative-staggered wing arrangement [31,32,46–48].

For the system with positive stagger the span efficiency decreases as the freestream angle
of attack increases. This conforms to the progressive reduction in effective height-to-span ratio
and efficiency with increasingly positive angle of attack. The relaxed-wake model under-predicts
Euler-based span efficiencies, but provides improved agreement compared to the fixed-wake model.
With regards to the relaxed-wake model and the Euler-flow reference, the freestream-fixed wake
approach under-estimates the span efficiency factor especially at higher angles of attack. This is
caused by the roll-up and deflection of the physical, force-free wake, which results in wing-wake
inferences that differ from those of the freestream-fixed surrogate. The relative deviation between
freestream-fixed and relaxed-wake model predictions at equivalent angles of attack quantify the extent
of the higher-order wake effects. For a freestream angle of attack of α = 8.0◦, the relative error in span
efficiency constitutes approximately ∆erel ≈ 2.7%.

In the case of negative stagger, the span efficiency increases as the freestream angle of attack
increases. The predictions that are based on the freestream-fixed and relaxed-wake model show
good agreement with the Euler-flow reference. In contrast to the positive stagger case, the three
different models exhibit much smaller differences in their span efficiency predictions for negative
stagger. This indicates, that higher-order wake effects have less significant impacts on the performance.
At an angle of attack of α = 8.0◦ the relative error amounts to ∆erel ≈ 0.5%.
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0.0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

1.2

η

ζ

η

(
C

n
·c

C
n0

,o
pt
·c

re
f

)
(b) Lower wing (downstream), l1→2 = −3.0.
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(c) Vertical wing, l1→2 = +3.0.

−0.50 −0.25 0.00 0.25 0.50

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

η

ζ

ζ

(
C

n
·c

C
n0

,o
pt
·c

re
f

)

(d) Vertical wing, l1→2 = −3.0.
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(e) Upper wing (downstream), l1→2 = +3.0.
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Figure 3. Spanwise load distributions at a freestream angle of attack of α = 8.0◦.
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Figure 4. Computed span efficiency factor versus the freestream angle of attack α.

Acknowledging that the spanwise load distributions of present configurations are non-optimal,
it is sensible to assess the computed span efficiency factors with regards to the linear theoretical
optimum that is based on the approximation given by Equation (1). For equivalent freestream
height-to-span ratios (h/b)∞, theoretical optimum span efficiency factors eBw, opt are given in Figure 4.
These confirm that for a fixed geometric height-to-span ratio and a positive freestream angle of attack,
negative stagger facilitates higher span efficiencies than an equivalent positive stagger. Thus, it is
sufficient to assume that the advantage of negative stagger is essentially caused by larger effective
vertical gaps, rather than being an artifact of non-optimal loadings. The assumption to neglect any
camber, incidence or twist does not affect the general applicability of these findings.

In the case of the negative-staggered system and independent on the freestream angle of attack or
computational methodology, considerably smaller than optimum span efficiency factors are evident,
which is consistent with the non-optimal spanwise loadings described in Figure 3. Limited to small
angles of attack, this is also correct for the positive-staggered system, whereas predictions at higher
angles of attack actually exceed the theoretical optima. For the relaxed-wake model and the Euler-flow
reference, this can partially be attributed to higher-order wake effects.

The approximate relation given by Equation (1) is based on the lifting-line concept, which neglects
induced lift effects [5]. These are caused by streamwise velocity inductions due to the non-planar
character of the lifting system. Induced lift effects progressively gain impact as the angle of attack
and/or stagger are increased. Opposed to negative stagger, a positive streamwise separation results
in a positive induced lift contribution and, thus, in an overall lift increase, without affecting induced
drag [5].

Generally, the upstream wing carries more lift than the downstream wing, independently of
stagger. This results in an overall greater influence of velocities that the upstream wing induces [49],
which is further dependent on the vertical joint arrangement. For the positive-staggered system,
the joint of the upstream wing is oriented in the upward direction, which induces an outboard
spanwise flow component, subsequently increasing the streamwise velocity and lift [49,50]. In contrast
to that, the downward orientation of the joint for the upstream wing of the negative-staggered system
reduces the streamwise flow component and induces negative lift.

Excluding induced lift, estimates of span efficiencies that are based on freeestream-fixed wakes
result in smaller than optimal efficiencies, which is in consistent with non-optimal spanwise loadings
of Figure 3. In the case of positive stagger, the relaxed-wake model yield span efficiencies that exceed
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the linear optimum of Equation (1) at angles of attack beyond α ≈ 5.0◦. This is a consequence of
higher-order wake effects. In the case of the negative-staggered system, neglecting induced lift effects
increases the span efficiency, but still does lead to smaller than optimum estimates. The relative
deviation in span efficiency between the freestream-fixed and the relaxed-wake model is not affected
by induced lift.

4.3. Wake Traces on Partition Surface

An investigation of wake traces was conducted to substantiate the findings of the previous
section. The particular objective of this section is to build a correlation between system efficiency and
wake trace.

The spanwise loading and therewith the vorticity shed in the wake is independent on the wake
model selection (compare Figure 3). In that case, the induced drag of a wing is defined only by its
wake trace on a transverse partition surface [6]. As a consequence of the wake substitution concept [6],
the partition surface must be located downstream of the lifting system and coincide with its most
downstream trailing edge as indicated in Figure 5.
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Figure 5. Wake trace location.

For the positive-staggered system this is the trailing edge of the upper wing, where it is the
trailing edge of the lower wing in the case of negative stagger. In Figure 6 are shown the traces of the
vortex-sheet wakes and shear layers that were predicted using the freestream-fixed and relaxed-wake
model of the potential-flow method and the Euler-method, respectively. Because of the location of the
partition surface, only the wake traces of the upstream wing are relevant and shown here.

The height-to-span ratio is a measure for the system efficiency [29]. In order to correlate the
system efficiency with the wake trace, an effective height-to-span ratio was calculated on the partition
surface. The effective height-to-span ratio is the relative vertical distance between the wake shed from
the upstream wing and the trailing edge of the downstream wing, measured perpendicular to the
freestream direction [29]. The effective height-to-span ratio is constant along the wing span for the
freestream-fixed wake model, but is a function of the spanwise location in the case of the relaxed-wake
model and the Euler-flow solution. A mean value of the effective height-to-span ratio (h/b)eff is used
in the case of the relaxed-wake model and the Euler-simulation. The effective height-to-span ratio can
then be used to provide an approximation of the system efficiency based on Equation (1).
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Figure 6. Wake trace comparison for a freestream angle of attack of α = 8.0◦.

Based on a visual assessment, an excellent geometrical consistency is evident among the
relaxed-wake trace and the Euler-flow reference. Employing the effective height-to-span ratio as
valuation basis, it becomes apparent, that the effective vertical gap differs considerably in dependency
of the employed wake model. For the freestream-fixed wake model, the effective vertical gap is constant
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across the relative span, where it is a function of the spanwise location in the case of the relaxed-wake
model and the Euler-flow reference. Consistent with span efficiency predictions, the effective vertical
gap reduces for positive and increases for negative stagger at positive freestream angles of attack.
Approximations of the span efficiency factor based on Equation (1) and an average value of the effective
vertical gap at the partition surface are additionally provided in Figure 6. A reasonable qualitative
agreement exist with computational results.

With regards to higher-order wake effects, it is found that wake deflection is the predominant
contribution in the case of the positive-staggered system. The force-free wake shape is aligned with
the local flowfield, which leads to a larger effective height-to-span ratio and, hence, better efficiencies
than compared to the freestream-fixed wake. In addition, the vertical wing effectively mitigates roll-up
effects at the tip and also induces a spanwise velocity component, increasing the effective span by
shifting the tip vortex slightly outboards [51].

For the negative-staggered case the influence of wake deflection results in smaller effective
height-to-span ratios than for the freestream-fixed wake, potentially leading to smaller span efficiencies
as well. In contrast to the positive-staggered system, the contribution of the wake roll-up of the
tip-vortex is more pronounced and results in two opposing effects. The roll-up increases the effective
height-to-span ratio especially in the tip region where the effect of vertical separation is most
effective [28]. However, also, related to the downward orientation of the vertical wing, actually
produces a spanwise contraction of the wake [51], which reduces the effective span and increases
induced drag. Despite substantial differences in average effective height-to-span ratio between the
freestream-fixed wake, the relaxed-wake and the Euler-flow reference, the opposing effects of wake
roll-up and deflection ultimately result in similar span efficiency estimates.

5. Conclusions

Under certain conditions, higher-order wake effects are confirmed to impact on the span efficiency
of a system especially when compared to freestream-fixed wake predictions. This difference in
prediction results is attributed to the deflection and roll-up of the force-free wake, which alters the
effective height-to-span ratio of the system, and, therefore the induced drag prediction. The sensitivity
of the system to higher-order wake effects depends on the direction of the longitudinal separation.
The positive-staggered system is found particularly prone to higher-order wake effects, due to
the vertical contraction of wake trajectories, that lead to smaller effective height-to-span ratios,
and, thus closer interactions between trailing wakes and lifting surfaces. At positive angles of
attack, computations using the freestream-fixed wake model predict lower span efficiencies than
the relaxed-wake model and Euler-flow predictions. The deviation between both wake models is less
pronounced for the negative-staggered system. It is thus concluded that a relaxed, force-free wake
model is compulsory to enable accurate induced drag predictions when using a potential-flow method
for the analysis of boxwings with significant positive stagger.
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Abbreviations

The following abbreviations are used in this manuscript:

b Wing span

Cn =
2·Γ(η,ζ)

c Sectional normal force coefficient

Cn, opt =
2·Γopt(η,ζ)

c Optimum sectional normal force coefficient
c Chord length
cre f =

S1,2
b Reference chord length

dTE Longitudinal trailing edge separation
Di Induced drag

e = Di, ref
Di

= (L/q∞)2

π·b2·(Di/q∞)
Span efficiency factor

(h/b) Height-to-span ratio
L Lift
l1→2 = dTE

cre f
Stagger factor

q∞ =
ρ∞
2 ·V∞ Freestream stagnation pressure

V∞ Freestream velocity
x, y, z Cartesian coordinates
α Freestream angle of attack
Γ Circulation
η =

y
b Non-dimensional wing span

Λ1,2 =
b2

1,2
S1,2

Single wing aspect ratio
ρ∞ Freestream air density
ζ = z

h Non-dimensional height
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