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Abstract: In this paper, we investigated transducer placement strategies for detecting cracks in
primary aircraft structures using ultrasonic Structural Health Monitoring (SHM). The approach
developed is for an expected damage location based on fracture mechanics, for example fatigue crack
growth in a high stress location. To assess the performance of the developed approach, finite-element
(FE) modelling of a damage-tolerant aluminum fuselage has been performed by introducing an
artificial crack at a rivet hole into the structural FE model and assessing its influence on the Lamb
wave propagation, compared to a baseline measurement simulation. The efficient practical sensor
position was determined from the largest change in area that is covered by reflected and missing
wave scatter using an additive color model. Blob detection algorithms were employed to determine
the boundaries of this area and to calculate the blob centroid. To demonstrate that the technique can
be generalized, the results from different crack lengths and from tilted crack are also presented.

Keywords: sensor placement option; hotspot damage; Lamb wave; Structural Health Monitoring
(SHM); finite element modelling; image processing; additive color model

1. Introduction

Non-Destructive Testing (NDT) [1] has been implemented in many industries to ensure structural
safety and reliability. Structural Health Monitoring (SHM) as a complementary solution with respect
to the already existing NDT techniques has been a subject of interest in the past decade due to its
potential economic benefit, particularly in structural maintenance [2,3].

Along with fiber-optic techniques such as Fiber-Bragg-Grating sensors [4,5], an ultrasonic guided
waves-based solution such as those making use of Lamb waves is one of the promising techniques
for SHM due to its long-range inspection capability up to several meters [6,7], which is suitable for
monitoring large structures such as an aircraft fuselage. Also, in comparison to the FBG technique,
Lamb wave SHM sensors typically require less complicated installations. This is particularly useful for
monitoring aircraft which are already in-service, since aircraft operators generally tend to be reluctant
to make larger modifications.

Lamb wave damage monitoring relies on the detection of interactions between the Lamb wave
and the damage [8]. Various properties of propagating wave are modified by the crack and various
properties of the signal such as amplitude, frequency, phase, etc. are assessed to calculate the
damage index (DI). The most commonly used sensors for generating and capturing Lamb waves
are piezoelectric transducers (PZT) [9]. Since PZTs are permanently attached to the surface of the
structure, sensor placement becomes tremendously important because the quantification of DI relies
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heavily on the sensor positions. A poor transducer placement will result in weak or undetected capture
of wave scatter which in turn decreases the damage detectability of the SHM system.

The literature describes different approaches for sensor placement options, such as prioritizing
the sensor location based on a detectability limit [10], using a modal analysis parameter determination
for damage localization assessment on a truss structure [11], and by using global search and greedy
algorithms [12]. Li et al. [13] proposed a sensor optimization algorithm based on maximum energy
consumption on sensor candidate location of a civil engineering structure.

Fendzi et al. [14] proposed a novel approach for sensor placement by using geometric dilution of
precision (GDOP), which is based on Lamb wave ray tracing method for known damage locations.
Haynes [15] proposed sensor placement by minimizing the Bayesian cost to select locally optimal
sensor locations. However, if the damage occurs outside of the designated area, the system might fail
to detect it. A similar approach by using Bayesian experimental design has been conducted by Flynn
and Todd [16].

Furthermore, Sun et al. [17] performed discrete optimization by using the artificial bee colony
algorithm to optimize their objective function which is based on modal assurance criterion (MAC).
Similar approaches by using search metaheuristics were also delivered by Yi et al. [18], Zhao et al. [19],
and Shan et al. [20]. In more recent study, Capellari et al. [21] proposed an optimal sensor placement
by employing Polynomial Chaos Expansion and stochastic optimization to maximize the gain in
Shannon information.

Thiene et al. [22] introduced the DI-free sensor placement optimization based on the fitness
function which maximizes the coverage area of the sensor network. They calculated the coverage of
each pixel in the geometry based on pitch-catch technique, so that every pixel that contributes to the
probability that a damage in random location is being detected is counted. Venkat et al. [23] used
a Finite Element (FE) simulation platform to build differential images between the undamaged and
damaged structure. They plotted the summed-up energy captured by all sensors and determined the
most optimal sensor location by the highest captured energy.

From all these studies, we concluded that most of the sensor placement strategies are for civil
engineering structures and that one of the most common features used for the objective function
is the MAC, which is typically applicable for low-frequency vibrations. However, we have not
seen any application using MAC in Lamb wave SHM frequency, which is normally above 100 kHz.
Only [14–16,22,23] are related to sensor placement for guided wave SHM.

Summarizing references [14–16,22,23], there are two streams of sensor placement research that are
specialized for guided wave-based SHM: (1) The approach exhibiting known area of damage location;
and (2) The random damage location approach. If a damage location can already be approximated
by analytical methods from fracture mechanics, FE simulation and fatigue testing, then the optimum
sensor location can be determined by maximizing the DI of the sensor network around the predicted
damage location. However, for random location damage such as hail impact, a different objective
is needed.

From this current state of the art, our work is performed to develop the work presented in two
most recent articles [22,23]. For this paper, the objective is to propose an image processing for known
damage location approach, known as hotspot SHM [22].

Due to the expected number of different damage locations occurring in an aircraft fuselage
multiplied by the numerous possibilities for sensor placement, conducting an experiment or even a
numerical simulation to track the wave scatter is not practical. To address this issue, we propose a
design for a sensor placement in a hotspot SHM system based on an additive color model and blob
detection algorithm that can detect residual wave scatter from simulation data.

After the introduction in Section 1, we have structured the paper as follows: In Section 2, we briefly
review the Lamb wave propagation theory whose effect is employed in Section 3 for determining
the SHM sensor positions by using image processing for predictable critical crack size, location,
and orientation. The results and concluding remark are presented in Sections 4 and 5, respectively.
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2. Lamb Wave Propagation

First described by English mathematician Horace Lamb in 1917 [24], the description of acoustic
wave propagation in solid plates has been evolving ever since. A theoretical analysis of Lamb
wave propagation in metallic materials, composite, and hybrid materials is described in [25–27].
The elastodynamic wave equation for an anisotropic inhomogeneous medium in a d-dimensional
bounded domain Ω ⊂ Rd (d = 2, 3) is given in by:

ρ
∂u2(x, t)

∂t2 = −∇ ·
(

d

∑
k=1

d

∑
l=1

Cijklεkl

)
(1)

where u(x,t) is the time and space dependent displacement, ρ the material density, Cijkl the material
stiffness tensor, εkl the strain tensor, and f (x,t) the source function, respectively. After applying
boundary conditions of two parallel surfaces, there are two solutions to Equation (1) for wave
propagation in homogeneous material of given density, described by:

tan(qh)
tan(ph)

=
−4k2 · (pq)

(q2 − k2)2 (2)

tan(qh)
tan(ph)

=
−(q2 − k2)

2

4k2 · (pq)
(3)

which are well-known as symmetrical (S-Mode) and anti-symmetrical (A-Mode) Lamb wave
propagation modes, respectively. The definitions of p and q are given by:

p2 =

(
ω2

cL2 − k2
)

(4)

q2 =

(
ω2

cT2 − k2
)

(5)

where ω is the frequency, cL is the longitudinal bulk wave velocity, cT is the transversal bulk wave
velocity, and k is the wavenumber. The numerical solution of Equations (2) and (3) can be drawn as a
dispersion curve, which describes the wave velocity as a function of frequency-thickness product [28].

As they introduce potentially overlapping signals, higher-order Lamb modes are generally
undesirable, and the maximum cutoff frequency is normally determined as before the A1
mode appears.

3. Sensor Positioning Approach for Hotspot SHM

This section describes the developed methodology for sensor placement in hotspot SHM.
It considers: (1) Crack growth and critical crack size in a damage-tolerant aircraft substructure;
(2) Numerical simulation of Lamb wave propagation in a plate-like structure; and (3) Image processing
that involves displacement subtraction of damaged from undamaged structures.

3.1. Crack Growth in Damage Tolerance Structure

To understand deterministic sensor positioning for a predictable crack location, firstly, it is
important to understand the concept of damage-tolerant design. The definition of damage tolerance is
“the ability of the structure to sustain design limit loads in the presence of damage caused by fatigue, corrosion and
other sources until such damage is detected and repaired” [29]. The important key elements in damage
tolerance design are: (1) the assumption of initial damage existence; (2) damage growth in the material
due to structural loading; and (3) The critical damage size up to which the structure endures the
loading before catastrophic failure. These three key elements are synchronous to the regions I, II,
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and III in a typical da/dN curve [30], which describes crack propagation rate as a function of stress
intensity factor (SIF) range during fatigue cycling (∆K).

The assumption of initial crack existence falls in region I, where the crack growth is typically
slow. This region can be covered by some advanced (but also large and expensive) NDT and material
characterization techniques such as X-ray computer tomography [31] or scanning electron microscopy
(SEM) [32]. After passing the threshold stress intensity factor range ∆Kth, region II begins where the
crack propagation rate is stable, and crack growth normally follows the Paris-Erdogan law [30,33],
which has Paris-Erdogan constants C and m. In this region, the crack becomes much larger and
sometimes can be seen with naked eye [34]. After transition between region II and III, the crack
propagation rate becomes rapid and unstable until final failure.

Lamb waves can interact with a crack which has a size at least the half of its wavelength [35,36],
and since the critical crack tolerant size (which can be up to several hundred millimeters [22]) is
generally larger than the wavelength (which is typically less than 100 mm), it is safe to assume that
Lamb waves can also interact with the critical crack. Fracture mechanics and fatigue analysis can
predict the most probable crack location for certain loading conditions [37].

The SIF is generally larger in the area around the notch, thus one can expect that a crack will occur
around a notch. For example, the changes in cabin pressure in an aircraft fuselage can be approximated
by the internal pressure in a thin-walled cylinder where the hoop stress is two times larger than the
axial stress [38]. Therefore, the crack orientation is expected to be orthogonal to the direction of the
hoop stress. By knowing the most probable crack orientation and location and the critical crack size
for a certain geometry, two FE simulations scenarios of wave propagation can be performed [39]:
(1) Lamb wave propagation in an undamaged structure as a baseline and (2) Lamb wave propagation
in a critically damaged structure.

3.2. Simulation of Lamb Wave Propagation

The FE formulation for Lamb wave propagation is based on Hamilton’s principle [40] as
described in:

0 =

−∫
Φ

[
ρ · δuT · ..

u + δεT · Cijkl · ε
]

dΦ

+

∫
Φ

[
δuT · FV

]
dΦ +

∫
Γ

[
δuT · FS

]
dΓ)

 (6)

where Γ and Φ are the surficial and volumetric integral areas, ρ is the material density, u and ü are the
particle displacement vectors in the material and their corresponding accelerations, respectively, ε is
the strain tensor and Cijkl is the stiffness matrix. The external forces can be classified as surface load FS
and volume load FV. To numerically solve Equation (6), the geometry involved is divided into discrete
mesh elements over which the equation can be approximated [41]. For a 3D-problem, there are four
element types: prism, pyramid, brick and tetrahedron [42]. To reliably model an ultrasonic signal,
the recommended number of mesh elements is 4 elements per A0- or 8 per S0-wavelength [43].

Beside the spatial discretization, time incrementation of Equation (6) is needed as
well. The minimum requirement to ensure numerical stability of time integration is the
Courant-Friedrich-Lewy (CFL) condition [40,43–45].

3.3. Additive Color Model

Mathematical representations of color can be summarized as additive and subtractive color
models [46]. The additive color model is used for combining light of different color and the subtractive
color model is used for combining pigments and dyes, which are typically represented in 4 basis colors:
cyan, magenta, yellow, and black (CMYK).

Both additive and subtractive color models are typically represented in vector form. Both color
models relate to the perception of the human visual system. In the additive color model, the background
is black, and color is composed of a red, green, and blue (RGB) tuple as depicted in Figure 1. This relates
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to the three cone cells of the human retina (long, medium, and short) which have peak sensitivities
to light of wavelengths 559 nm, 531 nm, and 419 nm. These correspond to red, green, and blue light,
respectively [46]. Normally, red, green, and blue color may be written in 8-bit form as [255 0 0],
[0 255 0], and [0 0 255], respectively or in normalized form as [1 0 0], [0 1 0], and [0 0 1], respectively.

Figure 1. 3-bit additive color mixing.

When working with digital imaging, the additive color model (i.e., RGB) is a natural choice
because what humans see in a measurement device/computer screen is normally encoded in RGB
values. Computer scientist and electrical engineers have selected to represent the digital vision
(e.g., in computer monitor) as an RGB array because of the trichromatic cone cells in human eye
which are sensitive to the frequency spectrum of red, green, and blue photons that are falling into
human retina. Therefore, the origins of the additive color model are physical and biological rather
than purely technical.

In the 3-bit model, shown in Figure 1, other colors such as cyan, magenta, yellow, and white are
obtained by adding basic colors. For instance, cyan is the addition of blue and green, while white
is the addition of red, green, and blue. Colors may also be subtracted from one another, as given in
Table 1. Note that in the convention used negative values are set at zero, as negative light amplitude
has no physical meaning. In this paper, material displacements are represented as colors in the additive
color model and mathematical operations are performed to identify and visualize the optimum
sensor positions.
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Table 1. Subtractive mathematical operations for a 3-bit additive color model.

R = Red; G = Green; B = Blue; C = Cyan; M = Magenta; Y = Yellow; K = Black.

4. Results and Discussion

4.1. Simulation

The method for choosing the simulation parameters has been described in [23,43]. The plate
dimensions are 600 mm × 400 mm × 2 mm. For this work, the following parameters are used:
ABAQUS explicit, aluminum properties (Young’s modulus of 70 GPa, Poisson ratio of 0.33, density of
2700 kg/m3), quadratic brick mesh (C3D20) with a global mesh size of 1 mm, single node out-of-plane
excitation with windowed 5 sine-cycle of central frequency of 250 kHz with 1 N concentrated force,
dynamic implicit step, no boundary conditions imposed, time increment of 0.1 µs (which means
a sampling frequency of 10 MHz), total time period of 500 µs and a single nodal output precision.
The specification of the computer where the simulation was run was: Intel Xeon E5-1620 3.5 GHz
(Quad-core 8-Threads), 32 GB DDR3-RAM, and NVidia NVS310M Graphic card (GPU acceleration
was not activated).

4.2. Data Extraction

To capture the wave propagation image, the screenshot program which is called Lightshot can be
downloaded from prntscr.com [47]. In the program settings, the option “Keep the selected area position”
must be selected so that Lightshot remembers the X-Y position of the captured screenshot for every
time increment. As mentioned previously, this technique is less exhaustive and more memory efficient
as every saved image has a size of only around 500 KB. For 20-time increments and 2 cases (uncracked
and cracked plate), only around 20 MB of space is needed in comparison to ODB extraction which
takes around 3.2 GB of space.

In a computer, the color in a single pixel is represented as an RGB array and this can be used to
represent different Lamb wave displacement amplitudes. Figure 2 shows an example simulation of
Lamb wave propagation 30 µs after excitation. The displacement magnitude U is defined as:

U =
√

Ux2 + Uy2 + Uz2 (7)

where Ux, Uy, and Uz are the displacements in the x, y, and z-directions, respectively. It is obvious that
no displacement (U = 0 nm) is shown as a blue pixel, while a displacement of 2.5 nm is shown in green,
and a displacement of 5 nm is shown in red. The values in-between such as 1.25 nm and 3.75 nm are
shown in cyan and yellow, respectively.
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Figure 2. Lamb wave propagation at the step time of 30 µs after excitation in an Al-7075-T6 plate
with dimensions of 200 mm × 200 mm × 1 mm. (shown in ABAQUS GUI Viewer. Note that there is
no ‘unit’ in ABAQUS). The default scientific notation of displacement magnitude ‘e-09’ means [nm].
Displacement magnitude shown in grey color signifies displacement above 7.989 nm.

This colormap ‘rainbow’ is the default colormap in ABAQUS. Note that this colormap is slightly
different from the basic 3-bit RGB colormap depicted in Figure 2 as it has more color transitions,
i.e., there are smoother transitions between blue and cyan, cyan, and green, and so on. For ease,
we neglected displacements larger than 5 nm (shown in grey color), which are mostly due to the
excitation, because in this simulation this only appears in few locations. While this image processing
procedure offers less displacement information as all displacement values are translated into an RGB
array, we find this alternative procedure much faster, and more memory efficient rather than extracting
data directly from the ABAQUS ODB binary file.

4.3. Differential Images

The approach is demonstrated by taking screenshots from the ABAQUS Viewer User Interface.
Figure 3a shows Lamb wave propagation at t = 100 µs in an uncracked Al-7075 plate. The simulation
images are actually similar to those which are depicted in Figure 4 of [16], except that the simulation
platform, color map, excitation signal, and the geometries are slightly different.

The plate contains 3 rivet holes as depicted in Figure 3a,b shows Lamb wave propagation in the
same plate but with a symmetric crack (from tip-to-tip, including the hole diameter of 10 mm) of
28 mm length in the middle of the plate (marked by a yellow rectangle). The images captured have
size of 1210 × 807 pixels, so the resolution is 2 pixel/mm. Images are stored as matrices with a size of
1210 × 807 × 3, where each pixel has 3 arrays, each containing a normalized floating value between 0
and 1 for each of the RGB colors.

A similar pattern of Lamb wave propagation can be observed if the crack length differs by
+/− 10%, as shown in Figure 3c. In this case, the crack length is 30 mm instead of 28 mm. However,
if the crack is much larger, a notable change in the wave propagation pattern can be observed,
as depicted in Figure 4d. In this case, the crack length is 60 mm. Similarly, the wave propagation at
t = 125 µs for an uncracked plate, and for plates with crack lengths of 28 mm, 30 mm, and 60 mm can
be observed in Figure 3e–h, respectively.
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Figure 3. (a–h) Lamb wave propagation at t = 100 and 125 µs in Al 7075 Plate with different
crack lengths.

By subtracting the image of the cracked plate (Figure 3h) from that of uncracked plate (Figure 3e),
the reflected wave scatter image can be obtained, as shown in Figure 4a. Note the RGB values are
subtracted rather than the displacement values. Pixels, for which there is no change in wave scatter
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are shown as black. In this figure, the reflected wave scatter is highlighted by the yellow rectangle,
while the corruptly transmitted wave is obtained as well (in the red rectangle) but is not clearly visible.

Figure 4. (a) Differential image of (3h − 3e); (b) Differential image of (3e − 3h); (c) Inverse of added
image (4a + 4b); (d) Inverse of fused image (4a + 4b).

In an analogous way, we can subtract Figure 3e from Figure 3h, and in this case, the corruptly
transmitted wave scatter image is highlighted more (red rectangle) as depicted in Figure 4b, while the
reflected wave scatter can still be seen (yellow rectangle) but is less visible. For the further sections
in this paper, only the results from the uncracked plate and the cracked plate of 60 mm crack will be
shown for conciseness. To highlight both the reflected and corrupted wave scatter, the two images
shown in Figure 4a,b can be joined to form a composite image.

Two common ways combining images are described here, the first one is called image addition.
In this case, both image matrices are just mathematically added. The second one is called image
fusion and uses the ‘imfusion’ function in MATLAB, where the two images are firstly converted into
greyscale mode, given a false color, and then added mathematically. Furthermore, it is possible to
invert the composite images to obtain the inverted images. This step is not necessary, but some people
subjectively may find the colored wave scatters easier to track if the background is white. The inverted
images from image addition and image fusion are depicted in Figure 4c,d, respectively. For the sensor
placement procedure described in Section 4.4, the inverse fused image (Figure 4d) is used because we
can still see the representation of reflected and missing wave scatter and that enables us to cross check
the results with the simulation data.

4.4. Sensor Placement

The wave scatter which was caused by both reflections and corrupted transmissions due to the
crack front are represented by false color (i.e., green and magenta pixels in Figure 4d). These pixels
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have a different color from the background (white). Regions of interest are determined by using the
Matlab blob detection function to locate areas of adjacent green and magenta pixels. The larger the
blob is, the larger the area of wave scatter. The sensor should be placed in the center of the largest blob,
so that it will have a high probability of capturing a portion of wave scatter from cracks.

The blob detection algorithm is based on the Laplacian of Gaussian [48–50] with a kernel of 8-pixel
connectivity. Given the Gaussian function G of an input image f (x,y) and feature scaling σ as given in
Equation (8). The Laplacian operator ∇2 is given in Equation (9).

G(x, y, σ) =
1√

2π · σ2
· exp(− x2 + y2

σ2 ) (8)

∇2 =
∂2 f
∂x2 +

∂2 f
∂y2 (9)

By applying the Laplacian operator in Equation (9) to the Gaussian function in Equation (8),
one obtains the Laplacian of Gaussian, commonly known as LoG, as described in Equation (10). Hence,
the blob centroid x̂, ŷ with the scale σ̂ is the simultaneously local extremum of the LoG in Equation (11).

∇2G(x, y) =
(

x2 + y2 − 2σ2

π σ4

)
· exp(− x2 + y2

2σ2 ) (10)

(x̂, ŷ, σ̂) = argmaxmin (x,y,σ)

(
∇2G(x, y)

)
(11)

For the blob detection, the kernel of 8-pixel connectivity is used because it is more suitable for a
larger area since the diagonal neighbor is counted as well, see Figure 5a, while 4-pixel connectivity
(Figure 5b) is typically used for line and corner detection. In Figure 5a,b, the meaning of −1 and 0 are
pixels which are counted and are not counted as a neighbor of the center pixel, respectively.

Figure 5. (a) 8-pixel connectivity; (b) 4-pixel connectivity.

The blob detections from various time increments are depicted in Figure 6a–d. As mentioned
before, we would like to place the sensor in the location with the largest change in signal over time,
i.e., the largest blob. Since it generally contains more than a single pixel, the centroid can be calculated
to determine the average pixel location that would receive wave scatter. In Figure 6a–d, the largest
and the second-largest blob centroids are marked by red and green dots, respectively. Blob boundaries
are marked by the yellow polylines.
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Figure 6. Detected blobs at (a) 100 µs, (b) 125 µs, (c) 150 µs, and (d) 175 µs. The largest and
second-largest blobs are marked in red and green, respectively. Arrows indicate the direction of
movement of the blobs.

The rest of the centroids are marked by blue dots. In order not lose the overview, the reader is
encouraged to compare Figure 6a with Figure 3a,d, as well as Figure 6b with Figure 3e,h. The X-Y
coordinates of the blob centroid and the blob size are summarized in Table 2. The detailed procedure
in MATLAB to find to trace the blob is described in Algorithm 1.

Algorithm 1: Algorithm for blob detection and
centroids calculation

Meaning:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

j← number of available image files

for i← 1:j
img[i]← imread(image[i])
I[i]←mat2gray(rgb2gray(img[]))
BW[i]← I[i] < threshold
B{i}← boundaries(BW,8)
s(i)← regionprops(BW)

end

n← number of detected blobs

for m← 1:n
S[m]← s[m].Area
[val ind]← sort(S,‘descend’)
boundary{m}← B{ind(m)}
centroids[m]←mean(boundary{m})
X← [X centroids(2)]
Y← [Y centroids(1)]

end

Assign j as the number of available images

Loop over images from 1 to j:
Store the image in matrix ‘img’
Convert the RGB array into greyscale
Set the pixel intensity threshold
Trace region with 8-pixel connectivity
Open the region properties
End the loop

Assign n as the number of detected blobs

Loop over all traced region from 1 to n:
Store the area information in matrix ‘S’
Sort from the largest to smallest blob
Store the blob boundaries
Calculate blob centroids
Assign X-coordinate from the centroid
Assign Y-coordinate from the centroid
End the loop
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Table 2. X, Y—Area and coordinates of the largest and second largest centroid.

Time Frame
Largest Centroid Second-Largest Centroid

(pixel) (mm) Area (pixel) (pixel) (mm) Area (pixel)

100 µs 888,403 440,200 15,910 716,403 355,200 12,917
125 µs 1,031,402 511,199 29,535 582,404 289,200 18,794
150 µs 1,154,402 572,199 27,067 445,401 221,200 8808
175 µs 1,111,405 551,201 24,214 304,402 151,199 7949

Units are in pixel and mm. Total area is in pixel. Average resolution is 2 pixel/mm.

After a certain time, the wave pattern becomes more chaotic due to multiple reflections from the
crack front, rivet holes, and plate edges so that more smaller centroids will be born that are not exactly
aligned with the mid Y-axis anymore. The smaller centroids imply that the potential energy capture by
PZT is getting smaller and this will be aggravated by Lamb wave attenuation. This is the reason we
recommend ‘early wave scatter capture’ for hotspot SHM design. Typically, one can decide the best
sensor position by considering the movement of the centroid per time increment, also known as ray
tracing [51].

Furthermore, it is possible to fuse Figure 6a–d into a single image. We performed this operation
and the result is depicted in Figure 7, where each pixel contains information about the normalized
intensity between 0 and 1 which is then mapped into the rainbow color scale. From Figure 7, it can be
subjectively judged that the best sensor position is between X = 44 cm and 57 cm and the second-best
sensor position is between and X = 34 and 38 cm, while the vertical coordinate for both positions
remains at Y = 20 cm.

Figure 7. Fused image of Figure 6a–d.

In order to demonstrate that the image processing algorithm also works for a different case of
simulations, we slightly modified the case for the (a) the critical crack length to 30 mm, and (b) the
orientation of the crack by 8◦. The whole procedure was repeated, and the results are depicted in
Figures 8 and 9, respectively.
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Figure 8. Fused image of differential images of 30 mm crack.

Figure 9. Fused image of differential images of 60 mm crack with 8◦ orientation.

From Figure 8, it can be seen that the areas with higher pixel intensity (colored in red with
value between 0.7 and 1) is smaller than those of Figure 7. This is absolutely normal, since the wave
perturbation at the crack front due to a crack length of 30 mm is smaller than those of 60 mm.

Meanwhile from Figure 9, it can be seen that the crack orientation changes the direction of
the reflected wave scatter and it is still conform with Snell’s law. However, it does not change the
orientation of areas where the wave scatter is not present. After cross validating with the original
simulation data, it can be confirmed that angled crack only heavily influences the reflected wave scatter
portion, but not the missing scatter portion (Figure 10a,b, marked in yellow).
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Figure 10. Lamb wave propagation at (a) t = 100 and (b) 125 µs in Al 7075 Plate.

For current work, we have demonstrated a new efficient method based on an additive color
model to find the best two locations for placing the sensor. However, the number of sensors that are
allocated for every case can be adjusted according to the manufacturer and/or operator requirement
to achieve required crack detectability. Furthermore, not only the number of sensors, but also the
excitation frequency can be changed depending on the size of the critical crack that must be detected.
A higher frequency means a shorter wavelength, and this would mean the wave will be able to
interact with smaller critical crack. However, such a higher frequency Lamb wave will also be more
quickly attenuated than the lower frequency Lamb wave. Therefore, in order to stabilize the SHM
network performance, more sensors will be required. Nevertheless, when more sensors are employed,
higher procurement costs are also expected due to more weight, more data processing capability, etc.
We regard this as the classical trade-off between SHM investment cost and SHM network reliability and
would like to pass this decision back to the aircraft manufacturer or operator according to their needs.

5. Conclusions

In this work, we have demonstrated a novel technique to design the sensor network topology
for hotspot SHM by using differential images and blob detection algorithm. While our image
processing technique does not allow a quantitative approach to observe the nodal displacement,
i.e., displacement from every single FE node, we believe this technique offers a more holistic view
(Figure 7) of where to place the PZT sensors on the structure to be monitored.

Also, with this technique we think that the sensor placement can be done more quickly without
exhaustive data processing from simulation file for each surface while not sacrificing too much spatial
resolution. In practice, even the extracted nodal data from the simulation must be interpolated, since in
reality a PZT sensor would always occupy more than a single node (e.g., a typical PZT in our lab has
a diameter of 1 cm, so would theoretically occupy about 78 FE nodes). Therefore, as a concluding
remark, we hope this technique will help further research in sensor placement.

Supplementary Materials: The source code in MATLAB and all the wave propagation images being involved
can be downloaded in the author’s personal repository (https://github.com/vewald/sensorplacement) and 4TU
website (https://data.4tu.nl/repository/uuid:1fcc9e01-b339-4e75-b92a-2e40f3b660cf).
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