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Abstract: This paper applies numerical continuation techniques to a nonlinear aeroelastic model
of a highly flexible, high-aspect-ratio wing. Using continuation, it is shown that subcritical limit
cycle oscillations, which are highly undesirable phenomena previously observed in numerical and
experimental studies, can exist due to geometric nonlinearity alone, without need for nonlinear or
even unsteady aerodynamics. A fully nonlinear, reduced-order beam model is combined with strip
theory and one-parameter continuation is used to directly obtain equilibria and periodic solutions
for varying airspeeds. The two-parameter continuation of specific bifurcations (i.e., Hopf points and
periodic folds) reveals the sensitivity of these complex dynamics to variations in out-of-plane, in-plane
and torsional stiffness and a ‘wash out’ stiffness coupling parameter. Overall, this paper demonstrates
the applicability of continuation to nonlinear aeroelastic analysis and shows that complex dynamical
phenomena, which cannot be obtained by linear methods or numerical integration, readily exist in
this type of system due to geometric nonlinearity.

Keywords: nonlinear dynamics; flutter; aeroelasticity; numerical continuation; high-aspect-ratio wing;
Hopf bifurcation; periodic fold bifurcation

1. Introduction

The aerodynamic benefit provided by high-aspect-ratio wings makes them an attractive option for
the aircraft designer. The slender planform of such wings reduces the unwanted effects of tip vortices
and thus, when compared to lower aspect ratio designs, a greater lift-to-drag ratio may be achieved
at certain flight conditions. Traditionally, high-aspect-ratio wings have featured predominantly in
high altitude, long endurance (HALE) aircraft, seeing use in unmanned applications such as military
reconnaissance and communication services relay. Recently, however, there has been an increase
in the commercial interest in high-aspect-ratio wings and their applicability to the civil aviation
industry [1]. Manufacturers are seeking more economically and environmentally viable aircraft and
thus solutions located outside of typical design envelopes are being investigated. Span extension
technologies are among a variety of novel wing concepts currently being researched in the pursuit of
greener aircraft.

An inherent and undesirable characteristic of high-aspect-ratio wings is their flexibility. Relative to
conventional designs, greater span-to-chord ratios lead to greater bending moments and larger
wing deformations under aerodynamic loading. These large deformations are problematic from
an aeroelastics perspective, as classical toolsets for static and dynamic analysis rely on linear theory and
thus assume wing deflections to be small. When wing deflections are not small, the aeroelastic system
becomes geometrically nonlinear and aerodynamic forces are non-negligibly re-orientated relative to
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the aircraft (acting as a ‘follower force’, where lift and drag components are no longer assumed to
act solely in the vertical and horizontal planes, see Figure 1). Increased torsional flexibility may also
result in outboard wing sections achieving angles of attack large enough for aerodynamic nonlinearity
(i.e., stall resulting from flow separation) to be significant. The presence of these nonlinearities means
that the aeroelastic response of high-aspect-ratio wings cannot be adequately predicted by linear
methods and therefore the use of nonlinear techniques is necessary.
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Figure 1. Highly flexible wing showing large deformation and re-orientation of aerodynamic forces.
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Figure 1. Highly flexible wing showing large deformation and re-orientation of aerodynamic forces.

As a general field, nonlinear aeroelasticity has been a very active area of research for a number
of decades [2]. There exists a vast, diverse body of literature that investigates how various physical
sources of nonlinearity, such as cubic stiffness in aerofoils or ‘freeplay’ in control surfaces, relate to static
and dynamic aeroelastic phenomena (e.g., Ref. [3]). Limit cycle oscillations (LCOs) are an important
type of nonlinear response and are a common theme throughout many of these studies; these periodic
solutions have finite amplitude and often bound the oscillatory growth resulting from linear instability.
LCOs are closely associated with flutter in nonlinear aeroelastic systems and are typically identified
using numerical integration methods.

Studies specifically pertaining to high-aspect-ratio wings have so far demonstrated the existence
of complex dynamical behaviour. Large, static wing deformation has been shown to affect flutter;
the significant shift in structural frequencies means that destabilising modal interactions can occur
at airspeeds different to those predicted using strictly linear modelling. Indeed, when compared to
nonlinear analysis (involving linearisation about nonlinear equilibria), linear assumptions have been
shown to significantly overestimate flutter boundaries [4]. Moreover, the flight dynamics and gust
responses of flexible aircraft have been shown to vary significantly when large flexibility is accounted
for [5].

Critically, both numerical and experimental studies have found evidence of LCOs existing
at airspeeds below nonlinear flutter boundaries [6–8]. While LCOs occurring beyond the flutter
boundary (i.e., supercritical LCOs) are desirable, as they limit what would otherwise be a divergent
oscillation, the presence of subcritical LCOs is highly undesirable. Unless identified and accounted for
using nonlinear analysis, these phenomena may occur within the operational envelope of an aircraft
and could therefore have serious safety consequences. The industry drive towards more flexible,
high-aspect-ratio wings means that subcritical LCOs must be better understood and, if possible, to be
accounted for during conceptual design using nonlinear methods.

The present study demonstrates how very complex LCO behaviour in a high-aspect-ratio
wing can exist due to geometric nonlinearity alone, without the inclusion of nonlinear or unsteady
aerodynamic effects. Furthermore, it shows how numerical continuation techniques can be used to
readily obtain such solutions, over broad regions of parameter space, without the need for exhaustive
numerical integration. In Section 2, the underlying nonlinear theory behind LCO behaviour is
briefly discussed, together with an overview of numerical continuation. Section 3 then provides
an outline of the aeroelastic formulation and the nominal wing parameters, which are derived from
Ref. [6]. The static properties of the wing are obtained via the computation of natural frequencies with
increasing tip load at zero airspeed. To demonstrate the nonlinear complexities arising from geometric
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considerations alone, a linear, quasi-steady strip theory aerodynamic model is used and thus further
comparison to [6] is not made. In Section 4, one-parameter bifurcation diagrams reveal very complex
LCO behaviour of the nominal wing, including subcritical solutions. Two-parameter bifurcation
diagrams are then used to show the sensitivity of these solutions to wing stiffness parameters.

2. Nonlinear Aeroelastic Dynamics and Numerical Continuation

The flutter boundary (Vf ) of an aeroelastic system is defined as the lowest airspeed at which
a small perturbation to a static equilibrium leads to oscillatory motion that does not decay. Thus, it is
defined as the lowest airspeed at which the system has a complex-conjugate pair of eigenvalues with
zero real part. For linear systems, the dynamics predicted by flutter analysis apply globally and
thus any perturbation at V > Vf leads to a divergent oscillation. However, for nonlinear systems,
where linearisation about equilibria is necessary, the dynamics of the perturbation beyond the local
region are unknown. As the deformation in the system becomes large, the significant change in
structural properties means that the modal interactions necessary for flutter may be affected and thus
the dynamics are no longer topologically equivalent to the linearisation.

At the flutter boundary itself, there are two distinct possibilities for a nonlinear system. The first
comprises a smooth transition to a stable LCO when the critical airspeed is exceeded, the amplitude of
which increases from zero for V > Vf (Figure 2 pt. 2). In this case, the nonlinear flutter point coincides
with a so-called supercritical Hopf bifurcation. As noted in, for example, Ref. [2], this type of bifurcation
is beneficial when compared to the linear case (Figure 2 pt. 1), as the unbounded oscillation is replaced
by a ‘benign’ response that is reversible via the reduction of airspeed (see RHS arrows).
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Figure 2. Generic flutter boundary possibilities: 1) linear, 2) supercritical Hopf bifurcation and 3)
subcritical Hopf bifurcation. Blue = stable, red = unstable.
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Figure 2. Generic flutter boundary possibilities: (1) linear, (2) supercritical Hopf bifurcation and (3)
subcritical Hopf bifurcation; blue = stable, red = unstable.

Unfortunately, a deleterious case is also possible; a subcritical Hopf bifurcation may occur,
characterised by an unstable LCO branch for V < Vf (Figure 1 pt. 3) and a subsequent periodic
fold bifurcation (this type of bifurcation is characterised by the collision of a stable and an unstable
LCO and, since LCOs cannot exist at zero airspeed, is guaranteed to occur in aeroelastic systems when
the flutter boundary is subcritical). In this case, the system becomes attracted to a large-amplitude
branch when Vf is reached and thus the LCO behaviour can only be removed by reducing the airspeed
to below the fold airspeed. This results in a hysteresis loop (see LHS arrows), a phenomenon that
has been observed experimentally in a flexible wing in Ref. [7]. Additionally, the coexistence of two
attractors in the airspeed interval between the fold and Hopf bifurcation means that there is a sensitivity
to initial conditions in this region (e.g., a large perturbation could push the system into the basin of
attraction of the large LCO). A time history showing this can be found in Ref. [6]). At the precise fold
airspeed, there exists a singular half-stable periodic solution.

In order to mitigate subcritical LCO behaviour by design, it follows that it is useful to gain an
understanding of how certain wing parameters (e.g., stiffness properties) affect Hopf bifurcation
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criticality at Vf . (Indeed, this has been the focus of a few studies [9,10].) However, since the generic
behaviours shown in Figure 2 are determined by low-order nonlinearities, it is possible that
higher-order nonlinearities can cause additional bifurcations to occur (for example, additional periodic
folds at higher amplitudes). Analysis of the LCO branches is thus necessary, as proof of a supercritical
Hopf does not rule out the existence of subcritical LCOs.

Since linear flutter techniques do not capture LCO phenomena, nonlinear methods are necessary.
Numerical integration (i.e., time-stepping/simulation) has been commonly used for this purpose [6,7];
however, this technique is not well-suited for rigorous dynamical analysis, as the dependence on initial
conditions means that many simulations at many airspeeds are necessary. Compounded by the fact that
damping is small near flutter boundaries, parametric study of LCOs requires exhaustive computation.
The method demonstrated in this paper is numerical continuation [11]. Consider the parameterised
nonlinear dynamical system

ẋ = f (x, p), (1)

where x ∈ Rn and p ∈ Rm are the states and variable parameters in the system, respectively.
The method uses a gradient-based, predictor-corrector algorithm to numerically solve for the implicit
curve f (q, p) = 0 and thus illustrates how the equilibria solutions of the system (i.e., stationary
points of the vector field f ) vary as parameters change. The linear stability of branches is obtained via
the inspection of the eigenvalues of the linearised system (i.e., the Jacobian of the nonlinear system).
Local bifurcation points, which correspond to topological changes in the system dynamics, are then
easily detectable. The continuation of periodic solutions (i.e., LCOs) is achievable when the boundary
value problem

dx
dτ

= T f (x, p), x(0) = x(T) (2)

is considered, together with some phase condition, where T is the period of oscillation and τ = t/T.
Typically, collocation methods are used to solve for the orbits, although shooting methods can also
be implemented [12]. The local stability of periodic solutions can be obtained via the inspection of
the Floquet multipliers (i.e., eigenvalues of the monodromy matrix). In addition to equilibria and
LCOs, the loci of specific bifurcations can also be continued, provided that the requisite set of variable
parameters and objective functions is implemented. For the considered aeroelastic system, it will
be shown that the two-parameter continuation of Hopf points and periodic folds is a very efficient
method for obtaining the sensitivity of dynamics for variations of airspeed and stiffness.

The use of continuation is highly advantageous when compared to integration approaches, as it
facilitates a rapid analysis of design space and can reveal solution branches that would otherwise be
undetectable. Despite this, the method has seen limited use within the general aerospace industry,
although it has yielded significant benefits in the analysis of nonlinear flight dynamics and control
(e.g., Ref. [13]). A recent report on its use in civil aircraft design is provided in Ref. [14]. Examples of use
in nonlinear aeroelastics research can be found in Refs. [10,15,16]. AUTO [17] is the most well-known
implementation (for an example, see Ref. [18]), although throughout this study COCO [19] is used.

3. Aeroelastic Model

This section describes the aeroelastic model used throughout the present study. The parameters
of the nominal HALE wing configuration are derived from Refs. [5,6]. Aircraft dynamics are not
modelled and the wing root is assumed to be fixed.

3.1. Formulation

The fundamental principle of the formulation is to treat the wing as a beam continuum that is
discretised using a set of continuous shape functions. See Howcroft et al. [20] for full derivation.



Aerospace 2018, 5, 78 5 of 18

The formulation proceeds with a geometrically exact kinematic description of the system wherein
the beam reference line is Γ(s). Neglecting shear and extensional effects, this may be written as

Γ(s) =
∫ L

0
ey P(s) ds, (3)

where L is the length of the beam and ey is the spanwise vector tangent to the beam reference line.
This vector is parameterised by a set of attitude parameters (P). For this formulation, the 3-1-2 Euler
angle parameterisation is selected, i.e.,

P = {Θ, Ψ, Φ}, (4)

where these angles constitute the kinematic parameters to which the shape function discretisation
is applied; i.e., for the shape function set B(s) = BΘ(s) ∩ BΨ(s) ∩ BΦ(s) and state set q(t) = qΘ(t) ∩
qΨ(t) ∩ qΦ(t),

Θ(s, t) = ∑ BΘ(s)qΘ(t), Ψ(s, t) = ∑ BΨ(s)qΨ(t) and Φ(s, t) = ∑ BΦ(s)qΦ(t). (5)

Thus, Γ becomes a nonlinear function of the kinematic shapes B(s) and temporal states q(t).
The spanwise twist (ϑ) of the beam can be similarly expressed. Hence,

Γ = Γ
(

B(s), q(t)
)

and ϑ = ϑ
(

B(s), q(t)
)
. (6)

Considering the virtual work performed over incremental translations (δΓ) and rotations (δV),
with respect to each component of state vector q, yields the system of equations

∂WT
∂q

+
∂WC
∂q

+
∂WK
∂q

+
∂WF
∂q

+
∂WM

∂q
= ∑

i

∂Wi
∂q

(
q(t), q̇(t), q̈(t), B(s), B′(s)

)
= 0, (7)

where the virtual work derivatives correspond to inertial forces (∂WT), structural damping forces
(∂WC), internal strain forces (∂WK), applied forces (∂WF) and applied moments (∂WM). Rearrangement
yields a system of equations of the form

M
(
q(t), B′(s)

)
q̈ = g

(
q(t), q̇(t), q̈(t), B(s), B′(s)

)
, (8)

which describes the geometrically nonlinear behaviour of the beam and can be easily expressed as per
Equation (1). For this particular study, Chebyshev polynomial shapes are used, structural damping is
proportional to stiffness and 2D strip theory aerodynamics are implemented at a total of 21 spanwise
stations located along the wing. In each case, CL(α) is linear with gradient 2π; in the absence of stall,
large twist angles are permitted; however, these would not occur in practice due to aerodynamic
nonlinearity (i.e., stall). The use of linear, quasi-steady aerodynamics is not a limitation of the modelling;
in this study, it is selected to allow complexity resulting from geometric nonlinearity to be demonstrated.
Note that the maximum reduced frequency (k) observed in the study is ≈ 0.065.

3.2. Nominal Wing Configuration

The wing used in this study is a well-known HALE configuration that features a rectangular
planform and a semi-span aspect ratio of 16:1. Table 1 contains the nominal parameters. A fixed,
non-zero root angle of attack (α0) is chosen (ensuring static deformation with airspeed) and
gravitational forces are included. Since the aerodynamics used in this study are both linear and
quasi-steady, allowing the examination of geometric nonlinearity, aeroelastic results are not targeted
to quantitatively match time histories in Refs. [5,6], which account for unsteady and stall effects.
The structural model, however, can be readily verified via the comparison of natural frequencies for
increasing static tip displacement at zero airspeed and with zero gravity (see Figure 3). These are



Aerospace 2018, 5, 78 6 of 18

obtained by applying increasing vertical tip loads and linearising the system about each static solution.
It can be seen that the frequencies of the coupled in-plane bending and twist modes change significantly
with deflection. The small quantitative discrepancies with [5,6] are attributed to the use of a coarse
finite-element mesh in the latter (e.g., a +11.8% error against a Rayleigh–Ritz method is stated in
Ref. [5] for the third out-of-plane bending frequency at zero deflection). The zero deflection results
stated in the present study is consistent with analytical calculation using simple beam theory.

Table 1. Nominal wing parameters.

Parameters from Refs. [5,6]

Semi-span 16 m
Chord 1 m

Mass per unit length 0.75 kg/m
Out-of-plane stiffness (EIout) 2× 104 N m2

In-plane stiffness (EIin) 4× 106 N m2

Torsional stiffness (GJ) 1× 104 N m2

Moment of inertia 0.1 kg m2

Spanwise elastic axis 0.5 chord
Air density 0.0889 kg/m3

Additional Parameters

Root angle of attack (α0) 5◦

Structural damping factor 1× 10−3

Stiffness coupling factor (K) 0

Figure 3. Variation of natural frequencies with static tip deflection: 1. out-of-plane, 2. torsion/in-plane
and 3. in-plane/torsion (red from Ref. [6]).

The general aeroelastic formulation discussed in this section is not limited to a rectangular HALE
wing. For example, flexible wings more suited to commercial aircraft, featuring swept or tapered
planforms, or even spanwise discontinuities, may be easily modelled. However, due to the availability
of published research demonstrating nonlinear phenomena, the highly flexible rectangular wing
is chosen.

4. Bifurcation Results

The purpose of this paper is to demonstrate the applicability of numerical continuation to
the nonlinear analysis of highly flexible, high-aspect-ratio wings. As previously noted, linear,
quasi-steady aerodynamics are chosen to allow the significant complexities arising from geometric
nonlinearity to be demonstrated in isolation. This section describes results obtained using the numerical
techniques discussed in Section 2 together with the aeroelastic formulation in Section 3. Numerical



Aerospace 2018, 5, 78 7 of 18

integration of the system is also used to verify continuation results by illustrating selected dynamical
behaviour and showing the presence of hysteresis. The effect of varying parameters corresponding
to out-of-plane, in-plane and torsional stiffness (EIout, EIin and GJ, respectively) is investigated via
the two-parameter continuation of Hopf points and periodic folds; in each case, parameters not varied
are held at the nominal values shown in Table 1. A stiffness coupling factor (K) is then implemented
between EIout and GJ and the effect of varying this parameter is similarly shown.

4.1. Nominal Wing Stiffness Parameters

The dynamics of the nominal wing configuration (as per Table 1) are first obtained.
Numerical integration of the system is initially used to find a number of steady deflected wing
shapes at increasing subcritical airspeeds (Figure 4). Figure 5 shows the response of the wing to
a gradual airspeed ramp (22.5 m/s–24 m/s) and reveals the emergence of an LCO. The growth of
the LCO amplitude is rapid, indicating the presence of a subcritical Hopf bifurcation.
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Figure 5. Time histories showing response to gradual airspeed ramp (22.5 m/s–24 m/s).

Starting from one of the static solutions shown in Figure 4, one-parameter numerical continuation
is now used. Figure 6 contains the continuation of equilibria and LCOs as airspeed varies and plots
solutions in terms of vertical tip displacement (upper panel) and tip twist (lower panel). The minimum
and maximum of LCOs are shown. For low airspeeds, a single branch of stable equilibria exists,
the magnitude of which increases steadily as airspeed increases (as per Figure 4). This branch
undergoes a Hopf bifurcation and becomes unstable at 22.38 m/s. At this point, which is labelled Vf
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to indicate the nonlinear flutter boundary, the tip displacement is 1.08 m and the tip twist is 2.01 deg.
(α at tip = 6.98 deg.). The bifurcation is subcritical, as is demonstrated by the emergent unstable LCO.
The unstable LCO branch undergoes a number of folds at increasing amplitudes, alternating between
unstable and stable solutions, before undergoing a final fold at approximately 25.56 m/s. The resulting
unstable branch subsequently leaves the near-flutter region and is not plotted beyond this point (it is
found that the resulting LCOs comprise very large wing deformations; the branch is actually seen to
extend back to ≈ 6 m/s before folding back to a stable branch with very large amplitude). Figure 7
illustrates the time histories from Figure 5 superimposed onto the corresponding continuation branches
in Figure 6. It can be seen that the numerical integration is a good approximation to the continuation
result, although transient effects (due to the airspeed ramp) prevent the LCO amplitudes from settling.
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Figure 7. Time histories from Figure 5 superimposed onto continuation solutions from Figure 6.

The continuation solutions in Figure 6 show that subcritical LCOs are present near the equilibria
for airspeeds as low as 19.61 m/s and thus the subcritical LCO region, δV (defined as the airspeed
interval between the Hopf and the lowest-airspeed fold, as shown in the figure), is equal to 2.77 m/s.
A useful metric is the ratio δV/Vf , which quantifies this region relative to the nonlinear flutter
boundary and in this case is equal to 0.124. Figure 8 shows the wing response when a decreasing
airspeed ramp is applied to the final state of the time history shown in Figure 5. In this reversed case,
the LCO is sustained below Vf and thus demonstrates the hysteresis in the system.
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Figure 8. Time histories showing response to decreasing airspeed ramp (24 m/s–19 m/s).

The characteristics of individual LCOs located at selected points on Figure 6 are now shown.
Figure 9 shows a time history, frequency decomposition and spanwise deformation for each of
the solutions at points A (20 m/s), B (23 m/s), and C (25 m/s). The LCOs at 20 m/s and 23 m/s
approximate the 2nd out-of-plane bending mode, whereas the larger LCO at 25 m/s approximates
the first bending mode. In all three cases, the first torsion mode is present.
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Figure 9. Time history, frequency and spanwise deformation* for LCOs located at points (A–C) on
Figure 6. * red = max. tip deformation, black = min. tip deformation and blue = mid tip deformation.

4.2. Variation of Out-of-Plane Bending Stiffness (EIout)

The effect of varying out-of-plane bending stiffness (EIout) is now demonstrated using
two-parameter continuation. The Hopf bifurcation shown in Figure 6 is continued with respect
to both EIout and airspeed and thus the locus of Vf for varying stiffness values is directly obtained
(Figure 10). It can be seen that neither decreasing nor increasing EIout significantly affects the airspeed
of the main Hopf branch; however, an additional low-speed branch exists within the system for
stiffnesses below ≈ 45% of the nominal value.

One-parameter continuation at 35% EIout (Figure 11, left panel) reveals that the LCOs emanating
from these low-speed Hopf points are small amplitude and disappear as airspeed increases. It is found
that removing gravity from the system removes these phenomena, indicating that for low EIout the large
negative out-of-plane deformation (due to self-weight) enables destabilising modal interactions to
occur at much lower airspeeds. This result is similar to observations made in Ref. [5], where low-speed
instability regions were predicted for cases with low α0. In such instances, deformation is similarly
dominated by self-weight, but as the result of reduced aerodynamic loading. It is worth noting that
use of linearised analysis alone (i.e., without LCO continuation) would see these benign bifurcations
as unbounded flutter.
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Figure 10. Two-parameter continuation of Hopf bifurcations for varying out-of-plane stiffness and
airspeed. One-parameter equilibria continuations are shown for EIout = 35% and 100%.

Continuation of the LCOs emanating from Vf (Figure 11, right panel) reveals a very complex
structure of solution branches, similar to that shown in Figure 6, although in this case the periodic
folds are greater in quantity and mostly occur at airspeeds below the Hopf bifurcation (the final fold
at large amplitude is not plotted but is found to occur at 22.4 m/s). This means that, compared to
the nominal wing, a greater number of subcritical LCOs exist in the system. However, δV/Vf = 0.129,
which is similar.

Figure 11. One-parameter continuation of equilibria and LCOs for varying airspeed for EIout = 35%.

In addition to the continuation of Hopf bifurcations (Figure 10), two-parameter continuation
can also be used to obtain periodic folds. This is a very effective means of building a global picture
of the system dynamics, as the variation of the complex LCO structures can be inferred from these
solutions. Identifying subcritical LCOs is easily achieved by inspection, via comparison of the loci of
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folds and the loci of Hopf points. For any given stiffness, a subcritical LCO solution exists if a fold
occurs at an airspeed lower than that of the Hopf point.

Figure 12 shows the continuation of the periodic folds shown in Figures 6 and 11, combined with
the main Hopf bifurcation branch from Figure 10. (The inset shows how the intersections on the vertical
plane EIout = 100% relate to the periodic folds shown in Figure 6). The shaded area between the Hopf
branch and the lowest-airspeed folds illustrates the region where LCOs exist at subcritical airspeeds.
It can be seen that subcritical LCOs exist at all stiffness values, although the quantity of these solutions
increases greatly for lower stiffnesses. A wider range of vertical tip displacements is also achieved
at lower stiffness, which is expected given that EIout is reduced. Stiffening the wing can be seen to
yield marginal benefit; increasing EIout to ≈ 118% achieves the smallest relative subcritical region
(δV/Vf = 0.096), although this is still comparable to that seen for the nominal wing. In all cases,
the Hopf bifurcation is found to be subcritical.

4.3. Variation of In-Plane Bending Stiffness (EIin)

Figure 13 shows the continuation of Hopf points and periodic folds over the variation of in-plane
bending stiffness (EIin). As with the variation of EIout, the Hopf branch is marginally affected,
although in this case no other branches are found within the parameter range. The minimum value
of δV/Vf (0.11) is found at the upper boundary of the range and it can be seen that this ratio rapidly
increases for EIin below ≈ 50%. The periodic folds become generally more separated in airspeed as
stiffness is reduced, although there is little variation in tip displacement and twist along the branches.

4.4. Variation of Torsional Stiffness (GJ)

Figure 14 shows the continuation of Hopf points and periodic folds for the variation of torsional
stiffness (GJ). Additional Hopf branches are found in the system for low stiffness values, although in
all instances these occur at very large tip deflections and are therefore not shown in the figure. It can
be seen that varying GJ has a significant effect on the main Hopf branch. For example, the flutter
boundary increases to 24.6 m/s (+9.9%) when GJ is increased to 150%.

For decreasing stiffness, Vf steadily decreases before reaching a critical value, where the branch
drops rapidly and levels out. The periodic folds become more densely concentrated, both in airspeed
and tip displacement, although some twist values become very high. For values between approximately
32% and 52%, all LCOs exist at airspeeds greater than the Hopf bifurcation, which itself is found to be
supercritical at all values below ≈ 60%. This change of Hopf criticality is indicated by the emergence
of a new branch of fold solutions.

When stiffness increases, a number of subcritical LCOs disappear from the system, although
the remaining solutions follow a trend similar to that of the Hopf branch. There is a single subcritical
LCO for values of GJ above ≈ 105%.

4.5. Variation of Out-of-Plane and Torsional Stiffness Coupling (K)

A stiffness coupling factor (K) is now applied between EIout and GJ. This factor is implemented
in off-diagonal elements of the 3-by-3 stiffness matrix of the (Euler–Bernoulli) beam and is expressed
as a % of the nominal value of EIout (as shown in Table 1). The use of such a term is intended to
approximate aeroelastic tailoring techniques that involve the use of directional stiffness properties to
provide performance benefit (e.g., gust loads alleviation or flutter suppression; e.g., Ref. [21]).

Figure 15 shows the continuation of Hopf points and periodic folds for increasing coupling
(K = 0 is the nominal wing). In this study, K > 0 corresponds to the case where GJ increases with
out-of-plane deformation, providing a ‘wash-out’ effect. Negative values are not investigated, as
these would increase the twisting of the wing. It can be seen from Figure 15 that the Hopf branch
increases in airspeed as coupling increases (for example, at 30% the flutter boundary has increased
to 26.19 m/s). Subcritical LCOs exist in the system for all values; however, the region between
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the lowest-airspeed folds and the Hopf points decreases significantly. At 30%, a single subcritical LCO
exists and the subcritical region is reduced (δV/Vf = 0.037).

Figure 12. Two-parameter continuation of Hopf points and periodic folds for varying out-of-plane
stiffness. The shaded region indicates where subcritical LCOs exist in the system.
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Figure 13. Two-parameter continuation of Hopf points and periodic folds for varying in-plane stiffness
and airspeed. The shaded region indicates where subcritical LCOs exist in the system.
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Figure 14. Two-parameter continuation of Hopf points and periodic folds for varying torsional stiffness
and airspeed. The shaded region indicates where subcritical LCOs exist in the system.
.
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Figure 15. Two-parameter continuation of Hopf points and periodic folds for varying out-of-plane/torsional
stiffness coupling and airspeed. The shaded region indicates where subcritical LCOs exist in the system.

Periodic folds occurring beyond the flutter boundary are seen to rapidly increase in airspeed
when coupling is increased. Use of one-parameter continuation shows that the overall LCO branch
structure undergoes a significant topological change between 10% and 15% (see Figure 16). During this
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parameter interval, the LCO branches re-attach to the equilibrium branch, via a second Hopf bifurcation,
before a third Hopf point subsequently occurs.

20 25 30

Airspeed (m/s)

1

2

3

4

5

6
T

ip
 d

is
p

la
c
e

m
e

n
t 

(m
)

25 30 35

Airspeed (m/s)

0

0.5

1

1.5

2

2.5

3

3.5

T
ip

 d
is

p
la

c
e

m
e

n
t 

(m
)

V
f

V
f

. ..

...

Figure 16. One-parameter continuation of equilibria and LCOs for varying airspeed for 10% K (left)
and 15% K (right).

5. Conclusions

This paper demonstrates how numerical continuation can be used to obtain the complex nonlinear
aeroelastic dynamics of a highly flexible, high-aspect-ratio wing. A reduced-order nonlinear beam
model is used with linear, quasi-steady aerodynamics and one-parameter continuation shows that
subcritical limit cycle oscillations (LCOs), which are detrimental solutions existing at airspeeds
below the nonlinear flutter boundary, are present due to geometric nonlinearity. The two-parameter
continuation of Hopf points and periodic folds reveals the sensitivity of the nominal dynamics to
variations in out-of-plane, in-plane and torsional stiffness and a ‘wash out’ stiffness coupling parameter.
By the inspection of these complex bifurcation diagrams, regions in parameter space where subcritical
LCOs exist are easily identified and it is shown that such phenomena are present for a wide range
of stiffness values. Indeed, the only instance where subcritical LCOs do not exist is when torsional
stiffness is reduced to 52% of the nominal value. Given this, it is clear that the geometric nonlinearity
inherent in highly flexible wings can be a fundamental driver of subcritical behaviour, without the need
for aerodynamic nonlinearity. Thus, the effects of large deformations must be adequately treated in
the analysis of such wings if undesirable dynamical phenomena are to be mitigated by design.

Current trends in the civil aviation industry indicate that nonlinear aeroelastic analysis will
likely play an important role in future wing design. Overall, this paper demonstrates the suitability
of numerical continuation techniques for this purpose, particularly when compared to numerical
integration approaches, which cannot readily obtain complex dynamics and are thus not well-suited
for the parametric analysis of highly flexible wings.
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