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Abstract: A method is presented to model the incompressible, attached, unsteady lift and pitching
moment acting on a thin three-dimensional wing in the time domain. The model is based on
the combination of Wagner theory and lifting line theory through the unsteady Kutta—Joukowski
theorem. The results are a set of closed-form linear ordinary differential equations that can be solved
analytically or using a Runge-Kutta-Fehlberg algorithm. The method is validated against numerical
predictions from an unsteady vortex lattice method for rectangular and tapered wings undergoing
step or oscillatory changes in plunge or pitch. Further validation is demonstrated on an aeroelastic
test case of a rigid rectangular finite wing with pitch and plunge degrees of freedom.
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1. Introduction

Closed-form solutions for the attached incompressible unsteady flow problem around a
two-Dimensional (2D) airfoil exist in both the frequency domain [1] and in the time domain:

o  Wagner theory [2,3]
e  Finite state flow model [4]
e Leishman unsteady state space representation [5]

For three-Dimensional (3D) wings, there exists one closed-form solution for the unsteady
aerodynamics of elliptical wings [2]. For general geometries, closed-form solutions are usually obtained
either from strip theory (see for example Dowell [6]) or from panel methods, such as the Doublet Lattice
Method (DLM) [7] or the Vortex Lattice Method (VLM) [8]. Strip theory is based on estimating the 3D
unsteady loads by integrating 2D loads along the span. It therefore ignores the downwash induced by
the trailing vortices and overestimates the lift; it is mostly used on lifting surfaces with very high aspect
ratios, such as helicopter or wind turbine blades. The DLM can be used to estimate modal, frequency
domain aerodynamic loads in the form of the generalized aerodynamic force matrix. This matrix is
evaluated numerically at discrete reduced frequency values and is interpolated in order to estimate the
aerodynamic loads at intermediate frequencies. The generalized force matrix can be transformed to the
time domain using the rational function, the Chebyshev polynomial or indicial function representations,
again based on a set of discrete frequency estimations. Several efficient transformation methodologies
have been developed, notably the minimum state approach [9], but they remain approximations.
The Vortex Lattice Method can also be used to derive a generalized aerodynamic force matrix [10,11],
which can then be transformed to the time domain.
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Alternative closed-form solutions of the 3D attached flow problem include Reissner’s method [12],
which combined the Theodorsen and lifting line theories and was formulated in the frequency domain.
Chopra [13] developed expressions for the lift, thrust and moment of lunate tails oscillating in pitch
and plunge, based on the lifting line assumption that the flow is locally 2D around cross-sections of
the wing’s span, but that the local angle of attack is influenced by the vorticity in the wake. The work
was limited to rectangular wings, and frequency domain solutions for the aerodynamic loads were
obtained. Furthermore, Chopra and Kambe [14] formulated an unsteady lifting surface theory and
applied it to wings with non-rectangular planforms, but the aerodynamic load calculations were
still calculated in the frequency domain. James [15] developed an unsteady lifting line theory for
wings of a large aspect ratio with smooth tip geometries (such as elliptical planforms). He used a
matched asymptotic expansion approach to obtain solutions for impulsively-started motion, constant
acceleration and sinusoidal oscillations in pitch, plunge or flap. Nevertheless, the method failed to
yield total aerodynamic loads for wings with chords that jump abruptly to zero at the tip (such as
rectangular or trapezoidal wings). Furthermore, Ahmadi and Widnall [16] argued that James’s theory is
only valid for low reduced frequencies and that its 3D results are incorrect. Van Holten [17] also used
a matched asymptotic expansion to develop an unsteady lifting line theory for pitching wings and
rotating blades, but Ahmadi and Widnall [16] again claimed that the work is only valid for low
reduced frequencies. Phlips et al. [18] derived a time domain unsteady lifting line theory for flapping
(but not pitching) wings.

Other frequency domain unsteady lifting line approaches were proposed by Dragos [19],
Sclavounos [20] and, more recently, Drela [21]. State-space time domain models are usually
quasi-steady, such as the models by Nabawy and Crowther [22,23]. The present paper details a robust,
closed-form, time domain, 3D unsteady aerodynamic model that does not involve a transformation
from the frequency domain. The approach is based on Wagner’s 2D unsteady lift theory and Prandtl’s
lifting line theory and will be referred to as the Wagner Lifting Line (WLL) method. It was first
proposed by Boutet and Dimitriadis [24], but is presented here in much more detail, including an
aeroelastic extension. A similar approach was proposed slightly later by Izraelevitz et al. [25], but this
technique was not extended to aeroelastic applications.

2. Method

As mentioned in the Introduction, one of the main characteristics of lifting line theories is that the
flow is two-dimensional around spanwise cross-sections, but the local angle of attack is affected by
the downwash induced by the wake. In the classical version of the theory, the wing and wake
are modeled using a superposition of horseshoe vortices, the strength of which is constant in time.
In this way, the wake is straight and semi-infinite, and its strength varies in the spanwise, but not in
the chordwise direction.

In Wagner’s and Theodorsen’s 2D unsteady aerodynamic theories, the wake is still straight and
semi-infinite, but its strength varies in the chordwise direction since it is calculated from the unsteady
Kutta condition. The wake is assumed to propagate with the free stream velocity, U, so that chordwise
displacement and time are directly related by the equation x = Ut. A change in vorticity at the trailing
edge that occurs at time t( will be reflected in the wake at a downstream distance U(t — t() at time ¢.

Lifting line and Wagner theories are not directly compatible because in the former, the chordwise
strength of the trailing vortices is constant, while in the latter, it varies. In the present work,
Wagner theory is applied to spanwise cross-sections, so that the strength of the wake varies in both
the spanwise and chordwise direction. A quasi-steady version of lifting line theory is used in order to
approximate the downwash velocity caused by the wake and to add it to the other sources of downwash
used in Wagner theory.

There are three sources of downwash on finite wings in unsteady flow:

e  Geometric downwash due to camber and twist.
o  Downwash due to the motion of the wing (including the free stream and angle of attack).
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e  Downwash due to the three-dimensionality of the flow (wing tip vortex effect).

The 3D downwash will be calculated using Prandtl’s lifting line theory, as detailed in Kuethe
and Chow [26]. The other two downwash contributions will be modeled from Wagner’s unsteady
aerodynamic theory, as presented by Fung [3].

2.1. Lifting Line Theory

A truncated Fourier series is used to represent an arbitrary time-varying circulation distribution
along the span of a flat plate wing:

I[(ty) = %ao colU i an(t) sin(no) 1)
n=1

where ag is the lift curve slope at the wing’s axis of symmetry, ¢¢ is the chord length at the wing’s
axis of symmetry, U is the free stream airspeed, a,(t) are the time varying Fourier coefficients,
m is the number of terms kept in the series, 6 comes from the substitution y = (s/2) cos(6),
y represents the location along the span and s represents the span of the wing. In the classical lifting
line theory, the wing is split into m spanwise strips, and the order of the Fourier series is also m,
so that the number of unknowns (Fourier coefficients a,) is equal to the number of equations
(spanwise strips). Izraelevitz et al. [25] proposed an alternative approach, whereby a horseshoe
vortex representation was used to model the 3D wing circulation.
Using Prandtl’s lifting line theory, it is possible to compute the downwash w, caused by the 3D
circulation distribution at a location y along the wing span:
w = g /5/2 A/ dyo g
TJ=s/2 Y = Yo

_apcpU & /” cos(nby)
N 47s T;M"(t) o cos(fy) — cos(h) dbo @

Glauert [27] evaluated the integral in this latest expression, so that the downwash w; can be
computed as a function of the Fourier coefficients and the location () along the span:

agcoU & sin(nf)
wy(t) = - nay(t 3
y( ) 4s n;l n ( ) sin 6 ( )
Note that this is a quasi-steady version of lifting line theory, since any instantaneous changes in
vorticity over the wing affect the entire wake simultaneously.

2.2. Unsteady Kutta—Joukowski

It is possible to express the unsteady sectional lift coefficient as a function of a, () and location
along the span y, using the unsteady Kutta—Joukowski theorem and considering a lumped spanwise
vortex element, as explained by Katz and Plotkin [8] on page 439. The circulatory sectional lift
coefficient becomes:

2r 2r
i(t, = ——+-—= 4
Cl( y) UC(]/) + 2 ( )
where T is the vortex strength, ¢(y) is the chord at span section y and the unsteady term I' comes
from the unsteady Bernoulli equation. The vortex strength can be replaced by its Fourier series
representation from Equation (1), to obtain:

ci(ty) = ag i <%Oun + %0[1,1) sin(n6) (5)

n=1
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Furthermore, the circulatory lift coefficient for the entire wing can be computed from:

s/2 LoUZe(y) c6(t,y)d
Clc(f) —_ / 2p 1(]/) 2]( ]/) Yy (6)
—s/2 ij S

where S is the wing’s surface area.

The lift will cause a pitching moment around the pitch axis of each wing section, i.e., the axis
around which the wing section can pitch. One can compute the circulatory moment distribution
from the lift distribution, assuming that the sectional lift acts on the quarter chord. Refer to Figure 1,
which shows a wing section with chord ¢ and half-chord b at pitch angle « to a free stream U.
The position of the pitch axis, x., is defined with respect to the half-chord point. The circulatory
sectional moment equation is simply:

WALI 51,y )

chlty) =

where x, and c are allowed to vary in the spanwise direction y. Note that the pitch axis is measured
from the mid-chord point and is defined as positive if it lies downstream of that point as chosen by
Theodorsen [1]. The total circulatory moment coefficient is:

s/2 LoUZe(y)? ¢ (t,v)d
Cfn(t) _ / Zp l(y) 2771{ y) Y (8)
75/2 jpu SC

where ¢ = S/s is the mean chord.

Figure 1. Rigid thin plate airfoil scheme.

2.3. Wagner’s Sectional Circulatory Lift

The computation of the unsteady circulatory aerodynamic loads is based on the circulatory
sectional lift ¢ (t,y) response of an airfoil undergoing a step change in downwash Aw(y) << U at
span location y. The resulting step change in the lift coefficient can be expressed in terms of the Wagner
function, ®(t), as follows:

S(by) = a2 ©)

where ay(y) is the lift curve slope of the local airfoil section, which is approximated by 27 for thin
airfoils, and ®(t) is Jones’ [28] approximation of the Wagner function:

eU

eu
P(t) = 1-Fpe b '—Fpe b !

with ¥1 = 0.165, ¥, = 0.335, €7 = 0.0455 and €, = 0.3.
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Duhamel'’s principle can be applied to Equation (9) in order to express a continuous lift response
as the time integral of infinitesimal step responses:

¢ _ w(0,y) Plow(ny) g
i) = aol) (Mo + [ e - (10
The troublesome %jy) term inside the integral can be removed by applying integration by parts,
such that:
. . w(t,y) [P 109(t—1)
i) = ww (“Gle0 - [ G umy o an

The downwash w(t, y) must now be computed; it will depend on the kinematics of the wing.
In this work, the wing is assumed to be rigid with pitch and plunge degrees of freedom, but flexible
wings with bending and torsion modes can also be considered. Figure 1 defines the local plunge and
pitch degrees of freedom, 1(t,y) and a(t,y), respectively. A local downwash w), is added in order to
represent the 3D downwash effects, so that w(t, ) becomes:

w(t,y) = Ua(ty)+h(t,y)+i(ty)d+w,(t) (12)
1
d = ——alb
2
3<cg )
a == ?

where d is the non-dimensional distance between the mid-chord and the pitch axis, as defined by
Theodorsen [1]. After combining Equations (11) and (12),

cqlty) E ad | wy
aly) vttt )0
t e ; )
t e I’Z . d
b [matle B (o 1O A0, ) o

(13)

The following changes of variables are performed in order to eliminate the integrals from
Equation (13), where the variables z(t) are called aerodynamics states.

e e
z1(ty) = /0 eTlu(t_T>h(T,y) dt z4(ty) = /0 eTZU(t_T)oc(T,y) dr
| -
2(t,y) =/ e Iz, dr z5(t,y) =/ e @D 4 (14)
0 0

)
u
L. oo Wy (T) o

23(t,y):/0 e Ta(r,y)dr zé(t,y):/o e b
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Working through the integrals, we obtain:

c§(ty) h  &d . h(0)  «(0)d
i _ hatid Y _ /.
w0(y) = <tx+u+u+u>q>(0) qD(t)( U + U )
h  ad u u
+ (U ) ‘i’le‘%ﬁzl _‘er%bTZZ
u d u d u U
+ Yie1— b ( €1 ) z3 + Yoer— b (1 — 62 > zq4 +Yie1— b z5 + Yoer — b

6 of 24

(15)

First order differential equations for the aerodynamic state variables can be derived using Leibniz’s

integral rule. As an example, the equation for z; (t,y) is:

) fslw D ot —equr 0 U t’glu _
Z1(t,y) = e h(t, y)at e b h(O,y)g—lT/Oe (t-7 )(T,y)dr
e
= h—szl(t ]/)

The equations for all the aerodynamic states are given by:

el . u
Z1ty) = h— T=z(ty) Z4ty) =a— 2=zt y)
U w e u
Z(ty) = h—225(ty) z(ty) = o — 5 sty
. u . w u
Z(ty) =« — Soz(ty) Z5(ty) = T — 2=z(ty)

Finally, the continuous unsteady circulatory lift coefficient can be written as follows:

. w
cj(tbty) = Cq+Dq+Ez+rd(t) —i—ao(y)(IJ(O)Uy
. Wy

where:

qa = [mey) aty]

a(by) 2(y) mty) uty) sy zwty)]

N
I
—

D — aol(ll/) [q,(o) uq>(o)+d<1>(0)}
a u e? 2
E O(Z) |:7\}le 7‘1’262 Y€ (17€1%> Yoer (]*62%) Yie1 TZEZ]
T
G =ooo001 1
~ag(y)
C = ;720 1 4
a
Fo— Oz(ly) (h(0,y) + da(0,y))
W = —?diag(€1,€2,€1,€2,€1r€2>

T
F_ [t 10000
“loo1100

S =

(16)

(17)

(18)

(19)
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2.4. Added Mass Effect

The non-circulatory sectional lift and moment coefficients, also known as the added mass effect,
can be computed from the non-circulatory terms derived by Theodorsen [1]:

; b . . 7th |

alty) = e (h—abi)+ Tt (20)
i S S S Y I S

cu(ty) = U2 [ah (a + 8) ba} <2 a) T (21)

The computation of the total non-circulatory lift C; and moment Ci, coefficients follows the same
principle as Equations (6) and (8), and the final result is given in Equations (A26) and (A27) for a
rectangular wing.

2.5. Assembling the Pieces Together

In order to compute the m Fourier coefficients a,, m spanwise wing strips are considered,
as shown in Figure 2, which represents m strips along the wing span, their respective local
aerodynamics variables z;, 3D downwash effects w, ; and chord section ¢;. For an arbitrary strip i,
Equations (1), (18) and (19) can be combined to obtain the following system:

i (tyi)

= [c co . . . Wy,
ao(vi) Y (;ﬂn + L?”n) sin(nf;) = Cjq+ Djq+ Eiz; + ao(y;)®(0) J

n=1 !

wy,.
i = Wiz;i+Fq+G J (22)
mthr, Zy, Wymy Yms Cm
ith7 Zj, Wyi, Yi, Ci
Yy

st
1%, z1, wy 1, y1, 1

Figure 2. Representation of m strips along the wing span and their respective local variables.

The variables z; represent the local aerodynamic state variables for the i-th strip. Matrices C;, D;,
E; and W; are the matrices computed in Section 2.3 where the chord c is replaced with its local value c;.
Variable wy, represents the 3D downwash effect on the i-th strip; its value is given by Equation (3).
Substituting for wy, and re-arranging, Equation (22) become:

m
, ‘o _ %ocon .. ; N = Cié . .
ao(y;) ;; <(Ci + <I>(0)4S sin(9i)> a, + uan) sin(n6;) C;iq + Djq + E;jz;
. apcy & sin(n6;
Zz; = Wiz;+Fq— G% nay(t) Sil(’l 9;) (23)

n=1



Aerospace 2018, 5, 92 8 of 24

Applying Equation (23) to all m strips, a set of 7m ordinary linear differential equations for 7m
unknowns (1 for the Fourier coefficients a,, and 6m for the aerodynamic states zj, ... z;;) is obtained.
Once this system of ODEs is solved and the coefficients a,(t) are evaluated, the lift distribution
acting on the wing can be computed from Relation (5), the total lift from (6) and the total pitching
moment from (8). As an example, the computation of the aerodynamic loads for a rectangular wing is
fully detailed in the Appendix, Equations (A1)-(A29).

2.6. Asymptotic Behavior for a Rectangular Wing (c = co)

By imposing stationarity, all derivatives in time vanish and the system of Equation (23) should
reduce to the classical lifting line theory. After imposing stationarity on Equation (17), the aerodynamic
states variables become:

b

b

z1(y) = @h(y) z4(y) = @“(]/)
) = h)  z0) = g @
b b

z3(y) = elilla(y) z6(y) = ezﬁwy

Injecting these expressions in Equation (23) and applying the necessary simplifications,
the system becomes:

Wy

- e\ e
() Y- (1+@(0) 2005 ) aysin(n) = s ) + ) @(0) Y

£ (s

n=1

or:

M) ap sin(nb;) = a(y)

which is the equation derived by Kuethe and Chow [26] for a rectangular wing, using Prandtl’s lifting
line theory for a constant pitch angle a(y) = «.

If the span of the wing is infinite, s = oo, all 3D effects vanish and System (23) should reduce to
the 2D Wagner solution. Looking at Equation (3), it is obvious that Sli_}ngo wy = 0. It can then be shown

from Equation (14) that zs = 0 and z¢ = 0. The system of Equation (23) is now reduced to:

c(t) =

i; =

m
c . .
QO(y) Z (an + ﬁan> sm(n@,) = Cq+ Dq + Ez;
n=1
Wz; + Fq

z; —

T
[Zl,i 22i z3i Zai O 0] (25)
which is the classical 2D Wagner formulation, as given by Fung [3] for all arbitrary strips i.

3. Test Cases

The Wagner lifting line method is applied here to a rectangular and a tapered wing.
The rectangular wing, shown in Figure 3, has constant chord ¢ = 1 m, span s, surface S = cs
and aspect ratio AR = s?/S. It has two degrees of freedom, a pure plunge k(t,y) = h(t) and a pure
pitch angle a(t,y) = a(t) around its pitch axis. Two positions of the pitch axis are considered: one at
the leading edge and one at the quarter chord.
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Leading edge axis Quarter chord axis

Figure 3. Rectangular wing with pitch axis at the leading edge and quarter chord.

The tapered wing, shown in Figure 4, has root chord cyg = 1m, tip chord ¢; = 0.5m, span s, surface
S = (co+ct) § and aspect ratio AR = s?/S. It has the same degrees of freedom as the rectangular
wing. The pitch axis is defined with respect to the root chord, as shown in Figure 4. Again, leading
edge and quarter chord pitch axis locations are considered.

Leading edge axis Quarter chord axis

Figure 4. Tapered wing with pitch axis at the leading edge and quarter chord.

3.1. Types of Motion

The degrees of freedom of the wings are subjected to two kinds of motion: step changes and
sinusoidal oscillations. The step is expressed as the function f = A (1 — e 1%) where t is the time and
A is the position of the degree of freedom after the step. Steps Ah = 0.1 m and Aa = 5° are separately
applied to the plunge and pitch degrees of freedom.

Sinusoidal oscillations with ten distinct frequencies are tested separately for each degree of
freedom, in order to assess the WLL model’s frequency response. The oscillations are expressed as

f=Acos (%t) where ¢ is the time, A the amplitude of the oscillation and k = [0.1, 0.2, 0.3... 1] is
the reduced frequency. The pitch and plunge amplitudes are respectively set to A = 5° and A = 0.1m.
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3.2. Validation

The unsteady Vortex Lattice Method (VLM) is used as a reference solution to which the results
obtained by the Wagner lifting line approach are to be compared. The particular implementation of
the VLM used here is more thoroughly described by Dimitriadis et al. [29]. The difference between
the solutions obtained from WLL and VLM is quantified using the Normalized Root-Mean-Square
Deviation (NRMSD).

N B 2
RMSD = \/Et—l (]/w],\r] Yor) 26)
NRMSD = 100 x RMSD [%] 27)
max(Yy) — min(yy)

where N is the number of time instances, y,, represents the lift or moment coefficient computed by
the VLM at the r-th time instance and y,, » represents the lift or moment coefficient computed by the
WLL approach at the r-th time instance.

4. Convergence

The differential Equation (23) are solved by means of a Runge-Kutta—Fehlberg fourth and fifth
order numerical time integration technique. A time convergence analysis is therefore needed in
order to minimize numerical integration errors without increasing the computation time too much.
A convergence analysis is also performed for the vortex lattice method.

As shown in Equation (1), the WLL uses a truncated Fourier series with m coefficients,
which correspond to the m spanwise strips shown in Figure 2. A spatial convergence study must
also be carried out in order to determine the effect of the number of strips on the aerodynamic load
predictions. Note that the number of states in the system is 7m; therefore, keeping m as low as possible
is important. The NRMSD is used in order to determine if convergence has been achieved, such that:

2
ZN: Vit — Yref,
RMSD(i) = “ Z;\] ) (28)
RMSD
NRMSD(i) =e(i) = 100 x - % 29
) (0 max(]/ref) - mm(]/ref) %] @)

where y;; represents the lift coefficient response at the ¢-th time instance for the i-th value of the
convergence parameter. The latter can be either the time step tolerance of the Runge-Kutta—Fehlberg
scheme or the number of strips; y,.r represents the reference lift coefficient against which the
convergence is assessed. This reference is computed for an appropriately high value of the
convergence parameter.

4.1. Runge-Kutta Convergence

The time step tolerance controls the error of the Runge-Kutta time integration scheme. Given the
solution arrays ry and r5 of the respective fourth and fifth order Runge-Kutta estimates for a current
time #; and time step At, the Runge-Kutta—Fehlberg algorithm used in this work is given by:

e if Tol < (r5 —1y)(r5s — 14)7, reduce the time step to At/2
e otherwise, go to the next time instance t; 1 = t; + At and reset At to its default value

Figure 5 plots the variation of the error of Equation (29) with the tolerance Tol used in the
Runge-Kutta—Fehlberg algorithm with respect to a reference Tol = 10~°. The solid line represents
the convergence for a step case and the dashed line the convergence for a sinusoidal oscillation case
with a reduced frequency k = 0.3. Assuming that e < 0.01% is good accuracy, the figure shows that a
tolerance value of 10~7 is sufficient to achieve convergence for both the step and sinusoidal motion.
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(a) (b)

Figure 5. Wagner Lifting Line (WLL) convergence with the tolerance parameter and number of
spanwise strips for a rectangular wing. (a) Tolerance parameter; (b) Number of spanwise strips.

Figure 5b plots the variation of the error of Equation (29) with the number of strips for different
aspect ratios and kinematics with respect to a reference number of strips m = 26. The time step
tolerance is fixed to 10~7. It can be seen that, for all cases, a value of m = 20 is sufficient to achieve
errors e < 0.01%. A still acceptable error of ¢ < 0.1% can be achieved with m = 10 strips. The figure
also shows that the higher the AR, the greater the number of strips necessary to reach the same
level of convergence. As the aspect ratio increases, the spanwise lift distribution becomes flatter
and decreases more quickly at the wingtips; the Fourier series of Equation (1) requires more terms
in order to represent such lift distributions accurately. In the asymptotic case, a rectangular wing with
infinite span can only be modeled if an infinite number of terms is used in the series; we have already
shown in Equation (25) that the WLL model then reduces to the classical 2D Wagner formulation.

4.2. Vortex Lattice Convergence

The quality of the solutions obtained from the vortex lattice method is based on the the number of
panels used to represent the wing in the spanwise and chordwise directions. The VLM is more
sensitive to the chordwise than the spanwise number of panels [30], so a convergence for the number of
chordwise panels is performed.

Figure 6 plots the variation of the error of Equation (29) with the number of chordwise panels
for a rectangular wing (AR = 6) oscillating around its leading edge with a reduced frequency k = 0.3.
The reference number of chordwise panels is j = 100. The number of spanwise panels is set to 15.
It can be seen that j = 75 is sufficient to achieve errors e < 1071% for the rectangular wing case with a
leading edge pitch axis. The figure also shows that the convergence is independent of the aspect ratio.
This is logical since the convergence parameter is the number of chordwise panels.

All other test cases used in this work converge for j = 75, as long as the pitch axis does not lie at
co/4. A larger number of chordwise panels j = 100 is necessary for convergence when the pitch axis
lies on the quarter chord because the moment loads need to converge to values very close to zero for
the oscillating case with low reduced frequency. Convergence is therefore harder to achieve.
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0 10 20 30 40 50 60 75 90 100
Chordwise pannel

Figure 6. Vortex Lattice Method (VLM) convergence with the number of chordwise panels.

5. Lift and Moment Results for a Rectangular Wing

In this section, the WLL method is applied to the rectangular wing under different kinematic
conditions. The lift and moment estimates are compared to predictions obtained by the VLM
technique and by strip theory. In all cases, the VLM estimates were obtained from time-converged and
spatially-converged simulations.

For the first comparison, the pitch axis is located at the leading edge and the wing undergoes a
step change in pitch or plunge, as explained in Section 3.1. The resulting lift and moment responses
are shown in Figure 7; the WLL estimates are in good agreement with the VLM results for both pitch
and plunge motions. In contrast, the strip theory result is significantly overestimated in the pitch
step case and underestimated in the plunge step case. Note that the agreement in pitching moment
for the step pitch case is not as good as in the other results; small differences between the VLM and
WLL predictions persist at steady-state conditions. This is due to modeling differences between the
two approaches. WLL calculates the total stripwise lift and places it at the quarter chord. In contrast,
the VLM calculates a lift force on the 3/4 chord point of each chordwise panel, and the total stripwise
lift is the sum of all the lift forces on the same strip. The point of application of the VLM’s total
stripwise lift is exactly the quarter chord only for an infinite number of chordwise panels.
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= WLL
-0.04 = VLM
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$)
-0.08
-0.1
O L L L L L L _012 L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Figure 7. Cont.
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Figure 7. Comparison between VLM, WLL and strip theory for a rectangular wing undergoing a step
motion. (a) Lift coefficient, pitch step A = 5°; (b) Lift coefficient, plunge step A = 0.1 m; (c) Moment

coefficient, pitch step A = 5°; (d) Moment coefficient, plunge step A = 0.1 m.

Simulations where repeated for other positions of the pitch axis, but the results are not shown
here for conciseness. All of these simulations resulted in WLL predictions that were in good agreement
with the VLM estimates.

For the second comparison, the WLL, VLM and strip theory techniques are applied to a rectangular
wing with an aspect ratio of six undergoing sinusoidal oscillations in pitch or plunge, as detailed in
Section 3.1. Several reduced frequency values were tested, but only the results for k = 0.1 and k = 0.3

are presented here. The lift results are plotted in Figure 8 and the moment results in Figure 9. There is
very good agreement between the WLL and VLM predictions for all frequencies, while the strip theory

estimates are quite inaccurate at both values of k.
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Figure 8. Cont.
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Figure 8. Lift comparison between VLM, WLL and strip theory for a rectangular wing undergoing

an oscillation motion. (a) Oscillation in pitch with A = 5° and k = 0.1; (b) Oscillation in plunge with
A =0.1mand k = 0.1; (c) Oscillation in pitch with A = 5° and k = 0.3; (d) Oscillation in plunge with
A=0.1mandk=0.3.
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Figure 9. Moment comparison between VLM, WLL and strip theory for a rectangular wing undergoing

an oscillation motion. (a) Oscillation in pitch with A = 5° and k = 0.1; (b) Oscillation in plunge with
A =0.1m and k = 0.1; (c) Oscillation in pitch with A = 5° and k = 0.3; (d) Oscillation in plunge with
A=0.1mandk=0.3.
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Figure 10a plots the NRMSD values calculated from Equation (27), for all the tested values of k.
The difference between the WLL and VLM predictions increases with reduced frequency, but stays
lower than 3% for all kinematics and aerodynamic loads. This level of difference is considered
good for such frequencies. Repeating the simulations after moving the pitch axis to the quarter chord,
as shown in Figure 10b, results in equally good agreement between the WLL and VLM aerodynamic
load predictions.

35— ‘ ‘ 29— | ‘
—0-Pitch lift NRMSD —O0-Pitch lift NRMSD
-0- Pitch moment NRMSD -0-Pitch moment NRMSD i
3l Plunge lift NRMSD Plunge lift NRMSD LA
—~ -A- Plunge moment NRMSD = 2, |-A-Plunge moment NRMSD|a"” ]
S S A
S 25 N g
cg § 15 - A,y,‘ ]
~ - an
= Z, "ol
_--0
1. 1 e T D A
0.5 : : ‘
. . 0.2 0.4 0.6 0.8 1
k (-) k (-)
(a) (b)

Figure 10. NRMSD between VLM and WLL aerodynamic responses for a rectangular wing AR = 6
undergoing oscillations motion. (a) Pitch axis on leading edge; (b) Pitch axis on quarter chord.

6. Lift and Moment Results for a Tapered Wing

In this section, step and sinusoidal numerical tests are applied to the tapered wing with an aspect
ratio of six described in Section 3. Initially, the pitch axis is located at the leading edge of the root chord,
and the wing undergoes step changes in pitch or in plunge, as detailed in Section 3.1. The resulting
lift and moment responses are shown in Figure 11. In all cases, the WLL and VLM predictions are in
very good agreement, while the strip theory results are highly overestimated in the pitch step case.
Moving the pitch axis to the quarter chord results in equally good agreement between the WLL and
VLM aerodynamic load responses.

0-6 0.12
0.5 1 0.1 Strip Theory
0.08 \ = VLM
0.4 — : — WLL
g < 0.06
0.3 Strip Theory | ©
— VLM 0.04
= WLL
0-2 0.02
0.1 : : : : : : 0 ‘ ‘ ‘ ‘ -
0 0.1 02 03 04 05 06 0 0.1 02 03 04 05 06
Time(s) Time(s)
(a) (b)

Figure 11. Cont.
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Figure 11. Comparison between VLM, WLL and strip theory for a tapered wing, AR = 6, undergoing
a step motion. (a) Lift coefficient, pitch step A = 5°; (b) Lift coefficient, plunge step A = 0.1 m;
(c) Moment coefficient, pitch step A = 5°; (d) Moment coefficient, plunge step A = 0.1 m.

Finally, the WLL and VLM are compared for the case of pitch or plunge sinusoidal oscillations at
different reduced frequencies for the tapered wing. The pitch axis is located at the leading edge of the
root chord. Figure 12a plots the variation of the NRMSD values between the two sets of predictions,
for increasing k values. It can be seen that in all cases the maximum NRMSD stays below 5%.
It is concluded that the WLL approach can predict accurately the aerodynamic load responses for
oscillating tapered wings. Moving the pitch axis to the quarter chord results in equally good predictions,
as seen in Figure 12b.

S ‘ ‘ 6 T
—0-Pitch lift NRMSD AT —O-Pitch lift NRMSD A--A--
-0-Pitch moment NRMSD | o--~ 5.5 -0-Pitch moment NRMSD

4.5) Plunge lift NRMSD ‘ Plunge lift NRMSD
- -A-Plunge moment NRMSD __ 5 |~A-Plunge moment NRMSD
X xS e
~ 45 ~
= = 4 &
< K.
= =

0.8 1

0.6
k (-)
(b)

Figure 12. NRMSD between VLM and WLL aerodynamic responses for a tapered wing AR = 6
undergoing oscillations motion. (a) Pitch axis on root leading edge; (b) Pitch axis on root quarter chord.

7. Computational Cost

The computation times of the WLL and VLM approaches are compared for a step and three
sinusoidal oscillations in pitch, with reduced frequencies k = [0.1, 0.5, 1] and a total simulation time
Tr = 1.3 s. The following parameters have been used for each method :
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VLM: There are 15 spanwise and 20 chordwise panels, and the time step is At = 10~3. The wake

shape is prescribed in order to reduce computational cost.
WLL: The computation parameters used are 15 strips, a tolerance Tol = 108 and an initial time step
At = 1073 for the Runge-Kutta-Fehlberg 45 algorithm.

All the calculations were run on a MacBook Pro laptop computer with a quad-core Intel i7
processor rated at 2.5 GHz, running iOS Version 10.9.5.

Table 1 shows that WLL calculation times are much lower than VLM numerical simulations to
simulate 1.3 s of pitch step or sinusoidal oscillations with reduced frequency k = [0.1, 0.5, 1].
The benefit of an adaptive time step for WLL can also be seen as the computation time is lower for
cases with low or high reduced frequencies. It should be stressed that the implementation of the
two methods is completely different; the WLL is implemented purely in MATLAB, while the VLM is
implemented as a combination of MATLAB and C code (mex functions). If the WLL were also
implemented using compiled code, it would be even faster.

Table 1. Computation time comparison between VLM and WLL.

Model Step Oscillation k = 0.1 Oscillation k = 0.5 Oscillation k =1

VLM 503 s 504 s 495 s 497 s
WLL 15s 36s 57s 32s

8. Aeroelastic Test Case

In order to further validate the Wagner lifting line approach, an aeroelastic test case is presented
for a rigid rectangular wing with pitch and plunge degrees of freedom. The flutter speed will be
computed as a function of the position of the pitching axis and the wing’s aspect ratio using both the
Wagner lifting line and the Vortex lattice method.

8.1. Aeroelastic Equations of Motion

The structure simply consists of a rigid wing with two degrees of freedom in pitch and plunge.
The structural equations of motion are given by:

- ky o] o l—L(t)] (30)

SZU Iw

My  Sw
0 ke M(t)

where q = [ a]7, I is the plunge displacement, a the pitch displacement, n1,, the mass, S, the static
imbalance around the pitching axis, I, the moment of inertia around the pitching axis, kj, and k,
the stiffnesses of the springs providing restoring loads in the plunge and pitch degrees of freedom,
respectively, and L(t) and M(t) are the lift and moment around the pitching axis computed using the
VLM or WLL approaches.

The wing is chosen as an aluminum rectangular flat plate with chord ¢y = 0.1 m, thickness
h = 0.005 m and span s; the distance between the pitch axis and the mid-chord is x,. The mass matrix
components can then be computed as:

My = pPashcy
2
MyC,

Iw = 120—|—me%9€5

Sw = —MmypX,
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where p,; = 2300 kg/m?3 is the density of aluminum. The spring stiffnesses for the two degrees of
freedom are chosen such that the uncoupled, wind-off natural frequencies of the system are f;, = 1 Hz
and f, = 5 Hz. The stiffnesses are then given by:

kh = mw(27'[fh>2
ke Lo (27 fa)?

The normal force L(t) and moment around the pitching axis M(t) are computed from Equations (6)
and (8), together with the added mass effects described in Expressions (20) and (21). The integrals are
approximated using the trapezoidal rule.

Finally, the complete linear aeroelastic system composed of Equations (30) and (22) can be written
in first-order form as:

x =H(U, x,)x (31)

The aeroelastic system matrix H is derived in Appendix A, while x represents the system states
and is defined as:

x=[a1 cee w21 ... Zm q q]T (32)

where a; is the i-th Fourier coefficient, z; are the local aerodynamic state variables for the i-th strip:

zi = {Zi,l Zi2 Zi3 Zi4 Zi5 Zi,6]

q = [h a] and m is the number of strips. Consequently, the total number of states is 7m + 4.

Finally, the WLL flutter solution is obtained by computing the eigenvalues of matrix H(U, x,.) as
a function of the airspeed U. An indirect search procedure is employed to pinpoint the airspeed at
which one pair of complex conjugate eigenvalues becomes purely imaginary, which is the definition of
the flutter speed. The number of strips used to estimate matrix H(U, x,) is m = 20, and the flutter
solution is obtained for several values of the position of the pitch axis x,.

The VLM flutter solution is obtained using the modal frequency domain version of the method,
as detailed in [11]. Rigid body modes are chosen, one for the plunge and one for the pitch. The mode
shapes are given by:

wy(x,y) = 1

we(x,y) = x

where wy, (x, y) is the plunge mode shape and w, (x, y) the pitch mode shape. The elements of the mass
matrix are then obtained from:

Cc y )
My = Palh/o /0 wj, (x,y)dxdy
cry
Ly = pah /0 /0 wg (x, y)dxdy
¢ ry
Sw = palh/o /O wh(x/y)wlx(x/y)dxch/

The resulting flutter problem is of the form:

2
((l(bu) Af"1+Eq—pU2Q(k)> q(k) =0 (33)
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where A; is the structural mass matrix, Es is the structural stiffness matrix and Q(k) is the
frequency-dependent generalized aerodynamic force matrix generated by the VLM approach.
The flutter problem is solved using the p — k method.

8.2. Results

The resulting flutter speed and frequency values are plotted against the position of the pitch
axis in Figure 13 for two aspect ratios: AR = 4 and AR = 10. Figure 13a plots the flutter airspeeds
and shows that the VLM and WLL predictions are in good agreement with each other for both aspect
ratios. Figure 13b plots the flutter frequency predictions; the agreement is still very good as the highest
frequency discrepancy is of the order of 5%. It can be concluded that the Wagner lifting line method
can predict accurately the flutter of a wing with a finite span.

22
<67
20 ~-AR = 10, VLM < AR =10, VLM
gl - AR =10, WLL & T ARZa, M
—AR =4, VLM = DS
g ; g --AR=4, WLL
=16 --AR=4, WLL =
- ()
+ Lf:j |
Z 147 . 4
+~
= 420 =
jums) 3 e
10+ =
-0.5 0 0.5 0 0.2 0.4 0.6 0.8 1
z./c(-) ze/c(-)
(a) (b)

Figure 13. Comparison of flutter with the aeroelastic axis for a 3D wing, computed with vortex lattices
(dashed line) and the Wagner lifting line (solid). (a) Flutter speed; (b) Flutter frequency.

9. Conclusions

The WLL method results in a closed-form, state-space representation of the unsteady aerodynamic
loads acting on finite rectangular and tapered wings of different aspect ratios, under attached
incompressible flow conditions. The technique combines Wagner’s 2D unsteady lift theory,
Prandtl’s lifting line theory, the unsteady Kutta—Joukowski theorem and the added mass terms from
Theodorsen’s analysis. Sample simulations on wings with and without taper have shown very good
agreement between the WLL predictions and VLM simulation results. The method can also be readily
applied to wings with twist and camber. Sweep is more problematic, since lifting line theory has to be
modified in order to work in the presence of sweep. This modification will be addressed in future work.

The VLM approach is still more general than the WLL technique, as it can easily represent sweep.
The advantage of WLL is the fact that the resulting aerodynamic loads are written in state space form,
as functions of the structural and aerodynamic states. They can therefore be easily included in
aeroelastic and flight dynamic calculations. In contrast, the VLM or DLM techniques result in
time-marching simulations or, if using a modal frequency domain technique, in Equation (33),
which is a hybrid time-frequency domain equation that must be transformed to the time domain
in order to carry out aeroservoelastic calculations. In the present examples, the wings were rigid with
discrete degrees of freedom, but flexible wings with generalized modes can also be treated. Finally,
the WLL calculations are significantly faster than time domain VLM numerical simulations.
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Appendix A. Wagner Lifting Line Aeroelastic Matrix Computation

Appendix A.1. Sectional Normal Lift

First, Equation (5) for the sectional normal lift coefficient can be expressed in matrix form as:

m
ci(tyi) = ag Z <C0an + Coan> sin(n6;) (A1)
n=1 Ci u
—  Ay,an+ Dy,an (A2)

where ¢¢ (i) is the sectional lift at the i-th strip, y(i) is the location y of the i-th strip, an = [a1 a2 ...au]7,
while Ay, and Dy, are matrix coefficients. The special cases i = 0 and i = m + 1 correspond to the
wingtips, which are not normal strips. There is no lift at the wingtips, so that:

Yo = —s/2
Ymy1 = s/2
c(tyo) = c(t,ymir) =0

Appendix A.2. Downwash

The equation for the downwash (3) can be expressed in the following matrix form:

Ll()C()u UL sin(n6;
w(t) = T 5 () *3
n=
= Wy,an (A4)

where Wy, is a matrix coefficient.

Appendix A.3. Wagner Lifting Line
Using Expressions (A2) and (A4), the Wagner lifting line Equation (22) at the i-th strip can be
rewritten in the following matrix form:
a9®P(0)
u

G
Wiz; +Fq + ﬁWyi an (A6)

Ay,an+Dyan = Ciq+Diq+Eiz + Wy, an (A5)

Zi

For simplicity, it is assumed that 4 is not a function of the span location y. Then, Expressions (A5)
and (A6) are extended to include the equations for all the m strips.

Dyyan = Cvmq+ Dmq + Emz + (WyM — AyM)an (A7)
z = Wwmz+Fuyq+ WGM an (A8)
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where:
r T
z = |z7 ... z; ... zm] (A9)
r T
Ay = [An Ay o Ay (A10)
r T
Dy, = [Dy, ... Dy ... Dy, (A11)
r T
Cm = |G ... G ... cm] (A12)
r T
Dy = |D;y ... D; ... Dm} (A13)
EM = diag(El,...,Ei,...,Em) (A14)
ag®(0 T
Wy, = O u( ) Wy Wy W, (A15)
WM = diag(Wl,...,Wi,...,Wm) (A16)
T
Fv = [F .. F ... F] (A17)
T
_ G G G
Woy = [§Wy - §Wy .o §Wy| (A18)

Appendix A.4. Trapezoidal Rule
The computation of the circulatory lift for a rectangular wing can be expressed by the integral:
1 s/2
() = oelPe [ cf(ty)dy (A19)
2 —s/2

Then, using the trapezoidal rule, this integral can be approximated by the sum:

Le(t) = 1u2 m+lw C(t vy C(t vy A20
- Zp c Zl 2 (Cl( ’ylfl) +Cl( lyl)) ( )
i=
or, in matrix form,
ci(t,y1) ]
1 :
L(t) = EPUZC yi—vo - merl_ym} cj(t,yi-1) +cj(tyi) (A21)
Cf(t/ym) ]
(1 0 ... 0]
) 11 | ()
= seWcly-wo - ywa-wa] o . oof | (a22)
: 11| Lealtym)
_0 1_
ci(t,y1)
ci(t,
_ p|dt¥ (A23)
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Using Expression (A2), one can write:
L*(t) = TAy,an+ TDya, (A24)

As the chord and the location of the pitch axis are constant with span for a rectangular wing, the
circulatory moment in pitch M° is simply:

ME(t) = (c/4+ x.)L(t) (A25)

Appendix A.5. Non-Circulatory Loads

It is assumed that the wing is rectangular; therefore, the non-circulatory load coefficients are
identical to the sectional lift coefficients described in Section 2.4. They are written as:

) 1 b . b
Li(t) = SpUPc (ZZ (h—aba) +7£Ia) = Aj§ + Biq (A26)
, 1 b [ . 1\ . 1 nth N .

Appendix A.6. Total Aerodynamic Loads

The total lift applied on the wing can be written as:

L = L°(t)+Lit)
= TAy,an + TDyan + A1 + Biq (A28)
Similarly, the total pitching moment is:
M = M(t)+M(t)
= (c/4+x.)TAy,an + (c/4+ x.)TDy,an + Amg + Bmq (A29)

Appendix A.7. Structural Equations

From Expressions (A28) and (A29), Equations (30) can be written as:
([mw sw} + Al) q+TDyan = —TAyan—Bq— [kh 0} q (A30)
({sw Iw} n Am) q+ (c/4+x)TDyan = —(c/4+x)TAy,an — Bmd — [0 k,x} q (A31)

Appendix A.8. Aeroelastic System Matrix

Finally, Expressions (A7), (A8), (A30) and (A31) can be summarized in the following algebraic
linear form:

an an

Hy |2 = H | © (A32)
q q
g q

Then, the global aeroelastic system matrix H of Equation (31) is given by:

H=H; 'H, (A33)



Aerospace 2018, 5, 92 23 of 24

References

1. Theodorsen, T. General Theory of Aerodynamic Instability and the Mechanism of Flutter; Technical Report NACA
TR-496; NACA: Washington, DC, USA, 1935.

2. Jones, R.T. The Unsteady Lift of a Finite Wing; Technical Report NACA TN-682; NACA: Washington, DC, USA,
1939.

3. Fung, Y.C. An Introduction to the Theory of Aeroelasticity; Dover Publications: Mineola, NY, USA, 1993.

4. Peters, D.A.; Karunamurthy, S.; Cao, W.M. Finite state induced flow models; Part I: Two-dimensional thin
airfoil. J. Aircr. 1995, 32, 313-322. [CrossRef]

5. Leishman, J.; Nguyen, K. State-space representation of unsteady airfoil behavior. AIAA ]. 1990, 28, 836-844.
[CrossRef]

6. Dowell, EH. (Ed.) A Modern Course in Aeroelasticity, 4th ed.; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 2004.

7. Albano, E.; Rodden, W.P. A Doublet-Lattice Method for Calculating Lift Distributions on Oscillating Surfaces
in Subsonic Flows. AIAA J. 1969, 7, 279-285. [CrossRef]

8. Katz, ].; Plotkin, A. Low Speed Aerodynamics; Cambridge University Press: Cambridge, UK, 2001.

9.  Karpel, M. Design for the Active Flutter Suppression and Gust Alleviation Using State-Space Aeroelastic
Modeling. J. Aircr. 1982, 19, 221-227. [CrossRef]

10. Dimitriadis, G. Introduction to Nonlinear Aeroelasticity; John Wiley & Sons, Inc.: Chichester, UK, 2017.

11. Dimitriadis, G.; Giannelis, N.F,; Vio, G.A. A Modal Frequency-Domain Generalised Force Matrix for the
Unsteady Vortex Lattice Method. J. Fluids Struct. 2018, 76, 216-228. [CrossRef]

12.  Reissner, E. Boundary value problems in aerodynamics of lifting surfaces in non-uniform motion. Bull. Am.
Math. Soc. 1949, 55, 825-850. [CrossRef]

13. Chopra, M.G. Hydromechanics of lunate-tail swimming propulsion. J. Fluid Mech. 1974, 64, 375-391.
[CrossRef]

14. Chopra, M.G.; Kambe, T. Hydromechanics of lunate-tail swimming propulsion. Part 2. J. Fluid Mech. 1977,
79, 49-69. [CrossRef]

15. James, E.C. Lifting-line theory for an unsteady wing as a singular perturbation problem. J. Fluid Mech. 1975,
70, 753-771. [CrossRef]

16.  Ahmadi, A.R.; Widnall, S.E. Unsteady lifting-line theory as a singular perturbation problem. J. Fluid Mech.
1985, 153, 59-81. [CrossRef]

17. Van Holten, T. Some notes on unsteady lifting line theory. J. Fluid Mech. 1976, 77, 561-579. [CrossRef]

18. Phlips, PJ.; East, R.A.; Pratt, N.-H. An unsteady lifting line theory of flapping wings with application to the
forward flight of birds. J. Fluid Mech. 1981, 112, 97-125. [CrossRef]

19. Dragos, L. The Theory of Oscillating Thick Wings in Subsonic Flow. Lifting Line Theory. Acta Mech. 1985,
54, 221-238. [CrossRef]

20. Sclavounos, PD. An unsteady lifting-line theory. J. Eng. Math. 1987, 21, 201-226. [CrossRef]

21. Drela, M. Integrated simulation model for preliminary aerodynamic, structural, and control-law design of
aircraft. Am. Inst. Aeronaut. Astronaut. 1999. [CrossRef]

22. Nabawy, M.; Crowther, W.J. On the quasi-steady aerodynamics of normal hovering flight part II: Model
implementation and evaluation. J. R. Soc. Interface 2014, 11, 20131197. [CrossRef] [PubMed]

23. Nabawy, M.; Crowther, W.J. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight. J. R.
Soc. Interface 2015, 10, e0134972. [CrossRef] [PubMed]

24. Boutet, J.; Dimitriadis, G. Unsteady lifting line theory using the Wagner function. In Proceedings of the 55th
ATAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9-13 January 2017.

25. Izraelevitz, ].S.; Zhu, Q.; Triantafyllou, M.S. State-Space Adaptation of Unsteady Lifting Line Theory:
Twisting/Flapping Wings of Finite Span. AIAA J. 2017, 55, 1279-1294. [CrossRef]

26. Kuethe, AM.; Chow, C.Y. Foundations of Aerodynamics: Bases of Aerodynamic Design, 4th ed.; Wiley: New York,
NY, USA, 1986.

27.  Glauert, H. The Elements of Aerofoil and Airscrew Theory, 2nd ed.; Cambridge Science Classics; Cambridge
University Press: Cambridge, UK, 1983.

28. Jones, R.T. Operational Treatment of the Nonuniform-Lift Theory in Airplane Dynamics; Technical Report NACA

TN-667; NACA: Washington, DC, USA, 1938.


http://dx.doi.org/10.2514/3.46718
http://dx.doi.org/10.2514/3.25127
http://dx.doi.org/10.2514/3.55530
http://dx.doi.org/10.2514/3.57379
http://dx.doi.org/10.1016/j.jfluidstructs.2017.10.010
http://dx.doi.org/10.1090/S0002-9904-1949-09273-X
http://dx.doi.org/10.1017/S002211207400245X
http://dx.doi.org/10.1017/S0022112077000032
http://dx.doi.org/10.1017/S0022112075002339
http://dx.doi.org/10.1017/S0022112085001148
http://dx.doi.org/10.1017/S0022112076002255
http://dx.doi.org/10.1017/S0022112081000311
http://dx.doi.org/10.1007/BF01184848
http://dx.doi.org/10.1007/BF00127464
http://dx.doi.org/10.2514/6.1999-1394
http://dx.doi.org/10.1098/rsif.2013.1197
http://www.ncbi.nlm.nih.gov/pubmed/24554578
http://dx.doi.org/10.1371/journal.pone.0134972
http://www.ncbi.nlm.nih.gov/pubmed/26252657
http://dx.doi.org/10.2514/1.J055144

Aerospace 2018, 5, 92 24 of 24

29. Dimitriadis, G.; Gardiner, J.; Tickle, P; Codd, J.; Nudds, R. Experimental and numerical study of the flight of
geese. Aeronaut. J. 2015, 119, 1-30. [CrossRef]

30. Simpson, R].S.; Palacios, R. Induced-Drag Calculations in the Unsteady Vortex Lattice Method. AIAA J.
2013, 51, 1775-1779. [CrossRef]

@ (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1017/S0001924000010939
http://dx.doi.org/10.2514/1.J052136
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Method
	Lifting Line Theory
	Unsteady Kutta–Joukowski
	Wagner's Sectional Circulatory Lift
	Added Mass Effect
	Assembling the Pieces Together
	Asymptotic Behavior for a Rectangular Wing (c = c0)

	Test Cases
	Types of Motion
	Validation

	Convergence
	Runge-Kutta Convergence
	Vortex Lattice Convergence

	Lift and Moment Results for a Rectangular Wing
	Lift and Moment Results for a Tapered Wing
	Computational Cost
	Aeroelastic Test Case
	Aeroelastic Equations of Motion
	Results

	Conclusions
	Wagner Lifting Line Aeroelastic Matrix Computation
	Sectional Normal Lift
	Downwash
	Wagner Lifting Line
	Trapezoidal Rule
	Non-Circulatory Loads
	Total Aerodynamic Loads
	Structural Equations
	Aeroelastic System Matrix

	References

