
aerospace

Article

Model-Based Fault Detection and Diagnosis for
Spacecraft with an Application for the SONATE
Triple Cube Nano-Satellite

Kirill Djebko 1,* , Frank Puppe 1 and Hakan Kayal 2

1 Department of Computer Science VI, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
frank.puppe@uni-wuerzburg.de

2 Department of Computer Science VIII, University of Würzburg, Emil-Fischer-Str. 32, 97074 Würzburg,
Germany; hakan.kayal@uni-wuerzburg.de

* Correspondence: kirill.djebko@uni-wuerzburg.de; Tel.: +49-931-31-86405

Received: 7 August 2019; Accepted: 19 September 2019; Published: 24 September 2019
����������
�������

Abstract: The correct behavior of spacecraft components is the foundation of unhindered mission
operation. However, no technical system is free of wear and degradation. A malfunction of one single
component might significantly alter the behavior of the whole spacecraft and may even lead to a
complete mission failure. Therefore, abnormal component behavior must be detected early in order to
be able to perform counter measures. A dedicated fault detection system can be employed, as opposed
to classical health monitoring, performed by human operators, to decrease the response time to a
malfunction. In this paper, we present a generic model-based diagnosis system, which detects faults
by analyzing the spacecraft’s housekeeping data. The observed behavior of the spacecraft components,
given by the housekeeping data is compared to their expected behavior, obtained through simulation.
Each discrepancy between the observed and the expected behavior of a component generates a
so-called symptom. Given the symptoms, the diagnoses are derived by computing sets of components
whose malfunction might cause the observed discrepancies. We demonstrate the applicability of
the diagnosis system by using modified housekeeping data of the qualification model of an actual
spacecraft and outline the advantages and drawbacks of our approach.

Keywords: fault detection; model-based diagnosis; nano-satellite

1. Introduction

Fault detection during spacecraft missions is classically done by human operators in a manual or
semi-automatic fashion with the use of a telemetry client displaying the spacecraft’s housekeeping
data. When a telemetry parameter violates a predefined threshold limit, the operators get notified
and try to find the cause of the limit violation. The main drawback of this process is that it relies
on malfunctions, be it a component fault or failure, to be directly observable in the telemetry. Many
malfunctions do not suddenly occur with full intensity. Instead, the spacecraft’s components degrade
slowly, which causes initial abnormal behavior to be very subtle and to increase in severity as the
component deteriorates. These subtle changes in a components behavior are initially not observable in
the telemetry data. Manual supervision by human operators is highly susceptible to overlook such
subtle malfunctions, not directly visible while using the telemetry alone. However, the occurrence of a
malfunction in form of a violated limit often indicates that a fault could not be spotted in time and may
have already damaged the associated component.

Dedicated fault detection systems have been developed as a response to the flaws of manual
health monitoring. Such dedicated fault detection systems are often tailored to a specific spacecraft or

Aerospace 2019, 6, 105; doi:10.3390/aerospace6100105 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
https://orcid.org/0000-0002-2054-1344
http://www.mdpi.com/2226-4310/6/10/105?type=check_update&version=1
http://dx.doi.org/10.3390/aerospace6100105
http://www.mdpi.com/journal/aerospace

Aerospace 2019, 6, 105 2 of 34

a specific subsystem within a specific spacecraft and especially quantitative systems feature little or
no decoupling of the fault detection algorithm and the structural description of the spacecraft. As a
result, the expansion of the diagnostic capabilities of a special purpose system on board a spacecraft
becomes difficult, as it requires the upload of both the system description of the spacecraft, as well
as the complete fault detection algorithm. This poses an impediment to mission operation, as the
uplink capacity is generally very limited. Software uploads may take up to several weeks. Another
unfavorable aspect is that transferring the fault detection system from one spacecraft to another
requires extensive re-engineering. While most systems are limited to the single fault case, some systems
simultaneously allow for the detection of multiple malfunctions, but are often limited by being based
on qualitative system descriptions, greatly reducing their power of expression and the number of
components that can be modelled.

The Artificial Intelligence (AI) community and the Fault-Detection and Isolation (FDI) community
are both active on the research topic of diagnosis. While fault detection and diagnosis of spacecraft
often relies on hardware and sensor redundancy [1], adding redundant hardware to the spacecraft
is not always possible, due to space, weight, and cost constraints. As a result, redundancy through
software was studied. The FDI community’s classical approach to the problem is the concept of
analytical redundancy [2–4]. Focusing on quantitative model-based methods, parity relations, observers,
Kalman-filter, and parameter estimations are used to derive so-called Analytical Redundancy Relations
(ARRs). If an ARRs residual deviates from zero by more than a certain threshold, a fault is detected.
The residuals of all ARRs form the fault signature. The fault signature can then be used to narrow
down the candidates of malfunctioning components.

Examples of fault detection systems from the field of aerospace based on residual generation
include the work of [5,6], while using both Matlab/Simulink models. The work of [5] deals with faults
that affect the thrusters of the Mars Express spacecraft and [6] deals with the detection of faults on
the wing-flap actuators of the HL-20 reusable launch vehicle. For both systems, the model is tightly
coupled with the fault detection algorithm, making both adaptions to the existing model and transfer
to different air- and spacecraft require extensive re-engineering.

The AI community on the other hand employs expert systems and so-called Model-Based
Diagnosis (MBD), which is of qualitative and symbolic nature [7,8]. Expert system based fault detection
uses the sensor data of the technical system to compute characteristic values, so-called symptoms,
which then are used to derive diagnoses, with the help of a knowledge base. An application that was
based on this principle built to be used in spacecraft missions was developed by [9]. The knowledge
base consists of hand written rules of the form “if symptom then diagnosis”. However, the number
of rules grows exponentially in the number of components that the system consists of. Every rule
has to be manually formulated and then calibrated tediously, to fit as many fault cases as possible.
Even for moderate sized systems, this effort soon becomes infeasible. As a result, the rule set is almost
guaranteed to be incomplete. The diagnostic capabilities of such a system are also limited since only
those malfunctions can be detected, for which a rule was formulated. Additionally, the rule set cannot
be transferred from one spacecraft to another easily. Applying the fault detection system to another
spacecraft would require extensive re-engineering of the rule set.

Model-Based Diagnosis follows a different approach. Starting with the physical system,
a qualitative model is created to capture its nominal behavior [10,11]. During operation, the observed
behavior is compared with the expected behavior of the system, as given by the model through
simulation, and discrepancies are detected. Each discrepancy between the observed and the simulated
behavior is called a symptom. These symptoms are then used to compute diagnoses, mostly in a
qualitative fashion [12]. Hybrid systems, which use both quantitative models and expert systems, are
possible. The work described in [13] demonstrates the diagnosis of a fuel cell. It uses a quantitative
Dymola/Modelica model to compute symptoms in combination with an expert system to derive
diagnoses from these symptoms. While the power of expression of a quantitative model is superior to
that of a qualitative model, the drawbacks of the use of an expert system remain. Transferring the fault

Aerospace 2019, 6, 105 3 of 34

detection of [13] would require the complete re-engineering of not only the model, but also the rule
set. The approach of [14,15] describes a system for the diagnosis of motor vehicles. It uses a tabular
representation of the model components qualitative nominal and faulty behavior. To derive a diagnosis,
the available measured data is propagated backwards through the model graph, eliminating those
rows of the components behavior tables that are inconsistent with the observations. After the reduction
of the behavior tables, the components with reduced tables are assigned a score, based on the number
of rows left that can explain the observed symptoms. This MBD approach directly derives diagnoses
from a qualitative system description without the need for an expert system. This greatly reduces
the manual effort needed, as no rules need to be formulated by hand. Additionally, this approach
separates the model from the diagnostic algorithm, which makes the system transferable without the
need for extensive re-engineering. A drawback of this system is that it can only detect single faults and
relies on a qualitative model.

The most famous MBD applications that were used in satellite missions are Livingstone [16]
flown on board the Deep Space 1 spacecraft and its successor Livingstone 2 [17] flown on board the
Earth Observing One spacecraft. Livingstone uses a qualitative model to describe the different states
a component can have. Unlike [13], the nominal and faulty behaviors are modelled. The diagnostic
algorithm of Livingstone uses a conflict directed best first search to assign a nominal or fault state to
every component, so that the observed behavior of the system can be explained. The components that
have been assigned a fault state form the diagnosis. The use of a qualitative instead of a quantitative
model greatly reduces the accuracy of the model and the variety of component functions that can be
modelled, especially in regards to arithmetic operations, as the authors of [17,18] note in reflection of
their experiences with Livingstone 2. Additionally, many components can malfunction in arbitrary
many ways, most of which are difficult to anticipate in advance. Therefore, the need to describe the
faulty behavior of components might pose a problem for certain technical systems. Another MBD
application that was designed for the use in spacecraft missions is the approach of [19]. It uses a
quantitative Matlab/Simulink model for simulation. When a discrepancy between the observed and the
simulated behavior of a component is detected, diagnoses are derived by removing single components
one at a time and repeating the last simulation step for the remaining model. The order in which
components are removed is dependent on the number of connections to other components and their
reliability score, which has the character of an a priori failure probability. When one of these simulation
runs returns no discrepancy, the last removed component is the diagnosis. This method avoids the
exponential complexity of computing diagnoses directly and instead executes a number of simulations,
linear in the number of components, which the model consists of. A disadvantage of this approach
is that it can only diagnose single faults. Another disadvantage is that not every component can be
removed with the rest of the model still being simulatable in a meaningful way, therefore limiting the
diagnostic capabilities of the system. The FDI approach and the AI Model-Based Diagnosis are both
partially similar and comparable in terms of using some form of analytical redundancy. The authors
of [20] concluded that both approaches are equivalent in regards to their power of expression and
ability to detect malfunctions.

Our system is not deeply intertwined with a specific spacecraft but presents a generic approach to
fault detection and diagnosis that can be easily adapted to different spacecraft. Our approach aims at
using the power of expression of a quantitative model, while still being able to simultaneously detect
multiple malfunctions. It is not relying on proprietary libraries like Matlab/Simulink, making it suitable
to be ported to be used on board a spacecraft. Further, our approach strictly separates the model from
the diagnostic algorithm. The separation of model and diagnostic algorithm is especially important
for spacecraft, as software uploads are extremely time consuming. As the diagnostic capabilities
of the spacecraft can be adapted and expanded simply by adjusting the model, without the need
for changes to the underlying algorithm, only the model has to be uploaded, which minimizes the
size of the software upload. Additionally, our system allows for the update of model parameters at

Aerospace 2019, 6, 105 4 of 34

runtime without the need to recompile the model, and therefore minimizes the downtime due to the
recalibration of the model.

In this paper, we first briefly describe the classical approach to health monitoring performed by
human operators. Subsequently, we present the generic format and structure that is used for building a
model. The following sections describe the different parts of our fault detection and diagnosis system,
namely the simulation, the detection of discrepancies, and therefore the generation of symptoms, as
well as the computation of so-called conflict and hitting sets and give information on how models
are calibrated. We used the modified housekeeping data of the qualification model of the SONATE
Nano-satellite [21], a triple cube Nano-satellite built for the in-orbit verification of autonomous
detection, planning, and diagnosis technologies, to evaluate the fault detection system. We describe
the different experiments performed and show that the fault detection and diagnosis system is able to
detect the induced malfunctions, even those that are not apparent from the housekeeping data alone.
Further, we discuss the strengths and weaknesses of our approach and give an outlook on future work.

2. Classical Health Monitoring and Fault Detection

Without a dedicated fault detection system, health monitoring is based on supervision by human
operators and telemetry parameter thresholds. The spacecraft is recording and storing its telemetry
data periodically during operation. This so-called housekeeping data is then transferred to a ground
station during contact times, where the telemetry data is displayed to human operators, primarily in
the form of ASCII characters.

Figure 1 shows the telemetry display of the telemetry client that was developed as part of the
ADIA++ [22] and ADIA-L Project, which is used during the SONATE project to display spacecraft
telemetry. It shows two telemetry pages of actual telemetry data of the qualification model of the
SONATE Nano-satellite. Some telemetry parameters have associated lower and upper threshold limits.
When a threshold limit is violated, a warning or alarm is generated and made visible to the operator.
Upon noticing, the operator can take measures.

Aerospace 2019, 6, x 4 of 36

system, namely the simulation, the detection of discrepancies, and therefore the generation of
symptoms, as well as the computation of so-called conflict and hitting sets and give information on
how models are calibrated. We used the modified housekeeping data of the qualification model of
the SONATE Nano-satellite [21], a triple cube Nano-satellite built for the in-orbit verification of
autonomous detection, planning, and diagnosis technologies, to evaluate the fault detection system.
We describe the different experiments performed and show that the fault detection and diagnosis
system is able to detect the induced malfunctions, even those that are not apparent from the
housekeeping data alone. Further, we discuss the strengths and weaknesses of our approach and give
an outlook on future work.

2. Classical Health Monitoring and Fault Detection

Without a dedicated fault detection system, health monitoring is based on supervision by human
operators and telemetry parameter thresholds. The spacecraft is recording and storing its telemetry
data periodically during operation. This so-called housekeeping data is then transferred to a ground
station during contact times, where the telemetry data is displayed to human operators, primarily in
the form of ASCII characters.

Figure 1 shows the telemetry display of the telemetry client that was developed as part of the
ADIA++ [22] and ADIA-L Project, which is used during the SONATE project to display spacecraft
telemetry. It shows two telemetry pages of actual telemetry data of the qualification model of the
SONATE Nano-satellite. Some telemetry parameters have associated lower and upper threshold
limits. When a threshold limit is violated, a warning or alarm is generated and made visible to the
operator. Upon noticing, the operator can take measures.

Figure 1. Telemetry client displaying two telemetry pages of housekeeping data.

Figure 2 shows a telemetry page with four violated threshold limits and the error display
summarizing the threshold limit violations of the different telemetry parameters. When new
telemetry data is received, the data is calibrated, the threshold limits are checked, and the data is
displayed. By using the error display, the operator gets a quick overview of all limit violations that
occurred. The operator then can view the associated telemetry pages to assess the situation further.
Based on his expertise and knowledge of the system, the operator derives a conclusion regarding the
type and severity of the occurred limit violation and the possible cause of it. In the next step, the
operator can initiate counter measures. However, this procedure takes time to perform. The
spacecraft itself might react to some threshold limit violations with switching into safe mode without

Figure 1. Telemetry client displaying two telemetry pages of housekeeping data.

Figure 2 shows a telemetry page with four violated threshold limits and the error display
summarizing the threshold limit violations of the different telemetry parameters. When new telemetry
data is received, the data is calibrated, the threshold limits are checked, and the data is displayed.
By using the error display, the operator gets a quick overview of all limit violations that occurred.

Aerospace 2019, 6, 105 5 of 34

The operator then can view the associated telemetry pages to assess the situation further. Based on
his expertise and knowledge of the system, the operator derives a conclusion regarding the type and
severity of the occurred limit violation and the possible cause of it. In the next step, the operator can
initiate counter measures. However, this procedure takes time to perform. The spacecraft itself might
react to some threshold limit violations with switching into safe mode without operator interaction.
In that case, it is of importance to find out what caused the spacecraft to switch into safe mode.
However, while using this process, a malfunction can only be detected when a threshold limit was
violated. Ideally, a malfunction should be detected before a limit violation happens, as some threshold
limits might be critical to the spacecraft’s safety. Using only the telemetry data and an ASCII display,
like that of the telemetry client of Figure 1, this task becomes highly dependent on the operator’s
availability, expertise, and knowledge of the system. Observing all telemetry parameters at the same
time and detecting anomalies manually is difficult, even when multiple operators are present, as
anomalies might be very subtle, e.g., when monitoring a boost converter, given its input voltage and
current stemming from the power supply together with its output voltage and the current draw of the
consumers connected to it, it is difficult to decide whether the voltages and currents are acceptable.
The boost converter may still malfunction while no limit violation happened. The raw data alone
does not give information about whether a current of e.g., 0.45 A drawn from the power supply is
appropriate given the voltages and currents of the power supply and the current draw of the consumers.
The boost converters efficiency might have slowly deteriorated and increased the current draw from a
nominal value of e.g., 0.26 A to 0.45 A. However, the nominal value is not known to the operator, as it is
highly dynamic and dependent on the voltage and current of the power supply and the current draw of
all consumers. Identifying a malfunction before a threshold is violated shortens the duration between
the detection of the malfunction and the time of initiation of the first counter measure and it reduces
the impact of the malfunction on the spacecraft. A dedicated fault detection system might observe
different components and detect such anomalies. In case of the boost converter, the fault detection
system would try to infer the correct voltages and currents, given the appropriate measured data
and a functional description of the boost converters behavior and decide whether the boost converter
is malfunctioning.

Aerospace 2019, 6, x 5 of 36

operator interaction. In that case, it is of importance to find out what caused the spacecraft to switch
into safe mode. However, while using this process, a malfunction can only be detected when a
threshold limit was violated. Ideally, a malfunction should be detected before a limit violation
happens, as some threshold limits might be critical to the spacecraft’s safety. Using only the telemetry
data and an ASCII display, like that of the telemetry client of Figure 1, this task becomes highly
dependent on the operator’s availability, expertise, and knowledge of the system. Observing all
telemetry parameters at the same time and detecting anomalies manually is difficult, even when
multiple operators are present, as anomalies might be very subtle, e.g., when monitoring a boost
converter, given its input voltage and current stemming from the power supply together with its
output voltage and the current draw of the consumers connected to it, it is difficult to decide whether
the voltages and currents are acceptable. The boost converter may still malfunction while no limit
violation happened. The raw data alone does not give information about whether a current of e.g.,
0.45 A drawn from the power supply is appropriate given the voltages and currents of the power
supply and the current draw of the consumers. The boost converters efficiency might have slowly
deteriorated and increased the current draw from a nominal value of e.g., 0.26 A to 0.45 A. However,
the nominal value is not known to the operator, as it is highly dynamic and dependent on the voltage
and current of the power supply and the current draw of all consumers. Identifying a malfunction
before a threshold is violated shortens the duration between the detection of the malfunction and the
time of initiation of the first counter measure and it reduces the impact of the malfunction on the
spacecraft. A dedicated fault detection system might observe different components and detect such
anomalies. In case of the boost converter, the fault detection system would try to infer the correct
voltages and currents, given the appropriate measured data and a functional description of the boost
converters behavior and decide whether the boost converter is malfunctioning.

Figure 2. Telemetry client displaying a telemetry page of housekeeping data with violated threshold
limits.

3. Model-Based Diagnosis

The approach that was employed in this paper is that of quantitative model-based diagnosis,
with the main principles following the qualitative approach of [7] and [8] and implemented in Java.
For quantitative model-based diagnosis, a quantitative model of the physical system is built, which
captures its nominal behavior. The model is preprocessed and then loaded into the simulation
environment. Parts of the housekeeping data are then used to simulate the model, to obtain simulated
values, and therefore the expected behavior of the spacecraft. After the simulation has been

Figure 2. Telemetry client displaying a telemetry page of housekeeping data with violated
threshold limits.

Aerospace 2019, 6, 105 6 of 34

3. Model-Based Diagnosis

The approach that was employed in this paper is that of quantitative model-based diagnosis, with
the main principles following the qualitative approach of [7,8] and implemented in Java. For quantitative
model-based diagnosis, a quantitative model of the physical system is built, which captures its nominal
behavior. The model is preprocessed and then loaded into the simulation environment. Parts of the
housekeeping data are then used to simulate the model, to obtain simulated values, and therefore the
expected behavior of the spacecraft. After the simulation has been performed, the simulated values
are compared to the measured values from the housekeeping data and discrepancies are detected.
Each discrepancy is called a symptom. These symptoms are then used to compute so-called conflict
sets. These are sets of components on which the corresponding symptom components are dependent.
In a qualitative fashion, the malfunction of one component from the conflict set explains the associated
symptom components abnormal behavior. Finally, the minimal hitting sets are computed. A minimal
hitting set is a minimal set of components, such that it contains at least one component from every
conflict set. Therefore, each hitting set explains all symptoms. Each minimal hitting set corresponds to
one diagnosis.

The source code of the fault detection and diagnosis system can be provided by the authors
on personal request. Figure 3 shows an overview of the steps that were performed during the fault
detection and diagnosis process. The following sections describe the different algorithms in detail.

Aerospace 2019, 6, x 6 of 36

performed, the simulated values are compared to the measured values from the housekeeping data
and discrepancies are detected. Each discrepancy is called a symptom. These symptoms are then used
to compute so-called conflict sets. These are sets of components on which the corresponding
symptom components are dependent. In a qualitative fashion, the malfunction of one component
from the conflict set explains the associated symptom components abnormal behavior. Finally, the
minimal hitting sets are computed. A minimal hitting set is a minimal set of components, such that it
contains at least one component from every conflict set. Therefore, each hitting set explains all
symptoms. Each minimal hitting set corresponds to one diagnosis.

The source code of the fault detection and diagnosis system can be provided by the authors on
personal request. Figure 3 shows an overview of the steps that were performed during the fault
detection and diagnosis process. The following sections describe the different algorithms in detail.

Figure 3. Overview of the different steps performed during fault detection and diagnosis.

3.1 Model and Simulator

A model has to be built first in order to be used within an application like model-based
diagnosis. The modeling is usually done by or with the help of the system engineers or other experts
who have enough knowledge about the system to capture all relevant information of the spacecraft.
Components are modelled on component class level first and then instantiated since many technical
systems contain multiple components of one class, e.g., multiple batteries of the same type. The
component instances are then port-wise interconnected to form a model.

Figure 3. Overview of the different steps performed during fault detection and diagnosis.

Aerospace 2019, 6, 105 7 of 34

3.1. Model and Simulator

A model has to be built first in order to be used within an application like model-based diagnosis.
The modeling is usually done by or with the help of the system engineers or other experts who have
enough knowledge about the system to capture all relevant information of the spacecraft. Components
are modelled on component class level first and then instantiated since many technical systems contain
multiple components of one class, e.g., multiple batteries of the same type. The component instances
are then port-wise interconnected to form a model.

3.1.1. Model Editor

Various modeling tools and languages can be found in the literature. Among them are Matlab/

Simulink used by [5,6,19], AD2L a language that was originally developed to interchange diagnostic
system descriptions over the internet and later adapted for industrial needs [23], which enables users
to build diagnostic models without the need to be specific to the underlying diagnosis algorithm [24],
Dymola/Modelica a modeling suite comparable to Matlab/Simulink used by [13] and system specific
languages like the one used in [16]. For usability and deployment reasons, we use Microsoft Excel
as model editor and Python inline code for the description of the components behavior. Since, often,
knowledge from different engineers of a technical system is needed, an easy to use and easy to deploy
solution for building the model has been chosen.

3.1.2. Component Class Format

Each component class consists of a name, an a priori failure probability, arbitrary many inputs, and
arbitrary many outputs, each with a quantitative description, defining how the corresponding output
values are computed. The inputs of a component are also referred to as input ports or inports and
outputs are also referred to as output ports or outports. Each component class needs to have a unique
name. The instances of a component class can have arbitrary names. The a priori failure probabilities
should be picked by the systems engineers or other qualified experts based on component tests during
the early phases of the engineering process of the spacecraft or based on experience. An educated guess
can be made when no such knowledge is obtainable. Each input port of a component class consists of
a name, unique within the component class, an abbreviated name that is later displayed in the model
graph, a datatype, a lower threshold limit, an upper threshold limit, and an optional unit. Each output
port of a component class is defined the same way as an input, with the exception that every output
port additionally has a relative tolerance interval value, an absolute tolerance interval value and it is
additionally associated with a quantitative description. These quantitative descriptions are functions
of the type outputi = f (X), X ⊆ INPORTS, i = 1, . . . , n, with INPORTS being the set of input ports of
the corresponding component class and n being the number of output ports of the component class.
Each quantitative description is formulated as Python inline code. Additionally, for each component
class, arbitrary many error functions can be defined. These error functions are used to describe known
abnormal behavior explicitly. Error functions are similar to the quantitative descriptions of the outputs,
with the exception that they can be defined using both the inputs and outputs of the corresponding
component class. Each error function is given a probability and a descriptive text describing the
formulated abnormal behavior, as well as the error function itself.

Figure 4 shows an example component class definition of a boost converter with an a priori failure
probability of 0.2. There are 10 inputs and two outputs defined, e.g., the output port “CurrentDrawOut”
with the abbreviated name “CDO” is parametrized with datatype double, a lower threshold of 0.0,
an upper threshold of 4.0, a relative tolerance interval of 0.05, an absolute tolerance interval of 0.15,
unit “A”, and a quantitative description. The abbreviated name “CDO” is later displayed in the model
graph, next to the respective port of the instances of the Boostconverter component class. The defined
error function has a probability of 0.2, a descriptive text, and a quantitative description, defining if the
respective error is present or not. In this case, it checks whether the output voltage of the Boostconverter

Aerospace 2019, 6, 105 8 of 34

is higher than 5.2 V. If this is the case, the Boostconverter is producing overvoltage and the special
variable “error” is set to true, meaning that the described error is present; or else, it is set to false. No
meaningful direct comparison between simulated and measured values can be performed without
tolerance intervals, as they will diverge from each other in most cases, since noise and quantization
errors affect the measured values. When a simulated value lies within the tolerance intervals of a
measured value, both values are considered to be equal. The absolute tolerance interval is given as
an absolute value and is used to mitigate the effect of quantization errors and the relative tolerance
interval is given as a value in percent and is used to compensate for noise. Section 3.3.1 explains
the use of tolerance intervals in more detail. A component with no inputs and with outputs, which
have quantitative descriptions, is called an emitter. Emitters usually produce either fixed or random
values via their outputs. A component with no inputs and with outputs, which have no quantitative
descriptions, is called a sensor component. This type of component is used to explicitly model sensors.

Aerospace 2019, 6, x 8 of 36

component with no inputs and with outputs, which have quantitative descriptions, is called an
emitter. Emitters usually produce either fixed or random values via their outputs. A component with
no inputs and with outputs, which have no quantitative descriptions, is called a sensor component.
This type of component is used to explicitly model sensors.

Figure 4. Example component class of a boost converter. The name of the component class and its a
priori failure probability are defined in the dark blue block, the input ports are defined in the green
block, the output ports are defined in the blue block and the error functions are defined in the light
red block.

3.1.3 Connector Format

Once the component classes have been defined, they can be instantiated and port wise
interconnected to form a model. Therefore, a different Excel spreadsheet with three tables is used.
The first table, the “components” table, contains the instance names of the component instances and
the name of the component class that has to be instantiated. These instances correspond to the
components of the real technical system. The components of a model form the set 𝑉 of vertices of the
model graph. The second table, the “forward connector” table, contains the port connections, which
are simulated during each time step by forward propagation. The set of forward connections is called 𝐸௙௢௥௪௔௥ௗ. The third table, for a better distinction, called the “backwards connector” table, contains the
port connections, which are simulated once at the beginning of the simulation of a time step, while
using data from the previous iteration. The set of backward connections is called 𝐸௕௔௖௞௪௔௥ௗ . The
model graph 𝐺 = (𝑉, 𝐸௙௢௥௪௔௥ௗ, 𝐸௕௔௖௞௪௔௥ௗ) contains all components, as well as all connections between
the ports of the different components.

Figure 5 shows an example of a components table and a forward connector table. In the
components table, the column “Id” contains the instance name of the component instance to be
created and the “Type” column contains the component class that has to be instantiated. For the
forward connector and backward connector table, the syntax for the column “Output” is 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖𝑛𝑐𝑡𝑎𝑛𝑐𝑒. 𝑜𝑢𝑡𝑝𝑜𝑟𝑡 and for the “Input” column the syntax is 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒. 𝑖𝑛𝑝𝑜𝑟𝑡.

Figure 4. Example component class of a boost converter. The name of the component class and its a
priori failure probability are defined in the dark blue block, the input ports are defined in the green
block, the output ports are defined in the blue block and the error functions are defined in the light
red block.

3.1.3. Connector Format

Once the component classes have been defined, they can be instantiated and port wise
interconnected to form a model. Therefore, a different Excel spreadsheet with three tables is used.
The first table, the “components” table, contains the instance names of the component instances and the
name of the component class that has to be instantiated. These instances correspond to the components
of the real technical system. The components of a model form the set V of vertices of the model
graph. The second table, the “forward connector” table, contains the port connections, which are
simulated during each time step by forward propagation. The set of forward connections is called
E f orward. The third table, for a better distinction, called the “backwards connector” table, contains the

Aerospace 2019, 6, 105 9 of 34

port connections, which are simulated once at the beginning of the simulation of a time step, while
using data from the previous iteration. The set of backward connections is called Ebackward. The model
graph G =

(
V, E f orward, Ebackward

)
contains all components, as well as all connections between the ports

of the different components.
Figure 5 shows an example of a components table and a forward connector table. In the components

table, the column “Id” contains the instance name of the component instance to be created and the
“Type” column contains the component class that has to be instantiated. For the forward connector
and backward connector table, the syntax for the column “Output” is component_inctance.outport and
for the “Input” column the syntax is component_instance.inport. Each row of the forward connector and
backward connector table reads: “component_instance.outport is connected to component_instance.inport”.
For all of the connections, only those ports can be referenced that have been previously defined in the
respective component class. To guarantee a fixed simulation sequence, there are no loops allowed in
the model on port level during forward propagation, i.e., an outport is not allowed to have a connection
to an inport on which it is dependent. Therefore, the graph G f orward =

(
V, E f orward

)
has to be acyclic on

port level.

Aerospace 2019, 6, x 9 of 36

Each row of the forward connector and backward connector table reads:
“ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒. 𝑜𝑢𝑡𝑝𝑜𝑟𝑡 is connected to 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒. 𝑖𝑛𝑝𝑜𝑟𝑡 ”. For all of the
connections, only those ports can be referenced that have been previously defined in the respective
component class. To guarantee a fixed simulation sequence, there are no loops allowed in the model
on port level during forward propagation, i.e., an outport is not allowed to have a connection to an
inport on which it is dependent. Therefore, the graph 𝐺௙௢௥௪௔௥ௗ = (𝑉, 𝐸௙௢௥௪௔௥ௗ) has to be acyclic on
port level.

(a) (b)

Figure 5. Example of a components table used to instantiate components (a) and a forward connector
table used to connect component instances port wise (b).

Figure 6 shows an example of a backwards connector table. The graph 𝐺௕௔௖௞௪௔௥ௗ =(𝑉, 𝐸௕௔௖௞௪௔௥ௗ) might contain feedback loops, since the connections of the “backwards connector”-
table are only considered once at the beginning of the simulation of a time step, as described in
Algorithm 1 of Section 3.2. The two types of connections are necessary to model loops over time.

Figure 6. Example of a backwards connector table used to connect component instances port wise.

Figure 7 illustrates how a loop on port level is modelled. A system containing a loop (a) is
modelled by changing one connection of the loop from a forward connection to a backward
connection (b), so that the computation of the loop is done in two time steps (c). During time step 𝑖, 𝐴 produces an output, while using the output of 𝐵 from the previous time step, or an initial value,
if the current time step is the first one. Afterwards, 𝐵 uses the output of 𝐴 to produce its own output.
At the beginning of time step 𝑖 + 1 the output of 𝐵 from time step 𝑖 is used as input of 𝐴. With the
use of feedback loops, memory and operations like incrementation of a value can be modelled.

Figure 5. Example of a components table used to instantiate components (a) and a forward connector
table used to connect component instances port wise (b).

Figure 6 shows an example of a backwards connector table. The graph Gbackward = (V, Ebackward)

might contain feedback loops, since the connections of the “backwards connector”-table are only
considered once at the beginning of the simulation of a time step, as described in Algorithm 1 of
Section 3.2. The two types of connections are necessary to model loops over time.

Aerospace 2019, 6, x 9 of 36

Each row of the forward connector and backward connector table reads:
“ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒. 𝑜𝑢𝑡𝑝𝑜𝑟𝑡 is connected to 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒. 𝑖𝑛𝑝𝑜𝑟𝑡 ”. For all of the
connections, only those ports can be referenced that have been previously defined in the respective
component class. To guarantee a fixed simulation sequence, there are no loops allowed in the model
on port level during forward propagation, i.e., an outport is not allowed to have a connection to an
inport on which it is dependent. Therefore, the graph 𝐺௙௢௥௪௔௥ௗ = (𝑉, 𝐸௙௢௥௪௔௥ௗ) has to be acyclic on
port level.

(a) (b)

Figure 5. Example of a components table used to instantiate components (a) and a forward connector
table used to connect component instances port wise (b).

Figure 6 shows an example of a backwards connector table. The graph 𝐺௕௔௖௞௪௔௥ௗ =(𝑉, 𝐸௕௔௖௞௪௔௥ௗ) might contain feedback loops, since the connections of the “backwards connector”-
table are only considered once at the beginning of the simulation of a time step, as described in
Algorithm 1 of Section 3.2. The two types of connections are necessary to model loops over time.

Figure 6. Example of a backwards connector table used to connect component instances port wise.

Figure 7 illustrates how a loop on port level is modelled. A system containing a loop (a) is
modelled by changing one connection of the loop from a forward connection to a backward
connection (b), so that the computation of the loop is done in two time steps (c). During time step 𝑖, 𝐴 produces an output, while using the output of 𝐵 from the previous time step, or an initial value,
if the current time step is the first one. Afterwards, 𝐵 uses the output of 𝐴 to produce its own output.
At the beginning of time step 𝑖 + 1 the output of 𝐵 from time step 𝑖 is used as input of 𝐴. With the
use of feedback loops, memory and operations like incrementation of a value can be modelled.

Figure 6. Example of a backwards connector table used to connect component instances port wise.

Figure 7 illustrates how a loop on port level is modelled. A system containing a loop (a) is
modelled by changing one connection of the loop from a forward connection to a backward connection
(b), so that the computation of the loop is done in two time steps (c). During time step i, A produces an
output, while using the output of B from the previous time step, or an initial value, if the current time
step is the first one. Afterwards, B uses the output of A to produce its own output. At the beginning of

Aerospace 2019, 6, 105 10 of 34

time step i + 1 the output of B from time step i is used as input of A. With the use of feedback loops,
memory and operations like incrementation of a value can be modelled.Aerospace 2019, 6, x 10 of 36

(a) (b) (c)

Figure 7. The modelling of a loop. A system containing a loop (a), the model of the system (b) and an
illustration of how the model is simulated (c).

Figure 8 shows how a component can compute 𝑥 = 𝑥 + 1. A feedback loop is used to assign the
value of 𝑥௜௡ + 1 to 𝑥௢௨௧. Since 𝑥௜௡೟೔ = 𝑥௢௨௧೟೔షభ , the component computes 𝑥௢௨௧೟೔ = 𝑥௢௨௧೟೔షభ + 1.

Figure 8. Example of a component computing 𝑥 = 𝑥 + 1.

3.1.4 Port Dependencies

An important preprocessing step for both the simulation and the diagnosis is the computation
of port dependencies. There are two types of dependencies:

• The static port dependencies map each outport of each component to the inports that are needed
to compute a value for the corresponding outport, independent of the actual inport values. These
port dependencies are all inports, which are part of the quantitative description of the
corresponding outport. When the outport of a component is simulated, it is first checked, if the
values for all inports on which the outport is dependent are available.

• The dynamic port dependencies are used for the computation of conflict sets during the
diagnosis. These port dependencies map each outport of each component to the inports on
which the corresponding outport is dependent during the current time step, given the available
values for the inports. These port dependencies are updated after each simulation, since the port
dependencies can change in respect to the values of the inports.
Figure 9 shows an example quantitative description of an output with two inputs. If input1 is

greater than 0, then the output becomes dependent on input1 and input2, or else the output is only
dependent on input1. There exists a special parser and tree walker, which analyses the quantitative
descriptions of the different components and generates data structures that allow for the update of
port dependencies, given the measured and simulated values for the different inports.

Figure 9. Example quantitative description of an output with two inputs

Figure 10 shows an excerpt of the context free ANTLR grammar, used by the parser to analyze
the port dependencies. The quantitative expressions of each outport are split into parts, e.g.,

Figure 7. The modelling of a loop. A system containing a loop (a), the model of the system (b) and an
illustration of how the model is simulated (c).

Figure 8 shows how a component can compute x = x + 1. A feedback loop is used to assign the
value of xin + 1 to xout. Since xinti

= xoutti−1
, the component computes xoutti

= xoutti−1 + 1.

Aerospace 2019, 6, x 10 of 36

(a) (b) (c)

Figure 7. The modelling of a loop. A system containing a loop (a), the model of the system (b) and an
illustration of how the model is simulated (c).

Figure 8 shows how a component can compute 𝑥 = 𝑥 + 1. A feedback loop is used to assign the
value of 𝑥௜௡ + 1 to 𝑥௢௨௧. Since 𝑥௜௡೟೔ = 𝑥௢௨௧೟೔షభ , the component computes 𝑥௢௨௧೟೔ = 𝑥௢௨௧೟೔షభ + 1.

Figure 8. Example of a component computing 𝑥 = 𝑥 + 1.

3.1.4 Port Dependencies

An important preprocessing step for both the simulation and the diagnosis is the computation
of port dependencies. There are two types of dependencies:

• The static port dependencies map each outport of each component to the inports that are needed
to compute a value for the corresponding outport, independent of the actual inport values. These
port dependencies are all inports, which are part of the quantitative description of the
corresponding outport. When the outport of a component is simulated, it is first checked, if the
values for all inports on which the outport is dependent are available.

• The dynamic port dependencies are used for the computation of conflict sets during the
diagnosis. These port dependencies map each outport of each component to the inports on
which the corresponding outport is dependent during the current time step, given the available
values for the inports. These port dependencies are updated after each simulation, since the port
dependencies can change in respect to the values of the inports.
Figure 9 shows an example quantitative description of an output with two inputs. If input1 is

greater than 0, then the output becomes dependent on input1 and input2, or else the output is only
dependent on input1. There exists a special parser and tree walker, which analyses the quantitative
descriptions of the different components and generates data structures that allow for the update of
port dependencies, given the measured and simulated values for the different inports.

Figure 9. Example quantitative description of an output with two inputs

Figure 10 shows an excerpt of the context free ANTLR grammar, used by the parser to analyze
the port dependencies. The quantitative expressions of each outport are split into parts, e.g.,

Figure 8. Example of a component computing x = x + 1.

3.1.4. Port Dependencies

An important preprocessing step for both the simulation and the diagnosis is the computation of
port dependencies. There are two types of dependencies:

• The static port dependencies map each outport of each component to the inports that are needed
to compute a value for the corresponding outport, independent of the actual inport values.
These port dependencies are all inports, which are part of the quantitative description of the
corresponding outport. When the outport of a component is simulated, it is first checked, if the
values for all inports on which the outport is dependent are available.

• The dynamic port dependencies are used for the computation of conflict sets during the diagnosis.
These port dependencies map each outport of each component to the inports on which the
corresponding outport is dependent during the current time step, given the available values for the
inports. These port dependencies are updated after each simulation, since the port dependencies
can change in respect to the values of the inports.

Figure 9 shows an example quantitative description of an output with two inputs. If input1 is
greater than 0, then the output becomes dependent on input1 and input2, or else the output is only
dependent on input1. There exists a special parser and tree walker, which analyses the quantitative
descriptions of the different components and generates data structures that allow for the update of
port dependencies, given the measured and simulated values for the different inports.

Aerospace 2019, 6, 105 11 of 34

Aerospace 2019, 6, x 10 of 36

(a) (b) (c)

Figure 7. The modelling of a loop. A system containing a loop (a), the model of the system (b) and an
illustration of how the model is simulated (c).

Figure 8 shows how a component can compute 𝑥 = 𝑥 + 1. A feedback loop is used to assign the
value of 𝑥௜௡ + 1 to 𝑥௢௨௧. Since 𝑥௜௡೟೔ = 𝑥௢௨௧೟೔షభ , the component computes 𝑥௢௨௧೟೔ = 𝑥௢௨௧೟೔షభ + 1.

Figure 8. Example of a component computing 𝑥 = 𝑥 + 1.

3.1.4 Port Dependencies

An important preprocessing step for both the simulation and the diagnosis is the computation
of port dependencies. There are two types of dependencies:

• The static port dependencies map each outport of each component to the inports that are needed
to compute a value for the corresponding outport, independent of the actual inport values. These
port dependencies are all inports, which are part of the quantitative description of the
corresponding outport. When the outport of a component is simulated, it is first checked, if the
values for all inports on which the outport is dependent are available.

• The dynamic port dependencies are used for the computation of conflict sets during the
diagnosis. These port dependencies map each outport of each component to the inports on
which the corresponding outport is dependent during the current time step, given the available
values for the inports. These port dependencies are updated after each simulation, since the port
dependencies can change in respect to the values of the inports.
Figure 9 shows an example quantitative description of an output with two inputs. If input1 is

greater than 0, then the output becomes dependent on input1 and input2, or else the output is only
dependent on input1. There exists a special parser and tree walker, which analyses the quantitative
descriptions of the different components and generates data structures that allow for the update of
port dependencies, given the measured and simulated values for the different inports.

Figure 9. Example quantitative description of an output with two inputs

Figure 10 shows an excerpt of the context free ANTLR grammar, used by the parser to analyze
the port dependencies. The quantitative expressions of each outport are split into parts, e.g.,

Figure 9. Example quantitative description of an output with two inputs

Figure 10 shows an excerpt of the context free ANTLR grammar, used by the parser to analyze the
port dependencies. The quantitative expressions of each outport are split into parts, e.g., “ifBlock”,
“elseifBlock”, and “elseBlock” consisting of expressions that can be evaluated, e.g., “booleanExpression”
and “arithmeticExpression”. The Boolean and arithmetic expressions are evaluated by order of their
if-elseif-else parts, while using the data of the current time step. The ports contained in the respective
if-elseif-else part to apply first are added to the dynamic port dependencies. This procedure is repeated
recursively, as the grammar allows for nesting of expressions. These dynamic port dependencies are
later used to limit the number of components that have to be considered during the computation of the
conflict sets, as described in Section 3.3.2.

Aerospace 2019, 6, x 11 of 36

“ifBlock”, “elseifBlock”, and “elseBlock” consisting of expressions that can be evaluated, e.g.,
“booleanExpression” and “arithmeticExpression”. The Boolean and arithmetic expressions are
evaluated by order of their if-elseif-else parts, while using the data of the current time step. The ports
contained in the respective if-elseif-else part to apply first are added to the dynamic port
dependencies. This procedure is repeated recursively, as the grammar allows for nesting of
expressions. These dynamic port dependencies are later used to limit the number of components that
have to be considered during the computation of the conflict sets, as described in Section 3.3.2.

Figure 10. Excerpt from the context free grammar used to analyze the port dependencies.

3.2 Simulation

After a model is created, it can be used for simulation. The simulator is not bound to a single
model, as the model is separated from the simulator. Any model built in accordance to the format of
Sections 3.1.2 and 3.1.3 can be simulated. For simulation, the model is preprocessed and transformed
into the software’s internal data structures. The components are instantiated according to the
connector, their input and output ports are made unique and their quantitative descriptions are
accordingly adjusted. The quantitative descriptions are parsed and the port dependency data
structures are created. The static port dependencies are computed. Variable assignment functions
and the different adjusted quantitative expressions of the component instances are pre-compiled and
loaded within the execution environment. The model graphs 𝐺௙௢௥௪௔௥ௗ, 𝐺௕௔௖௞௪௔௥ௗ, and 𝐺 are built
and the simulator is initialized. The pseudo code of Algorithm 1 and Algorithm 2 describes how the
simulation of a time step is performed.

Figure 10. Excerpt from the context free grammar used to analyze the port dependencies.

3.2. Simulation

After a model is created, it can be used for simulation. The simulator is not bound to a single
model, as the model is separated from the simulator. Any model built in accordance to the format of
Sections 3.1.2 and 3.1.3 can be simulated. For simulation, the model is preprocessed and transformed
into the software’s internal data structures. The components are instantiated according to the connector,
their input and output ports are made unique and their quantitative descriptions are accordingly
adjusted. The quantitative descriptions are parsed and the port dependency data structures are created.
The static port dependencies are computed. Variable assignment functions and the different adjusted
quantitative expressions of the component instances are pre-compiled and loaded within the execution
environment. The model graphs G f orward, Gbackward, and G are built and the simulator is initialized. The
pseudo code of Algorithm 1 and Algorithm 2 describes how the simulation of a time step is performed.

Aerospace 2019, 6, 105 12 of 34

Aerospace 2019, 6, x; doi: www.mdpi.com/journal/aerospace

Algorithm 1. Pseudo code of the SimulateInitial-function of the simulator, used to perform initial
computations e.g., the simulation of emitters and to initialize the necessary data structures for further
simulation of the model.
ALGORITHM: SimulateInitial

INPUTS: The set of simulated outputs from the previous iteration: 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆௢௟ௗ

The set of measured inputs from the current iteration: 𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷_𝐼𝑁𝑃𝑈𝑇𝑆

The set of measured outputs from the current iteration: 𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆

The set of model components: 𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆

The set of forward connections: 𝐹𝑂𝑅𝑊𝐴𝑅𝐷_𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆

The set of backward connections: 𝐵𝐴𝐶𝐾𝑊𝐴𝑅𝐷_𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆

OUTPUTS: The set of simulated outputs: 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆

1. Map outputs from 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆௢௟ௗ to inputs 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝐼𝑁𝑃𝑈𝑇𝑆, using 𝐵𝐴𝐶𝐾𝑊𝐴𝑅𝐷_𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆

2. Let 𝐼𝑁𝑃𝑈𝑇_𝑉𝐴𝐿𝑈𝐸𝑆 be an empty set of input values. Merge 𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷_𝐼𝑁𝑃𝑈𝑇𝑆 and 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝐼𝑁𝑃𝑈𝑇𝑆 into 𝐼𝑁𝑃𝑈𝑇_𝑉𝐴𝐿𝑈𝐸𝑆

3. Map all outputs from 𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆 to inputs, using 𝐹𝑂𝑅𝑊𝐴𝑅𝐷_𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆 and merge them with 𝐼𝑁𝑃𝑈𝑇_𝑉𝐴𝐿𝑈𝐸𝑆

4. Let 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆 be an empty set of output values

5. Let 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆 be an empty set of components to consider for simulation

6. Let 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆 be an empty map of components to sets of ports to keep track which ports of which

components have been simulated already

7. Determine the set of components 𝑈𝑁𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐴𝐵𝐿𝐸_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆, that cannot be simulated during the current

iteration of the simulation

8. Simulate all emitter components, map their outputs to inputs and merge them with 𝐼𝑁𝑃𝑈𝑇_𝑉𝐴𝐿𝑈𝐸𝑆. Add all

components connected to them that are not in 𝑈𝑁𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐴𝐵𝐿𝐸_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆 to 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆

9. Check 𝐼𝑁𝑃𝑈𝑇_𝑉𝐴𝐿𝑈𝐸𝑆 and add all components, that have at least one 𝑖𝑛𝑝𝑢𝑡_𝑣𝑎𝑙𝑢𝑒 ∈ 𝐼𝑁𝑃𝑈𝑇_𝑉𝐴𝐿𝑈𝐸𝑆 and are not in 𝑈𝑁𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐴𝐵𝐿𝐸_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆 to 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆

10. IF 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆 ! = {} THEN

SimulateRecursive(𝐼𝑁𝑃𝑈𝑇_𝑉𝐴𝐿𝑈𝐸𝑆, 𝐹𝑂𝑅𝑊𝐴𝑅𝐷_𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆, 𝑈𝑁𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐴𝐵𝐿𝐸_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆, 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆, 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆, 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆)

ELSE

RETURN 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆

The simulation not only uses the primary inputs, i.e., sensor data and external inputs, but all the

available measured data. For a port, there might exist a measured and a simulated value simultaneously.
When this occurs, the measured value overwrites the simulated one. This is used to ensure that the
model is being simulated with as many values from the real technical system as possible, in order to
prevent an accumulation of errors due to modelling errors. The following figure illustrates the need
for value overwrites:

Figure 11 shows the behavior of a hypothetical real technical system on the left and its corresponding
model on the right, while assuming the absence of noise. Most models only approximate the real
behavior with certain accuracy since it is difficult to capture the behavior of a real technical system
perfectly. In this case, the behavior of the real technical system and its model deviate by an error of
ε > 0. For the sake of simplicity, it is assumed that f (in) = in + 1. If the input of the component from
Figure 11 is replaced by a measured value each iteration, then the accumulated error per iteration
would be ε. If the simulated value would not be overwritten by the measured value, then after x

Aerospace 2019, 6, 105 13 of 34

iterations, the accumulated error would be x · ε. For a great enough x, the modeling error would
become so large that no meaningful comparison of the observed and the simulated values could be
done, as the accuracy of the model then only depends on the number of simulated time steps, i.e., the
number of housekeeping frames.Aerospace 2019, 6, x 2 of 5

Algorithm 2. Pseudo code of the SimulateRecursive-function of the simulator, used to perform the simulation
of model components in a recursive fashion.
ALGORITHM: SimulateRecursive

INPUTS: The set of all input values: 𝐼𝑁𝑃𝑈𝑇_𝑉𝐴𝐿𝑈𝐸𝑆

The set of forward connections: 𝐹𝑂𝑅𝑊𝐴𝑅𝐷_𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆

The set of unsimulatable components: 𝑈𝑁𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐴𝐵𝐿𝐸_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆

The set of current candidates: 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆

The map of currently simulated components: 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆

The set of currently simulated outputs: 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆

OUTPUTS: The set of simulated outputs: 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆

1. Let 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆௡௘௪ be an empty set of components to consider for simulation

2. FOR EACH 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆

IF 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 has ports that are simulatable and are not contained in 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆

THEN

 𝑜𝑢𝑡𝑝𝑢𝑡𝑠௖௔௡ௗ௜ௗ௔௧௘ = simulate new simulatable ports

 Merge 𝑜𝑢𝑡𝑝𝑢𝑡𝑠௖௔௡ௗ௜ௗ௔௧௘ into 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆

Map 𝑜𝑢𝑡𝑝𝑢𝑡𝑠௖௔௡ௗ௜ௗ௔௧௘ to inputs, using 𝐹𝑂𝑅𝑊𝐴𝑅𝐷_𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆 and merge them with 𝐼𝑁𝑃𝑈𝑇_𝑉𝐴𝐿𝑈𝐸𝑆

 IF 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆 contains all outports of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 THEN

 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is finished and won’t be considered again for simulation

 Add all components connected to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 to 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆௡௘௪

3. IF 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆௡௘௪ ! = {} THEN

SimulateRecursive(𝐼𝑁𝑃𝑈𝑇_𝑉𝐴𝐿𝑈𝐸𝑆, 𝐹𝑂𝑅𝑊𝐴𝑅𝐷_𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆, 𝑈𝑁𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐴𝐵𝐿𝐸_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆, 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆௡௘௪, 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇𝑆, 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆)

ELSE

RETURN 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆

Aerospace 2019, 6, x 14 of 36

 (a) (b)

Figure 11. The behavior of a real technical system (a) and its model with modelling error (b).

3.3 Diagnostic Algorithm

A simulation is first performed before a diagnosis is computed. The simulation yields simulated
values, which are later used to detect discrepancies and to compute symptoms. With the use of the
measured and simulated values, symptoms are derived, the heuristic error functions are evaluated,
conflict sets are determined, and finally hitting sets are computed. After the simulation, the original
measured values are merged with the simulated values. If there is simultaneously a measured and a
simulated value available for the same port, the measured value overwrites the simulated one. These
merged values are then used to update the dynamic port dependencies, as described in Section 3.1.4.

3.3.1 Symptoms

After the simulation of a time step has been completed, a check for threshold limit violations
and discrepancies between the observed and expected behavior of components is performed. Every
limit violation and discrepancy between the observed behavior of a component and its expected
behavior is called a symptom. The observed behavior is given by the measured values and the
expected behavior is given by the simulated values of the different components. A discrepancy is
detected, and therefore a symptom is computed when either of the following holds true:

• The measured value of an outport is smaller than its lower threshold limit
• The measured value of an outport is greater than its upper threshold limit
• The deviation of the measured value of an outport from its corresponding simulated value

violates its tolerance intervals

If any of the above conditions hold true for the port 𝑝 of a component 𝑐, then a symptom 𝑠 is
created. However, the tolerance intervals need special consideration. The tolerance intervals are
divided into absolute and relative tolerance intervals. The absolute tolerance intervals are mainly
used to mitigate the effects of the quantization error of the sensors. Assuming that a sensor is used to
measure a current range of 0 A to 3.2 A with a resolution of 8-bit, the 8-bit resolution results in 256
discrete quantization levels. For the current range of 0 A to 3.2 A each quantization level corresponds
to 12.5 mA. Depending on the sensor, this value or multiples of this value can be used as the absolute
tolerance interval. The relative tolerance intervals are used to mitigate the effect of noise and model
errors and are determined during model calibration. During the calibration phase, the average
achieved accuracy is used as the initial relative tolerance interval. During a comparison of a simulated
value 𝑣௦௜௠ with its corresponding measured value 𝑣௠௘௔௦, first the absolute tolerance value 𝑡௔௕௦ is
considered. If 𝑣௠௘௔௦ + 𝑡௔௕௦ ≥ 𝑣௦௜௠ ≥ 𝑣௠௘௔௦ − 𝑡௔௕௦ holds true, then 𝑣௦௜௠ and 𝑣௠௘௔௦ are considered to
be equal, or else the relative tolerance interval 𝑡௥௘௟ is considered. If 𝑣௠௘௔௦ ⋅ (1 + 𝑡௥௘௟) ≥ 𝑣௠௘௔௦ ≥𝑣௠௘௔௦ ⋅ (1 − 𝑡௥௘௟) holds true, then 𝑣௦௜௠ and 𝑣௠௘௔௦ are considered equal; else, a symptom is created.
The component 𝑐 is then called a symptom component and 𝑝 the symptom port of symptom 𝑠.

If there is at least one simulatable output port and there exist measured values for all simulatable
output ports of a component 𝑐 and 𝑐 is not a symptom component, then 𝑐 is considered to be
correctly working and it is called an excluded component.

Figure 11. The behavior of a real technical system (a) and its model with modelling error (b).

Aerospace 2019, 6, 105 14 of 34

3.3. Diagnostic Algorithm

A simulation is first performed before a diagnosis is computed. The simulation yields simulated
values, which are later used to detect discrepancies and to compute symptoms. With the use of the
measured and simulated values, symptoms are derived, the heuristic error functions are evaluated,
conflict sets are determined, and finally hitting sets are computed. After the simulation, the original
measured values are merged with the simulated values. If there is simultaneously a measured and a
simulated value available for the same port, the measured value overwrites the simulated one. These
merged values are then used to update the dynamic port dependencies, as described in Section 3.1.4.

3.3.1. Symptoms

After the simulation of a time step has been completed, a check for threshold limit violations and
discrepancies between the observed and expected behavior of components is performed. Every limit
violation and discrepancy between the observed behavior of a component and its expected behavior is
called a symptom. The observed behavior is given by the measured values and the expected behavior
is given by the simulated values of the different components. A discrepancy is detected, and therefore
a symptom is computed when either of the following holds true:

• The measured value of an outport is smaller than its lower threshold limit
• The measured value of an outport is greater than its upper threshold limit
• The deviation of the measured value of an outport from its corresponding simulated value violates

its tolerance intervals

If any of the above conditions hold true for the port p of a component c, then a symptom s is
created. However, the tolerance intervals need special consideration. The tolerance intervals are
divided into absolute and relative tolerance intervals. The absolute tolerance intervals are mainly
used to mitigate the effects of the quantization error of the sensors. Assuming that a sensor is used to
measure a current range of 0 A to 3.2 A with a resolution of 8-bit, the 8-bit resolution results in 256
discrete quantization levels. For the current range of 0 A to 3.2 A each quantization level corresponds
to 12.5 mA. Depending on the sensor, this value or multiples of this value can be used as the absolute
tolerance interval. The relative tolerance intervals are used to mitigate the effect of noise and model
errors and are determined during model calibration. During the calibration phase, the average achieved
accuracy is used as the initial relative tolerance interval. During a comparison of a simulated value
vsim with its corresponding measured value vmeas, first the absolute tolerance value tabs is considered.
If vmeas + tabs ≥ vsim ≥ vmeas − tabs holds true, then vsim and vmeas are considered to be equal, or else
the relative tolerance interval trel is considered. If vmeas · (1 + trel) ≥ vmeas ≥ vmeas · (1− trel) holds true,
then vsim and vmeas are considered equal; else, a symptom is created. The component c is then called a
symptom component and p the symptom port of symptom s.

If there is at least one simulatable output port and there exist measured values for all simulatable
output ports of a component c and c is not a symptom component, then c is considered to be correctly
working and it is called an excluded component.

Generally, all of the components that have a quantitative description should be simulatable.
However, in rare cases, output ports of components that are not sensor components might not be
simulatable due to the unavailability of certain measured values. This is a special case and it occurs
when a component requires the unavailable output values of a sensor component to compute a value
for one of its own outports. The modelling of partial knowledge needs to be carefully considered to
avoid undefined model behavior. The modelling of such cases should only be done for output ports
for which there exist measured values and whose quantitative description equals the operation that
directly forwards the value from one of their input ports via the respective outport in the absence of
the unavailable sensor values, which cause the outport to be unsimulatable.

The measured and simulated values, port dependencies, symptoms and excluded components form
the model state of a time step, also called an iteration. After the symptoms have been computed, the error

Aerospace 2019, 6, 105 15 of 34

functions of each symptom component are evaluated. If an error function applies, its description text,
together with its probability, is mapped to the corresponding symptom component. These probabilities
later overwrite the associated components failure probability when the scores are computed.

3.3.2. Computation of Conflict Sets

A conflict set CSsc, is a set of components, corresponding to a symptom component sc, for which
holds that a malfunction of one of the components c ∈ CSsc would explain the symptom associated
with sc. The set of all conflict sets is denoted as CSS. A basic conflict set for a symptom component sc
would contain each component c, for which there exists a path of dependent port connections from c to
sc in the model graph. The computation time of diagnoses may potentially grow exponentially in the
number and size of all conflict sets. Therefore, it is of importance to reduce the size of the conflict sets
before diagnoses are computed. The pseudo code of Algorithm 3 describes how the conflict set CSsc

for a symptom component sc is computed.Aerospace 2019, 6, x 3 of 5

Algorithm 3. Pseudo code of the ComputeConflictSet-function used to compute a conflict set, given a
symptom component, so that a malfunction of a component of the conflict set would explain the observed
symptoms of the symptom component.
ALGORITHM: ComputeConflictSet

INPUTS: The symptom component to compute a conflict set for: 𝑠𝑐

 The dynamic port dependencies: 𝑝𝑜𝑟𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠

The set of measured outputs of the current iteration: 𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷_𝑂𝑈𝑇𝑃𝑈𝑇𝑆

 The model graph: 𝐺

 The set of all symptom components: 𝑆𝐶

 The set of all excluded components: 𝐸𝐶

 The model state of the previous iteration: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑆𝑡𝑎𝑡𝑒

OUTPUTS: The conflict set 𝐶𝑆௦௖ corresponding to 𝑠𝑐 and the map of components to sets of

suspecting components 𝑆𝑈𝑆𝑃𝐼𝐶𝐼𝑂𝑁𝑆

1. Let 𝑃𝑂𝑅𝑇𝑆 be an empty set of output ports. Merge the symptom ports of the symptoms associated with 𝑠𝑐 into 𝑃𝑂𝑅𝑇𝑆

2. Let 𝑆𝑈𝑆𝑃𝐼𝐶𝐼𝑂𝑁𝑆 be an empty map of components to sets of suspecting components

3. Use 𝑝𝑜𝑟𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 to compute for each 𝑝𝑜𝑟𝑡 ∈ 𝑃𝑂𝑅𝑇𝑆 the inputs 𝐼𝑁𝑃𝑈𝑇_𝑃𝑂𝑅𝑇𝑆 on which 𝑝𝑜𝑟𝑡 is

dependent and use 𝐺 to identify the output ports 𝑂𝑈𝑇𝑃𝑈𝑇_𝑃𝑂𝑅𝑇𝑆, which are connected to the input ports

of 𝐼𝑁𝑃𝑈𝑇_𝑃𝑂𝑅𝑇𝑆. Search the whole model graph using a backwards directed breadth-first search. Replace 𝑃𝑂𝑅𝑇𝑆 with 𝑂𝑈𝑇𝑃𝑈𝑇_𝑃𝑂𝑅𝑇𝑆 before continuing with the next level. Before visiting a component 𝑐

through an output port 𝑝, take an action based on the following conditions:

• If 𝑐 is a symptom component, continue the search

• If 𝑐 is an excluded component, do not visit 𝑐

• If 𝑐 is neither a symptom component, nor an excluded component and there exists no

measured and simulated value simultaneously for 𝑝, continue the search

• If 𝑐 is neither a symptom component, nor an excluded component and there exists a

measured and a simulated value for 𝑝, do not visit 𝑐

• If 𝑐 was reached through a backwards connection, check the above conditions, but use

the models previous state

If a component 𝑐 is visited and 𝑐 is not a symptom component, it is suspected by 𝑠𝑐 and added to the set

of components that suspect 𝑐 in 𝑆𝑈𝑆𝑃𝐼𝐶𝐼𝑂𝑁𝑆. The set of all visited components is the conflict set 𝐶𝑆௦௖ of 𝑠𝑐

4. RETURN 𝐶𝑆௦௖ and 𝑆𝑈𝑆𝑃𝐼𝐶𝐼𝑂𝑁𝑆

Aerospace 2019, 6, 105 16 of 34

It is to be noted that, when a component has been reached from a backwards connection, further
backwards connections are ignored. Therefore, the search is limited to the system state of the current
and previous time step. A similar computation is done for each excluded component ec, yielding
the map of components to sets of relieving components EXCLUSIONS. The maps SUSPICIONS and
EXCLUSIONS are then used to calculate a suspicion score for each component c, determining whether
c is suspicious or not suspicious by comparing the suspicions and exclusions for each component,
weighted by the respective suspecting or relieving components a priori failure probability. If c is found
not to be suspicious, c is removed from all conflict sets. While the backwards directed breadth-first
search is using port dependencies and the model state to limit the amount and length of paths to
visit, the suspicions and exclusions are used to remove unlikely malfunctioning components from
the remaining paths. Assuming the conflict sets as paths, after the non-suspicious components are
removed, the remaining paths can contain gaps.

3.3.3. Computation of Hitting Sets

A hitting set HS is as set of components, for which holds, that if all components c ∈ HS are
malfunctioning, all of the observed symptoms would be explained. Interpreting the components c ∈ CSi,
i ∈ COMPONENTS as literals, conflict sets can be seen as Boolean formulae CSi = ∨ci∈CSici = c1 ∨ . . .∨
cn. A hitting set then can be described as the solution to the Boolean formula HS = ∧CSi∈CSSCSi =(
c1,1 ∨ . . .∨ c1,n1

)
∧ . . .∧ (cm,1 ∨ . . .∨ cm,nm), ci, j ∈ CSi. A minimal hitting set is a hitting set that cannot

be subsumed by any other hitting set. Each minimal hitting set, HS corresponds to one diagnosis.
Minimal hitting sets can be computed with the help of a SAT-solver [25,26]. The simplest procedure to
compute all possible hitting sets given the formula above is to solve the Boolean formula first, and
then after a solution has been found, the solution has to be negated, added as a blocking clause to the
formula and another solution has to be derived. This has to be repeated until no solutions can be found.
As the fault detection system is supposed to be ported to run on board the SONATE-Nano satellite,
a SAT-solver is not lightweight enough. Therefore, a different approach of hitting set computation
has been used, which offers high quality results for the relevant model sizes, while having low
computational cost [27]. Based on the Hitting Set Directed Acyclic Graph (HSDAG) of [28], which is a
modified version of the Hitting Set Tree (HSTree) by [7], a Scored Hitting Set Directed Acyclic Graph
(SHSDAG) has been implemented, utilizing node reusing, regular edge pruning techniques, and score
based edge pruning to reduce the computation time of diagnoses. The pseudo code of Algorithm 4
describes how a SHSDAG is built.

The node state of a node node can be either one of the following:

• open, when node has child nodes
• closed, when the path from n0 to node is a dead end and does not correspond to a hitting set
• end_o f _path, when the path from n0 to node corresponds to a minimal hitting set

The label of a node is a set of components. The label of an edge is a single component. Each path
from the root of the SHSDAG to a node, labeled as end_o f _path, is a minimal hitting set. The score
for a path PATH is calculated by multiplying the a priori failure probabilities or when available the
suspicion scores of each component c ∈ PATH. These scores have the character of a pseudo probability.
To reduce the size of the SHSDAG and to ensure that only minimal hitting sets are being computed,
additional to the algorithm above, the following node-reuse and node-termination rules are being used.

Node-reuse rule:

• If a new child node childNode for a node node is to be created, due to a component c, while there
exists a node node′, with path(node′) = path(node) ∪ c, then childNode is not created, but node′ is
added to the child nodes of node.

Node-termination rules:

Aerospace 2019, 6, 105 17 of 34

• If the SHSDAG contains a node node′ after a node node has been created, with path(node′) ⊂
path(node), then close node

• If the score cut-off is used with a cut-off factor cutO f f Factor and the score of a newly created node
node is score(path(node)) < minScore · cutO f f Factor, then close node

Aerospace 2019, 6, x 4 of 5

Algorithm 4. Pseudo code of the BuildSHSDAG-function used to build a Scored Hitting Set Directed Acyclic
Graph (SHSDAG) and therefore to compute the minimal hitting sets, given a set of conflict sets.
ALGORITHM: BuildSHSDAG

INPUTS: The set of all conflict sets: 𝐶𝑆𝑆

OUTPUTS: The SHSDAG: SHSDAG

1. Use logical absorption on the 𝐶𝑆 ∈ 𝐶𝑆𝑆

2. Sort 𝐶𝑆𝑆 ascending by cardinality

3. Let 𝑛଴ be the empty root node of the SHSDAG

4. Let 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑠 be an empty list of nodes

5. Let 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒𝑠 be an empty list of nodes

6. Add 𝑛଴ to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑠

7. WHILE 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑠 is not empty

 FOR EACH 𝑛𝑜𝑑𝑒 ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑠

 Let 𝑃𝐴𝑇𝐻 be the set of edge labels of the path from 𝑛଴ to 𝑛𝑜𝑑𝑒

 FOR EACH 𝐶𝑆 ∈ 𝐶𝑆𝑆

 IF 𝐶𝑆 ∩ 𝑃𝐴𝑇𝐻 = ∅ THEN

 Label 𝑛𝑜𝑑𝑒 with 𝐶𝑆

 BREAK

 IF 𝑛𝑜𝑑𝑒 was labeled with 𝐶𝑆 THEN

 FOR EACH 𝑐 ∈ 𝐶𝑆

 Let 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 be an empty node with state 𝑜𝑝𝑒𝑛

 Add 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 as child node to 𝑛𝑜𝑑𝑒

 Set the path of 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 to 𝑃𝐴𝑇𝐻 ∪ 𝑐

 Label the edge from 𝑛𝑜𝑑𝑒 to 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 with 𝑐

 Compute a score for 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 based on its new path

 Add 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 to 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒𝑠

 ELSE

 Set the state of 𝑛𝑜𝑑𝑒 to 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ

 Set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑠 to 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒𝑠

 Set 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒𝑠 to an empty list of nodes

8. RETURN the SHSDAG

The cut-off rule can be parametrized with the so-called cut-off factor. The cut-off factor describes

how likely a diagnosis has to be at least, relative to the minScore, the probability of the diagnosis in
which all of the symptom components are simultaneously malfunctioning. The cut-off factor can be
manually set. Optionally, the fault detection system starts with a high cut-off factor and iteratively
adapts it until a single diagnosis is computed. The following example illustrates how a SHSDAG is
built, and therefore minimal hitting sets are computed by starting with the set of conflict sets and
building the SHSDAG step by step:

Assuming that, for a model, the symptom components {A, C, E} have been found. The computation
and reduction of the conflict sets has finished and the conflict sets are CSA = {A, B, C, H}, CSC = {C, B, D}

Aerospace 2019, 6, 105 18 of 34

and CSE = {E, H, B}. After sorting by cardinality the set of conflict sets CSS is CSS = {CSC, CSE, CSA} =

{{C, B, D}, {E, H, B}, {A, B, C, H}}. The failure probabilities of the components are given by P(A) = 0.5,
P(B) = 0.2, P(C) = 0.6, P(E) = 0.5, P(D) = 0.5, and P(H) = 0.2. The pseudo probability minScore is
minScore = P(A) · P(C) · P(E) = 0.5 · 0.6 · 0.5 = 0.15 and the cut-off factor is set to 1.0.

To build the SHSDAG, first the root node n0 is created, as depicted in Figure 12.

Aerospace 2019, 6, x 19 of 36

Node-reuse rule:

• If a new child node 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 for a node 𝑛𝑜𝑑𝑒 is to be created, due to a component 𝑐, while
there exists a node 𝑛𝑜𝑑𝑒′, with 𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒ᇱ) = 𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒) ∪ 𝑐, then 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 is not created,
but 𝑛𝑜𝑑𝑒′ is added to the child nodes of 𝑛𝑜𝑑𝑒.

Node-termination rules:

• If the SHSDAG contains a node 𝑛𝑜𝑑𝑒′ after a node 𝑛𝑜𝑑𝑒 has been created, with 𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒ᇱ) ⊂𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒), then close 𝑛𝑜𝑑𝑒
• If the score cut-off is used with a cut-off factor 𝑐𝑢𝑡𝑂𝑓𝑓𝐹𝑎𝑐𝑡𝑜𝑟 and the score of a newly created

node 𝑛𝑜𝑑𝑒 is 𝑠𝑐𝑜𝑟𝑒൫𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒)൯ < 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒 ⋅ 𝑐𝑢𝑡𝑂𝑓𝑓𝐹𝑎𝑐𝑡𝑜𝑟, then close node

The cut-off rule can be parametrized with the so-called cut-off factor. The cut-off factor describes
how likely a diagnosis has to be at least, relative to the 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒, the probability of the diagnosis in
which all of the symptom components are simultaneously malfunctioning. The cut-off factor can be
manually set. Optionally, the fault detection system starts with a high cut-off factor and iteratively
adapts it until a single diagnosis is computed. The following example illustrates how a SHSDAG is
built, and therefore minimal hitting sets are computed by starting with the set of conflict sets and
building the SHSDAG step by step:

Assuming that, for a model, the symptom components {𝐴, 𝐶, 𝐸} have been found. The
computation and reduction of the conflict sets has finished and the conflict sets are 𝐶𝑆஺ = {𝐴, 𝐵, 𝐶, 𝐻}, 𝐶𝑆஼ = {𝐶, 𝐵, 𝐷} and 𝐶𝑆ா = {𝐸, 𝐻, 𝐵}. After sorting by cardinality the set of conflict sets 𝐶𝑆𝑆 is 𝐶𝑆𝑆 ={𝐶𝑆஼, 𝐶𝑆ா, 𝐶𝑆஺} = {{𝐶, 𝐵, 𝐷}, {𝐸, 𝐻, 𝐵}, {𝐴, 𝐵, 𝐶, 𝐻}} . The failure probabilities of the components are
given by 𝑃(𝐴) = 0.5, 𝑃(𝐵) = 0.2, 𝑃(𝐶) = 0.6, 𝑃(𝐸) = 0.5, 𝑃(𝐷) = 0.5, and 𝑃(𝐻) = 0.2. The pseudo
probability 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒 is 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒 = 𝑃(𝐴) ⋅ 𝑃(𝐶) ⋅ 𝑃(𝐸) = 0.5 ⋅ 0.6 ⋅ 0.5 = 0.15 and the cut-off factor
is set to 1.0.

To build the SHSDAG, first the root node 𝑛଴ is created, as depicted in Figure 12.

Figure 12. The root node 𝑛଴ of the SHSDAG, initially without label and with a pseudo probability
score of 1.

Subsequently, for each 𝐶𝑆 ∈ 𝐶𝑆𝑆 , 𝑝𝑎𝑡ℎ(𝑛଴) ∩ 𝐶𝑆 is computed. As 𝑝𝑎𝑡ℎ(𝑛଴) = ∅ and 𝑝𝑎𝑡ℎ(𝑛଴) ∩ 𝐶𝑆௖ = ∅, 𝑛଴ is labeled with 𝐶𝑆஼, as depicted in Figure 13.

Figure 13. The root node 𝑛଴ of the SHSDAG, after being labeled with 𝐶𝑆௖ = {𝐶, 𝐵, 𝐷}.

For each 𝑐 ∈ 𝐶𝑆஼, a new child node is created and its path, as well as its score is updated. Figure
14 shows the SHSDAG after this step.

Figure 14. The SHSDAG after the expansion of the root node 𝑛଴. The new child nodes 𝑛ଵ, 𝑛ଶ and 𝑛ଷ have been created and their paths and scores have been updated.

Figure 12. The root node n0 of the SHSDAG, initially without label and with a pseudo probability score
of 1.

Subsequently, for each CS ∈ CSS, path(n0) ∩ CS is computed. As path(n0) = ∅ and path(n0) ∩

CSc = ∅, n0 is labeled with CSC, as depicted in Figure 13.

Aerospace 2019, 6, x 19 of 36

Node-reuse rule:

• If a new child node 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 for a node 𝑛𝑜𝑑𝑒 is to be created, due to a component 𝑐, while
there exists a node 𝑛𝑜𝑑𝑒′, with 𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒ᇱ) = 𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒) ∪ 𝑐, then 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 is not created,
but 𝑛𝑜𝑑𝑒′ is added to the child nodes of 𝑛𝑜𝑑𝑒.

Node-termination rules:

• If the SHSDAG contains a node 𝑛𝑜𝑑𝑒′ after a node 𝑛𝑜𝑑𝑒 has been created, with 𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒ᇱ) ⊂𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒), then close 𝑛𝑜𝑑𝑒
• If the score cut-off is used with a cut-off factor 𝑐𝑢𝑡𝑂𝑓𝑓𝐹𝑎𝑐𝑡𝑜𝑟 and the score of a newly created

node 𝑛𝑜𝑑𝑒 is 𝑠𝑐𝑜𝑟𝑒൫𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒)൯ < 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒 ⋅ 𝑐𝑢𝑡𝑂𝑓𝑓𝐹𝑎𝑐𝑡𝑜𝑟, then close node

The cut-off rule can be parametrized with the so-called cut-off factor. The cut-off factor describes
how likely a diagnosis has to be at least, relative to the 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒, the probability of the diagnosis in
which all of the symptom components are simultaneously malfunctioning. The cut-off factor can be
manually set. Optionally, the fault detection system starts with a high cut-off factor and iteratively
adapts it until a single diagnosis is computed. The following example illustrates how a SHSDAG is
built, and therefore minimal hitting sets are computed by starting with the set of conflict sets and
building the SHSDAG step by step:

Assuming that, for a model, the symptom components {𝐴, 𝐶, 𝐸} have been found. The
computation and reduction of the conflict sets has finished and the conflict sets are 𝐶𝑆஺ = {𝐴, 𝐵, 𝐶, 𝐻}, 𝐶𝑆஼ = {𝐶, 𝐵, 𝐷} and 𝐶𝑆ா = {𝐸, 𝐻, 𝐵}. After sorting by cardinality the set of conflict sets 𝐶𝑆𝑆 is 𝐶𝑆𝑆 ={𝐶𝑆஼, 𝐶𝑆ா, 𝐶𝑆஺} = {{𝐶, 𝐵, 𝐷}, {𝐸, 𝐻, 𝐵}, {𝐴, 𝐵, 𝐶, 𝐻}} . The failure probabilities of the components are
given by 𝑃(𝐴) = 0.5, 𝑃(𝐵) = 0.2, 𝑃(𝐶) = 0.6, 𝑃(𝐸) = 0.5, 𝑃(𝐷) = 0.5, and 𝑃(𝐻) = 0.2. The pseudo
probability 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒 is 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒 = 𝑃(𝐴) ⋅ 𝑃(𝐶) ⋅ 𝑃(𝐸) = 0.5 ⋅ 0.6 ⋅ 0.5 = 0.15 and the cut-off factor
is set to 1.0.

To build the SHSDAG, first the root node 𝑛଴ is created, as depicted in Figure 12.

Figure 12. The root node 𝑛଴ of the SHSDAG, initially without label and with a pseudo probability
score of 1.

Subsequently, for each 𝐶𝑆 ∈ 𝐶𝑆𝑆 , 𝑝𝑎𝑡ℎ(𝑛଴) ∩ 𝐶𝑆 is computed. As 𝑝𝑎𝑡ℎ(𝑛଴) = ∅ and 𝑝𝑎𝑡ℎ(𝑛଴) ∩ 𝐶𝑆௖ = ∅, 𝑛଴ is labeled with 𝐶𝑆஼, as depicted in Figure 13.

Figure 13. The root node 𝑛଴ of the SHSDAG, after being labeled with 𝐶𝑆௖ = {𝐶, 𝐵, 𝐷}.

For each 𝑐 ∈ 𝐶𝑆஼, a new child node is created and its path, as well as its score is updated. Figure
14 shows the SHSDAG after this step.

Figure 14. The SHSDAG after the expansion of the root node 𝑛଴. The new child nodes 𝑛ଵ, 𝑛ଶ and 𝑛ଷ have been created and their paths and scores have been updated.

Figure 13. The root node n0 of the SHSDAG, after being labeled with CSc = {C, B, D}.

For each c ∈ CSC, a new child node is created and its path, as well as its score is updated. Figure 14
shows the SHSDAG after this step.

Aerospace 2019, 6, x 19 of 36

Node-reuse rule:

• If a new child node 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 for a node 𝑛𝑜𝑑𝑒 is to be created, due to a component 𝑐, while
there exists a node 𝑛𝑜𝑑𝑒′, with 𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒ᇱ) = 𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒) ∪ 𝑐, then 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 is not created,
but 𝑛𝑜𝑑𝑒′ is added to the child nodes of 𝑛𝑜𝑑𝑒.

Node-termination rules:

• If the SHSDAG contains a node 𝑛𝑜𝑑𝑒′ after a node 𝑛𝑜𝑑𝑒 has been created, with 𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒ᇱ) ⊂𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒), then close 𝑛𝑜𝑑𝑒
• If the score cut-off is used with a cut-off factor 𝑐𝑢𝑡𝑂𝑓𝑓𝐹𝑎𝑐𝑡𝑜𝑟 and the score of a newly created

node 𝑛𝑜𝑑𝑒 is 𝑠𝑐𝑜𝑟𝑒൫𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒)൯ < 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒 ⋅ 𝑐𝑢𝑡𝑂𝑓𝑓𝐹𝑎𝑐𝑡𝑜𝑟, then close node

The cut-off rule can be parametrized with the so-called cut-off factor. The cut-off factor describes
how likely a diagnosis has to be at least, relative to the 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒, the probability of the diagnosis in
which all of the symptom components are simultaneously malfunctioning. The cut-off factor can be
manually set. Optionally, the fault detection system starts with a high cut-off factor and iteratively
adapts it until a single diagnosis is computed. The following example illustrates how a SHSDAG is
built, and therefore minimal hitting sets are computed by starting with the set of conflict sets and
building the SHSDAG step by step:

Assuming that, for a model, the symptom components {𝐴, 𝐶, 𝐸} have been found. The
computation and reduction of the conflict sets has finished and the conflict sets are 𝐶𝑆஺ = {𝐴, 𝐵, 𝐶, 𝐻}, 𝐶𝑆஼ = {𝐶, 𝐵, 𝐷} and 𝐶𝑆ா = {𝐸, 𝐻, 𝐵}. After sorting by cardinality the set of conflict sets 𝐶𝑆𝑆 is 𝐶𝑆𝑆 ={𝐶𝑆஼, 𝐶𝑆ா, 𝐶𝑆஺} = {{𝐶, 𝐵, 𝐷}, {𝐸, 𝐻, 𝐵}, {𝐴, 𝐵, 𝐶, 𝐻}} . The failure probabilities of the components are
given by 𝑃(𝐴) = 0.5, 𝑃(𝐵) = 0.2, 𝑃(𝐶) = 0.6, 𝑃(𝐸) = 0.5, 𝑃(𝐷) = 0.5, and 𝑃(𝐻) = 0.2. The pseudo
probability 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒 is 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒 = 𝑃(𝐴) ⋅ 𝑃(𝐶) ⋅ 𝑃(𝐸) = 0.5 ⋅ 0.6 ⋅ 0.5 = 0.15 and the cut-off factor
is set to 1.0.

To build the SHSDAG, first the root node 𝑛଴ is created, as depicted in Figure 12.

Figure 12. The root node 𝑛଴ of the SHSDAG, initially without label and with a pseudo probability
score of 1.

Subsequently, for each 𝐶𝑆 ∈ 𝐶𝑆𝑆 , 𝑝𝑎𝑡ℎ(𝑛଴) ∩ 𝐶𝑆 is computed. As 𝑝𝑎𝑡ℎ(𝑛଴) = ∅ and 𝑝𝑎𝑡ℎ(𝑛଴) ∩ 𝐶𝑆௖ = ∅, 𝑛଴ is labeled with 𝐶𝑆஼, as depicted in Figure 13.

Figure 13. The root node 𝑛଴ of the SHSDAG, after being labeled with 𝐶𝑆௖ = {𝐶, 𝐵, 𝐷}.

For each 𝑐 ∈ 𝐶𝑆஼, a new child node is created and its path, as well as its score is updated. Figure
14 shows the SHSDAG after this step.

Figure 14. The SHSDAG after the expansion of the root node 𝑛଴. The new child nodes 𝑛ଵ, 𝑛ଶ and 𝑛ଷ have been created and their paths and scores have been updated.

Figure 14. The SHSDAG after the expansion of the root node n0. The new child nodes n1, n2 and n3

have been created and their paths and scores have been updated.

As there are no other nodes on the same level as n0, the nodes of the next level are processed. First
n1, with path(n1) = C is examined. As C

⋂
CSC , ∅, CSE = {E, H, B} is looked at. n1 is labeled with

CSE, because C∩CSE = ∅. The same is repeated for n2. In opposite to n1, n2 is labeled as end_o f _path,
because for each CS ∈ CSS, the intersection path(n2) ∩CS is not empty. This makes HS0 = {B}, with
P(HS0) = 0.2, the first found hitting set. The node n3 is labeled with CSE in the same way. Figure 15
shows the SHSDAG after the expansion of n1 and n3.

On the next level, the nodes n4, n5, n6, n7, n8, and n9 are examined. As the pseudo probability
of n5 being P(n5) = 0.12 is smaller than minProbability · cutO f f Factor = 0.15 · 1.0 = 0.15, a cut-off is
made and n5 is closed. For the same reason n8 is closed. For n6 and n9, besides the cut-off rule, the first
termination-rule also applies, since path(n2) ⊂ path(n6) and path(n2) ⊂ path(n9), which causes n6 and
n9 to be closed. The path of n4 has a non-empty intersection with each of the CS ∈ CSS and it is labeled
as end_o f _path, making HS1 = {C, E}, with P(HS1) = 0.3 the second found hitting set. The node n7 is
expanded, due to having an empty intersection with CSA. Figure 16 shows the SHSDAG after this step.

The nodes n10, n11, and n13 are closed by applying the cut-off rule. Additionally, for n11 and n12,
the first termination-rule applies. Figure 17 shows the SHSDAG after the computation of hitting sets
has finished.

Aerospace 2019, 6, 105 19 of 34

Aerospace 2019, 6, x 20 of 36

As there are no other nodes on the same level as 𝑛଴, the nodes of the next level are processed.
First 𝑛ଵ , with 𝑝𝑎𝑡ℎ(𝑛ଵ) = 𝐶 is examined. As 𝐶 ⋂ 𝐶𝑆஼ ≠ ∅ , 𝐶𝑆ா = {𝐸, 𝐻, 𝐵} is looked at. 𝑛ଵ is
labeled with 𝐶𝑆ா, because 𝐶 ∩ 𝐶𝑆ா = ∅. The same is repeated for 𝑛ଶ. In opposite to 𝑛ଵ, 𝑛ଶ is labeled
as 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ , because for each 𝐶𝑆 ∈ 𝐶𝑆𝑆 , the intersection 𝑝𝑎𝑡ℎ(𝑛ଶ) ∩ 𝐶𝑆 is not empty. This
makes 𝐻𝑆଴ = {𝐵}, with 𝑃(𝐻𝑆଴) = 0.2, the first found hitting set. The node 𝑛ଷ is labeled with 𝐶𝑆ா
in the same way. Figure 15 shows the SHSDAG after the expansion of 𝑛ଵ and 𝑛ଷ.

Figure 15. The SHSDAG after the expansion of 𝑛ଵ and 𝑛ଷ. The nodes 𝑛ଵ and 𝑛ଷ are both labeled
with 𝐶𝑆ா = {𝐸𝐻𝐵}. The new child nodes 𝑛ସ, 𝑛ହ, 𝑛଺ of 𝑛ଵ and the new child nodes 𝑛଻, 𝑛଼, 𝑛ଽ of 𝑛ଷ
have been created. The node 𝑛ଶ was labeled as 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ and is a hitting set (therefore depicted
in green).

On the next level, the nodes 𝑛ସ , 𝑛ହ , 𝑛଺ , 𝑛଻ , 𝑛଼ , and 𝑛ଽ are examined. As the pseudo
probability of 𝑛ହ being 𝑃(𝑛ହ) = 0.12 is smaller than 𝑚𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⋅ 𝑐𝑢𝑡𝑂𝑓𝑓𝐹𝑎𝑐𝑡𝑜𝑟 = 0.15 ⋅ 1.0 =0.15, a cut-off is made and 𝑛ହ is closed. For the same reason 𝑛଼ is closed. For 𝑛଺ and 𝑛ଽ, besides
the cut-off rule, the first termination-rule also applies, since 𝑝𝑎𝑡ℎ(𝑛ଶ) ⊂ 𝑝𝑎𝑡ℎ(𝑛଺) and 𝑝𝑎𝑡ℎ(𝑛ଶ) ⊂𝑝𝑎𝑡ℎ(𝑛ଽ), which causes 𝑛଺ and 𝑛ଽ to be closed. The path of 𝑛ସ has a non-empty intersection with
each of the 𝐶𝑆 ∈ 𝐶𝑆𝑆 and it is labeled as 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ, making 𝐻𝑆ଵ = {𝐶, 𝐸}, with 𝑃(𝐻𝑆ଵ) = 0.3 the
second found hitting set. The node 𝑛଻ is expanded, due to having an empty intersection with 𝐶𝑆஺.
Figure 16 shows the SHSDAG after this step.

Figure 16. The SHSDAG after the expansion of 𝑛଻. The node 𝑛଻ is labeled with 𝐶𝑆஺ = {𝐴, 𝐵, 𝐶, 𝐻}.
The new child nodes 𝑛ଵ଴, 𝑛ଵଵ, 𝑛ଵଶ and 𝑛ଵଷ of 𝑛଻ have been created. The node 𝑛ସ was labeled as 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ and is a new found hitting set (therefore depicted in green) and the nodes 𝑛ହ, 𝑛଺, 𝑛଼
and 𝑛ଽ are closed and won’t be considered further (therefore depicted in red).

Figure 15. The SHSDAG after the expansion of n1 and n3. The nodes n1 and n3 are both labeled with
CSE = {EHB}. The new child nodes n4, n5, n6 of n1 and the new child nodes n7, n8, n9 of n3 have been
created. The node n2 was labeled as end_o f _path and is a hitting set (therefore depicted in green).

Aerospace 2019, 6, x 20 of 36

As there are no other nodes on the same level as 𝑛଴, the nodes of the next level are processed.
First 𝑛ଵ , with 𝑝𝑎𝑡ℎ(𝑛ଵ) = 𝐶 is examined. As 𝐶 ⋂ 𝐶𝑆஼ ≠ ∅ , 𝐶𝑆ா = {𝐸, 𝐻, 𝐵} is looked at. 𝑛ଵ is
labeled with 𝐶𝑆ா, because 𝐶 ∩ 𝐶𝑆ா = ∅. The same is repeated for 𝑛ଶ. In opposite to 𝑛ଵ, 𝑛ଶ is labeled
as 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ , because for each 𝐶𝑆 ∈ 𝐶𝑆𝑆 , the intersection 𝑝𝑎𝑡ℎ(𝑛ଶ) ∩ 𝐶𝑆 is not empty. This
makes 𝐻𝑆଴ = {𝐵}, with 𝑃(𝐻𝑆଴) = 0.2, the first found hitting set. The node 𝑛ଷ is labeled with 𝐶𝑆ா
in the same way. Figure 15 shows the SHSDAG after the expansion of 𝑛ଵ and 𝑛ଷ.

Figure 15. The SHSDAG after the expansion of 𝑛ଵ and 𝑛ଷ. The nodes 𝑛ଵ and 𝑛ଷ are both labeled
with 𝐶𝑆ா = {𝐸𝐻𝐵}. The new child nodes 𝑛ସ, 𝑛ହ, 𝑛଺ of 𝑛ଵ and the new child nodes 𝑛଻, 𝑛଼, 𝑛ଽ of 𝑛ଷ
have been created. The node 𝑛ଶ was labeled as 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ and is a hitting set (therefore depicted
in green).

On the next level, the nodes 𝑛ସ , 𝑛ହ , 𝑛଺ , 𝑛଻ , 𝑛଼ , and 𝑛ଽ are examined. As the pseudo
probability of 𝑛ହ being 𝑃(𝑛ହ) = 0.12 is smaller than 𝑚𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⋅ 𝑐𝑢𝑡𝑂𝑓𝑓𝐹𝑎𝑐𝑡𝑜𝑟 = 0.15 ⋅ 1.0 =0.15, a cut-off is made and 𝑛ହ is closed. For the same reason 𝑛଼ is closed. For 𝑛଺ and 𝑛ଽ, besides
the cut-off rule, the first termination-rule also applies, since 𝑝𝑎𝑡ℎ(𝑛ଶ) ⊂ 𝑝𝑎𝑡ℎ(𝑛଺) and 𝑝𝑎𝑡ℎ(𝑛ଶ) ⊂𝑝𝑎𝑡ℎ(𝑛ଽ), which causes 𝑛଺ and 𝑛ଽ to be closed. The path of 𝑛ସ has a non-empty intersection with
each of the 𝐶𝑆 ∈ 𝐶𝑆𝑆 and it is labeled as 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ, making 𝐻𝑆ଵ = {𝐶, 𝐸}, with 𝑃(𝐻𝑆ଵ) = 0.3 the
second found hitting set. The node 𝑛଻ is expanded, due to having an empty intersection with 𝐶𝑆஺.
Figure 16 shows the SHSDAG after this step.

Figure 16. The SHSDAG after the expansion of 𝑛଻. The node 𝑛଻ is labeled with 𝐶𝑆஺ = {𝐴, 𝐵, 𝐶, 𝐻}.
The new child nodes 𝑛ଵ଴, 𝑛ଵଵ, 𝑛ଵଶ and 𝑛ଵଷ of 𝑛଻ have been created. The node 𝑛ସ was labeled as 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ and is a new found hitting set (therefore depicted in green) and the nodes 𝑛ହ, 𝑛଺, 𝑛଼
and 𝑛ଽ are closed and won’t be considered further (therefore depicted in red).

Figure 16. The SHSDAG after the expansion of n7. The node n7 is labeled with CSA = {A, B, C, H}.
The new child nodes n10, n11, n12 and n13 of n7 have been created. The node n4 was labeled as
end_o f _path and is a new found hitting set (therefore depicted in green) and the nodes n5, n6, n8 and n9

are closed and won’t be considered further (therefore depicted in red).

Aerospace 2019, 6, x 21 of 36

The nodes 𝑛ଵ଴, 𝑛ଵଵ, and 𝑛ଵଷ are closed by applying the cut-off rule. Additionally, for 𝑛ଵଵ and 𝑛ଵଶ, the first termination-rule applies. Figure 17 shows the SHSDAG after the computation of hitting
sets has finished.

Figure 17. The SHSDAG after the computation of the hitting sets has finished. The nodes 𝑛ଵ଴, 𝑛ଵଵ, 𝑛ଵଶ and 𝑛ଵଷ were closed. Since no more open nodes exist, the algorithm terminates. The computed
hitting sets are the paths of the nodes 𝑛ଶ and 𝑛ସ labeled as 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ.

As there are no more open nodes, the algorithm terminates. The computed hitting sets are 𝐻𝑆଴ ={𝐵}, with 𝑃(𝐻𝑆଴) = 0.2, and 𝐻𝑆ଵ = {𝐶, 𝐸}, with 𝑃(𝐻𝑆ଵ) = 0.3. In total two diagnoses have been
computed. The diagnoses are then ranked by their probability, which results in the ranking 𝐻𝑆ଵ, 𝐻𝑆଴. By choosing a different cut-off factor, it is possible to determine which minimal probability the
diagnoses should have, relative to the probability of the diagnosis in which all symptom components
are simultaneously malfunctioning. For example a cut-off factor of 2.0 would return the diagnosis 𝐻𝑆଴ and a cut-off factor of 0.5 would return the diagnoses 𝐻𝑆଴, 𝐻𝑆ଵ, 𝐻𝑆ଶ = {𝐶, 𝐻}, with 𝑃(𝐻𝑆ଶ) =0.12, and 𝐻𝑆ଷ = {𝐷, 𝐻}, with 𝑃(𝐻𝑆ଷ) = 0.1.

4. Satellite Model

The power supply of the qualification model of the SONATE Nano-satellite was modelled to
evaluate the fault detection system. The power supply consists of two Power Control Units (PCU),
two main energy supply busses and different consumers connected to the buses.

Figure 18 shows the complete model graph, as displayed in the diagnosis view of the telemetry
client, when no data is supplied. The graphs main purpose is to inform the operator of detected
malfunctions. During operation, components that are deemed to function correctly are displayed in
green, components which are suspected to malfunction are displayed in red and components for
which there is not enough information to identify them as either malfunctioning or working correctly
are displayed in blue.

Figure 18. The complete model graph as displayed in the diagnosis view of the telemetry client.

Figure 17. The SHSDAG after the computation of the hitting sets has finished. The nodes n10, n11, n12

and n13 were closed. Since no more open nodes exist, the algorithm terminates. The computed hitting
sets are the paths of the nodes n2 and n4 labeled as end_o f _path.

Aerospace 2019, 6, 105 20 of 34

As there are no more open nodes, the algorithm terminates. The computed hitting sets are
HS0 = {B}, with P(HS0) = 0.2, and HS1 = {C, E}, with P(HS1) = 0.3. In total two diagnoses have
been computed. The diagnoses are then ranked by their probability, which results in the ranking HS1,
HS0. By choosing a different cut-off factor, it is possible to determine which minimal probability the
diagnoses should have, relative to the probability of the diagnosis in which all symptom components
are simultaneously malfunctioning. For example a cut-off factor of 2.0 would return the diagnosis HS0

and a cut-off factor of 0.5 would return the diagnoses HS0, HS1, HS2 = {C, H}, with P(HS2) = 0.12,
and HS3 = {D, H}, with P(HS3) = 0.1.

4. Satellite Model

The power supply of the qualification model of the SONATE Nano-satellite was modelled to
evaluate the fault detection system. The power supply consists of two Power Control Units (PCU), two
main energy supply busses and different consumers connected to the buses.

Figure 18 shows the complete model graph, as displayed in the diagnosis view of the telemetry
client, when no data is supplied. The graphs main purpose is to inform the operator of detected
malfunctions. During operation, components that are deemed to function correctly are displayed in
green, components which are suspected to malfunction are displayed in red and components for which
there is not enough information to identify them as either malfunctioning or working correctly are
displayed in blue.

Aerospace 2019, 6, x 21 of 36

The nodes 𝑛ଵ଴, 𝑛ଵଵ, and 𝑛ଵଷ are closed by applying the cut-off rule. Additionally, for 𝑛ଵଵ and 𝑛ଵଶ, the first termination-rule applies. Figure 17 shows the SHSDAG after the computation of hitting
sets has finished.

Figure 17. The SHSDAG after the computation of the hitting sets has finished. The nodes 𝑛ଵ଴, 𝑛ଵଵ, 𝑛ଵଶ and 𝑛ଵଷ were closed. Since no more open nodes exist, the algorithm terminates. The computed
hitting sets are the paths of the nodes 𝑛ଶ and 𝑛ସ labeled as 𝑒𝑛𝑑_𝑜𝑓_𝑝𝑎𝑡ℎ.

As there are no more open nodes, the algorithm terminates. The computed hitting sets are 𝐻𝑆଴ ={𝐵}, with 𝑃(𝐻𝑆଴) = 0.2, and 𝐻𝑆ଵ = {𝐶, 𝐸}, with 𝑃(𝐻𝑆ଵ) = 0.3. In total two diagnoses have been
computed. The diagnoses are then ranked by their probability, which results in the ranking 𝐻𝑆ଵ, 𝐻𝑆଴. By choosing a different cut-off factor, it is possible to determine which minimal probability the
diagnoses should have, relative to the probability of the diagnosis in which all symptom components
are simultaneously malfunctioning. For example a cut-off factor of 2.0 would return the diagnosis 𝐻𝑆଴ and a cut-off factor of 0.5 would return the diagnoses 𝐻𝑆଴, 𝐻𝑆ଵ, 𝐻𝑆ଶ = {𝐶, 𝐻}, with 𝑃(𝐻𝑆ଶ) =0.12, and 𝐻𝑆ଷ = {𝐷, 𝐻}, with 𝑃(𝐻𝑆ଷ) = 0.1.

4. Satellite Model

The power supply of the qualification model of the SONATE Nano-satellite was modelled to
evaluate the fault detection system. The power supply consists of two Power Control Units (PCU),
two main energy supply busses and different consumers connected to the buses.

Figure 18 shows the complete model graph, as displayed in the diagnosis view of the telemetry
client, when no data is supplied. The graphs main purpose is to inform the operator of detected
malfunctions. During operation, components that are deemed to function correctly are displayed in
green, components which are suspected to malfunction are displayed in red and components for
which there is not enough information to identify them as either malfunctioning or working correctly
are displayed in blue.

Figure 18. The complete model graph as displayed in the diagnosis view of the telemetry client. Figure 18. The complete model graph as displayed in the diagnosis view of the telemetry client.

Figure 19 shows a schematic overview of the model graph that is displayed in Figure 18. In this
figure, the connections between the different components have been reduced to one connection each.
Some connections are depicted with dotted lines in order to increase the readability of the figure.
The instances of each component class share the same name but are numbered differently, e.g., “Bus1”
and “Bus2” are both instances of the component class “Bus”. Table 1 gives an overview of the
component classes modelled:

Most consumers that are redundantly available are connected to one bus each, e.g., Transceiver1
is connected to Bus1 and Transceiver2 is connected to Bus2. Consumers that are not redundantly
available, like the ASAP payload, an autonomous short-term phenomenon detection and planning
system, as well as the OBDHConv and OBDH components, can be powered by both busses.

Aerospace 2019, 6, 105 21 of 34

Aerospace 2019, 6, x 22 of 36

Figure 19 shows a schematic overview of the model graph that is displayed in Figure 18. In this
figure, the connections between the different components have been reduced to one connection each.
Some connections are depicted with dotted lines in order to increase the readability of the figure.
The instances of each component class sh

Figure 19. Schematic overview of the complete model graph from Figure 18.

Table 1. Overview of the different modelled component classes.

Component Instances Description

Battery 2
A battery pack consisting of 4 single batteries. The main power

source of the satellite.
Solarpanel 4 A single solar panel, explicitly modelled as a sensor component

Boostconverter 2

The PCUs boost converter is used to generate a stable bus voltage.
Since most consumers need a voltage higher, than the main power
supply can provide, each of the two power supply busses uses one

of these converters.

Bus 2
The power supply bus is used to connect the consumers to the

main power supply via a boost converter.

Magnetorquer 2
The magnetorquer component combines three actual

magnetorquers. A ferrite core coil (X-direction) and two air core
coils (Y- and Z- direction) are used.

Terminationboard 2 Connects three single physical magnetorquers in either positive or
negative X-, Y-, Z-direction to a power supply bus.

Reactionwheel 3 A single experimental reaction wheel.
ASAP 1 The ASAP-payload.
AROS 2 The AROS-payload.

Figure 19. Schematic overview of the complete model graph from Figure 18.

Table 1. Overview of the different modelled component classes.

Component Instances Description

Battery 2 A battery pack consisting of 4 single batteries. The main power source of the
satellite.

Solarpanel 4 A single solar panel, explicitly modelled as a sensor component

Boostconverter 2
The PCUs boost converter is used to generate a stable bus voltage. Since most

consumers need a voltage higher, than the main power supply can provide, each
of the two power supply busses uses one of these converters.

Bus 2 The power supply bus is used to connect the consumers to the main power
supply via a boost converter.

Magnetorquer 2 The magnetorquer component combines three actual magnetorquers. A ferrite
core coil (X-direction) and two air core coils (Y- and Z- direction) are used.

Terminationboard 2 Connects three single physical magnetorquers in either positive or negative X-,
Y-, Z-direction to a power supply bus.

Reactionwheel 3 A single experimental reaction wheel.
ASAP 1 The ASAP-payload.
AROS 2 The AROS-payload.

Interfaceboard1 1 Connects two reaction wheels, an AROS unit and ASAP to a power supply bus.
Interfaceboard2 1 Connects a reaction wheel, an AROS unit and ASAP to a power supply bus.

ADCSConv 2 The voltage converter of the attitude determination and control system.
ADCS 2 The attitude determination and control system.

Magnetometer 4 The magnetometer of the ADCS.
Gyro 4 The gyro of the ADCS.

Transceiver 2 The transceiver of the satellite.
HISPICO 2 A single HISPICO device.

SSTV 2 A SSTV device.
PCU 2 The dedicated microcontroller of the PCU.

ADIA 2 The ADIA-payload.
OBDHConv 4 The voltage converter of the on board computer.

OBDH 4 The on board computer of the satellite.
SunSensor 1 The SunSensor component combines 12 actual sun sensors.

Aerospace 2019, 6, 105 22 of 34

4.1. Model Calibration

A simulation model that is built using white box and expert knowledge requires subsequent
calibration to maximize its accuracy. Classically, model calibration is done manually in a trial-and-error
fashion by the systems engineer. Initially, a set of parameters, that are deemed reasonable, are picked
and then iteratively refined until a certain model accuracy in regard to a quality metric has been
reached. The most common metric used is the root-mean-squared error (RMSE). For components with
a large number of parameters, which have non-linear dependencies among each other, the manual
calibration turned out to be a highly work intensive and time consuming task.

To address this issue, only components with few parameters and those whose power consumption
is based on their measurable discrete state were manually calibrated, while more complex and
dynamic components, like the reaction wheels were calibrated by using a Cyclic Genetic Algorithm
(CGA) [29] that was implemented in Java. The CGA consists of two independently working Genetic
Algorithms (GA) [30], hybridized with a hill climber [31]. The CGA starts with a population of sets of
random parameter values and uses the GA operations “selection”, “mutation”, and “recombination”
to iteratively modify those values in order to maximize a so-called fitness function. The two GAs of the
CGA are the GA Calibrator, used to converge the population and the GA Diversifier, used to diversify
the population. The GA Calibrator uses a low mutation rate and a recombination strategy that favors
convergence, while the GA Diversifier uses a high mutation rate and a recombination strategy that
favors diversification. The GA Calibrator and the GA Diversifier have a cyclical relationship, as the GA
Calibrator passes the population to the GA Diversifier, when the solution can no longer be improved
and the GA Diversifier passes the population back to the GA Calibrator after a diversification phase
has been performed. When the CGA is stuck at a local optimum and the GA Calibrator is unable to
improve the solution after a diversification phase has been performed, the hill climber is used to further
refine the solution, before the population is passed to the GA Diversifier. The algorithm terminates,
when a certain number of iterations, so-called generations, has been reached or no improvement was
made for a certain number of generations. The fitness function of the CGA, as well as the quality
metric for the hill climber, was chosen to be the RMSE and for the calibration of the model components,
housekeeping data of the qualification model of the SONATE Nano-satellite and data recorded during
component tests was used. The resulting parameters from the manual and automatic calibration were
used as an initial calibration for the model.

4.2. Data and Interfaces

The telemetry client supplies the fault detection system with telemetry data after the housekeeping
data has been calibrated according to a calibration specification contained in a special database, the
so-called telemetry database. These calibrations include e.g., the conversion of analog-to-digital
converter (ADC) values from the raw housekeeping data to voltage values in volt (V). While the
telemetry client formats the telemetry data according to a format specification contained in the telemetry
database before displaying it, the fault detection system receives the calibrated non-formatted data, as
it uses its own adjustable formats for computation and display of the data. Each housekeeping frame
is used to simulate a single time step. With each time step, all of the components that can be simulated
during this time step, given the current housekeeping data frame, are simulated. The positions of the
different telemetry parameters within the housekeeping frames are fixed and do not change during
operation, e.g., parameter x is always at position y within the housekeeping frame. However, not
all telemetry parameters are always available, e.g., when a component is turned off, its sensors no
longer produce meaningful values. A validity check has to be performed on the different parameter
values, as these invalid parameter values are still contained in the housekeeping frame. For each
parameter, a Boolean condition can be formulated. If this condition holds true, the parameter value
is valid; or else, the value is invalid and can be discarded. In order for the fault detection system
to simulate the model, it has to be supplied with the housekeeping data of the satellite. Therefore,
the different telemetry parameters have to be mapped to ports of the model. No static port mapping

Aerospace 2019, 6, 105 23 of 34

can be used for the SONATE Nano-satellite, since most of the redundantly available components
share the same parameter positions within the housekeeping frame, due to a strict data size limit of
the housekeeping data, as given by the downlink capacity. To reduce the size of the housekeeping
frame, for most components that are redundantly available, only the telemetry data of the currently
active component is being recorded, e.g., there exist two AROS components, AROS1 and AROS2, of
which only one can be active at a given time. However, the housekeeping frame only contains data
for one AROS system. Therefore, these parameter values need to be conditionally mapped to their
respective model component, e.g., when AROS1 is active, the AROS values from the housekeeping
data frame are mapped to AROS1 and when AROS2 is active they are mapped to AROS2. Each such
condition is a Boolean expression that is being evaluated based on the current housekeeping data
frame. When a condition holds true, an appropriate port mapping is created and the model is supplied
with the respective parameter value. Mappings to inports are being created independent of whether
the respective parameter is available or not, since the model requires values for inports in order for
the outports to be simulatable. The model itself takes care of how the actual inport values are being
processed and it makes sure that no unavailable value is being used to compute an output value.
Mappings to outports of unavailable parameter values are not created, in order to ensure that no limit
check and no comparison between measured and simulated values are done, when the measured
values hold no meaningful information. An outport for which the measured value is not available uses
the simulated output only, for further propagation.

Besides the necessary data to simulate the model, the model’s internal parameters are adjustable
at runtime. Such model parameters include e.g., the internal resistance of the battery and the base
current draw of the different microcontrollers. As a direct change to the quantitative descriptions
would make a recompilation of the model necessary, the model parameters are modelled as inports
instead. The model parameters are then supplied as input values, allowing for a change of the model
parameters at runtime without the need to change the quantitative descriptions themselves, and
therefore eliminating any downtime in regards to recalibration of the model.

5. Experiments

For the following experiments, the housekeeping data of the qualification model of the
SONATE-Nano satellite was used and directly modified to simulate malfunctions of components.
For all experiments, a cut-off factor of 1.0 was used. The housekeeping data was generated by
the qualification model of the SONATE-Nano satellite and transmitted via UHF/VHF Radio to the
receiver of the ground station where it was forwarded to the telemetry client, into which the fault
detection system is integrated. As the voltage and current sensors of the OBDHs were disabled on the
qualification model, these values have been added artificially to the housekeeping data while using
their respective expected values taken from previous component tests. To simulate a malfunction,
the housekeeping data was used as a base and manipulated either directly or by adjusting model
parameters, given to the simulator to generate the response of the system and finally the modified
housekeeping data and the response were merged, which results in a consistent data frame containing
the simulated malfunction. The fault detection system only received data for those ports for which it
would have received the data while using actual unmodified housekeeping data.

5.1. Boost Converter Malfunction

The deterioration of the efficiency of one of the boost converters, Boostconverter2, was simulated
to demonstrate the applicability of the model-based fault detection system. The component
Boostconverter2 draws a larger current from the power supply than expected. This is detected
by a discrepancy at its port CurrentDrawOut (CDO), as depicted in Figure 20, because its tolerance
intervals in the component class definition are exceeded (see Section 3.3.1). This discrepancy must
be caused either by the Boostconverter itself or by its adjacent components (resp. their neighbor
etc.). In this case, Battery2 is an excluded component, since further discrepancies at its other output

Aerospace 2019, 6, 105 24 of 34

ports would be expected (e.g. at port VBO in Figure 20). The port CurrentOut (CO) of Battery2 is
unsimulatable as it requires measured values from the deactivated solar panels, which are modelled
as sensor components and do not produce simulated values. Therefore, the solar panels have no
effect on the port CurrentOut (CO) of Battery2 and its output has the same value as CurrentDrawIn
(CDI), i.e., the value of CurrentDrawIn is forwarded to CurrentOut. The component Battery2 is an
excluded component, as neither of its measured outport values violates a limit and for each of its
simulatable outports, there exists a measured and a simulated value, which do not diverge from each
other by more than the tolerance intervals defined for the respective port allow. Bus2 cannot cause the
discrepancy either, as the values of its port CurrentOut (CO) are correct and Bus2 does not feature any
other discrepancies, and therefore is not a symptom component (see Section 3.3.2).

Aerospace 2019, 6, x 25 of 36

For all experiments, a cut-off factor of 1.0 was used. The housekeeping data was generated by the
qualification model of the SONATE-Nano satellite and transmitted via UHF/VHF Radio to the
receiver of the ground station where it was forwarded to the telemetry client, into which the fault
detection system is integrated. As the voltage and current sensors of the OBDHs were disabled on
the qualification model, these values have been added artificially to the housekeeping data while
using their respective expected values taken from previous component tests. To simulate a
malfunction, the housekeeping data was used as a base and manipulated either directly or by
adjusting model parameters, given to the simulator to generate the response of the system and finally
the modified housekeeping data and the response were merged, which results in a consistent data
frame containing the simulated malfunction. The fault detection system only received data for those
ports for which it would have received the data while using actual unmodified housekeeping data.

5.1 Boost Converter Malfunction

The deterioration of the efficiency of one of the boost converters, Boostconverter2, was simulated
to demonstrate the applicability of the model-based fault detection system. The component
Boostconverter2 draws a larger current from the power supply than expected. This is detected by a
discrepancy at its port CurrentDrawOut (CDO), as depicted in Figure 20, because its tolerance
intervals in the component class definition are exceeded (see Section 3.3.1). This discrepancy must be
caused either by the Boostconverter itself or by its adjacent components (resp. their neighbor etc.). In
this case, Battery2 is an excluded component, since further discrepancies at its other output ports
would be expected (e.g. at port VBO in Figure 20). The port CurrentOut (CO) of Battery2 is unsimulatable
as it requires measured values from the deactivated solar panels, which are modelled as sensor components and
do not produce simulated values. Therefore, the solar panels have no effect on the port CurrentOut (CO) of
Battery2 and its output has the same value as CurrentDrawIn (CDI), i.e., the value of CurrentDrawIn is
forwarded to CurrentOut. The component Battery2 is an excluded component, as neither of its measured outport
values violates a limit and for each of its simulatable outports, there exists a measured and a simulated value,
which do not diverge from each other by more than the tolerance intervals defined for the respective port allow.
Bus2 cannot cause the discrepancy either, as the values of its port CurrentOut (CO) are correct and
Bus2 does not feature any other discrepancies, and therefore is not a symptom component (see
Section 3.3.2).

Figure 20. Simplified schematic depiction of the suspected component Boostconverter2 in red
together with its adjacent components (not suspected, therefore in green), taken over from the satellite
model from Figure 19 with relevant ports (boxes within the components with their abbreviated names
above the boxes, e.g., VBO) and relevant port values (values within the port boxes if available, top
value: measured, bottom value: simulated). Forward connections are depicted by solid arrows,
backward connections by dotted lines. Comparisons between measured and simulated values are
performed at the output ports (denoted with an outgoing arrow; if an output value is not available, it
is denoted with “NA”; the port box color denotes red for detected discrepancies, green for correct and
white for unknown). Input ports are white, because they do not compute discrepancies, and use
measured values if available, otherwise simulated values.

Figure 20. Simplified schematic depiction of the suspected component Boostconverter2 in red together
with its adjacent components (not suspected, therefore in green), taken over from the satellite model
from Figure 19 with relevant ports (boxes within the components with their abbreviated names above
the boxes, e.g., VBO) and relevant port values (values within the port boxes if available, top value:
measured, bottom value: simulated). Forward connections are depicted by solid arrows, backward
connections by dotted lines. Comparisons between measured and simulated values are performed at
the output ports (denoted with an outgoing arrow; if an output value is not available, it is denoted
with “NA”; the port box color denotes red for detected discrepancies, green for correct and white
for unknown). Input ports are white, because they do not compute discrepancies, and use measured
values if available, otherwise simulated values.

As a discrepancy was observed at the port CurrentDrawOut (CDO) of Boostconverter2, a symptom
is generated, with Boostconverter2 being the corresponding symptom component and CurrentDrawOut
being the symptom port. Figure 21 shows the corresponding symptom that was contained in the
diagnosis.xml-file generated by the fault detection system.

There exists one single diagnosis, containing the boost converter for which a fault was induced, as
can be seen in Figure 22. The diagnosis has a score of 1.0, given by a relative pseudo probability, here
simply denoted as probability.

In this experiment, the measured current drawn from the power supply was 0.34 A, while the
expected current was 0.18 A. The difference between the measured and expected values are quite
large, but their absolute values are not large enough to exceed a limit, therefore no anomaly would be
apparent by using the telemetry alone. To detect the fault using the telemetry alone, the operator would
need to have enough expertise to deduce that given X different loads from different other telemetry
pages and the present state of the power supply, the correct current that is being drawn from the power
supply has to be 0.18 A, instead of 0.34 A. It is unlikely that the operator would detect this discrepancy
based on the telemetry in practice, since no limit was violated. Hard limit violations occur close to a
component failure and, before that, the components usually start to behave anomalous with increasing
severity in the deviation from their nominal behavior. Detecting abnormal behavior in time, before a
limit is violated, allows for counter measures to be initiated, which may prevent a system failure.

Aerospace 2019, 6, 105 25 of 34

Aerospace 2019, 6, x 26 of 36

As a discrepancy was observed at the port CurrentDrawOut (CDO) of Boostconverter2, a
symptom is generated, with Boostconverter2 being the corresponding symptom component and
CurrentDrawOut being the symptom port. Figure 21 shows the corresponding symptom that was
contained in the diagnosis.xml-file generated by the fault detection system.

Figure 21. Fully expanded symptom of Boostconverter2, showing the symptom type, the symptom
port, as well as the measured and simulated values that have caused the corresponding discrepancy.
The symptom component is Boostconverter2, the symptom port is CurrentDrawOut, and the
symptom type is MEASURED_OUTPUT_SIMULATED_OUTPUT_DISCREPANCY, indicating that
the symptom was caused by a discrepancy between the measured and the simulated output of
symptom port CurrentDrawOut.

There exists one single diagnosis, containing the boost converter for which a fault was induced,
as can be seen in Figure 22. The diagnosis has a score of 1.0, given by a relative pseudo probability,
here simply denoted as probability.

Figure 22. The diagnosis corresponding to the malfunction of Boostconverter2. The diagnosis consists
only of Boostconverter2, meaning that a malfunction of Boostconverter2 would explain the observed
discrepancy.

In this experiment, the measured current drawn from the power supply was 0.34 A, while the
expected current was 0.18 A. The difference between the measured and expected values are quite
large, but their absolute values are not large enough to exceed a limit, therefore no anomaly would
be apparent by using the telemetry alone. To detect the fault using the telemetry alone, the operator
would need to have enough expertise to deduce that given X different loads from different other
telemetry pages and the present state of the power supply, the correct current that is being drawn
from the power supply has to be 0.18 A, instead of 0.34 A. It is unlikely that the operator would detect
this discrepancy based on the telemetry in practice, since no limit was violated. Hard limit violations
occur close to a component failure and, before that, the components usually start to behave
anomalous with increasing severity in the deviation from their nominal behavior. Detecting

Figure 21. Fully expanded symptom of Boostconverter2, showing the symptom type, the symptom
port, as well as the measured and simulated values that have caused the corresponding discrepancy.
The symptom component is Boostconverter2, the symptom port is CurrentDrawOut, and the
symptom type is MEASURED_OUTPUT_SIMULATED_OUTPUT_DISCREPANCY, indicating that the
symptom was caused by a discrepancy between the measured and the simulated output of symptom
port CurrentDrawOut.

Aerospace 2019, 6, x 26 of 36

As a discrepancy was observed at the port CurrentDrawOut (CDO) of Boostconverter2, a
symptom is generated, with Boostconverter2 being the corresponding symptom component and
CurrentDrawOut being the symptom port. Figure 21 shows the corresponding symptom that was
contained in the diagnosis.xml-file generated by the fault detection system.

Figure 21. Fully expanded symptom of Boostconverter2, showing the symptom type, the symptom
port, as well as the measured and simulated values that have caused the corresponding discrepancy.
The symptom component is Boostconverter2, the symptom port is CurrentDrawOut, and the
symptom type is MEASURED_OUTPUT_SIMULATED_OUTPUT_DISCREPANCY, indicating that
the symptom was caused by a discrepancy between the measured and the simulated output of
symptom port CurrentDrawOut.

There exists one single diagnosis, containing the boost converter for which a fault was induced,
as can be seen in Figure 22. The diagnosis has a score of 1.0, given by a relative pseudo probability,
here simply denoted as probability.

Figure 22. The diagnosis corresponding to the malfunction of Boostconverter2. The diagnosis consists
only of Boostconverter2, meaning that a malfunction of Boostconverter2 would explain the observed
discrepancy.

In this experiment, the measured current drawn from the power supply was 0.34 A, while the
expected current was 0.18 A. The difference between the measured and expected values are quite
large, but their absolute values are not large enough to exceed a limit, therefore no anomaly would
be apparent by using the telemetry alone. To detect the fault using the telemetry alone, the operator
would need to have enough expertise to deduce that given X different loads from different other
telemetry pages and the present state of the power supply, the correct current that is being drawn
from the power supply has to be 0.18 A, instead of 0.34 A. It is unlikely that the operator would detect
this discrepancy based on the telemetry in practice, since no limit was violated. Hard limit violations
occur close to a component failure and, before that, the components usually start to behave
anomalous with increasing severity in the deviation from their nominal behavior. Detecting

Figure 22. The diagnosis corresponding to the malfunction of Boostconverter2. The diagnosis
consists only of Boostconverter2, meaning that a malfunction of Boostconverter2 would explain the
observed discrepancy.

5.2. Transceiver Malfunction

A special anomaly was detected within the unmodified housekeeping data of the qualification
model of the SONATE Nano-satellite. One of the transceivers was turned on, but its power consumption
was measured to be 0 mA, as opposed to an expected value of approximately 16.14 mA. This discrepancy
can be seen at the port CurrentOut (CO) of Transceiver1 in Figure 23. The cause for the discrepancy
is Transceiver1, Boostconverter1, or Bus1. As Boostconverter1 is an excluded component, it cannot
have caused the discrepancy and, while Bus1 is initially suspected by Transceiver1, it gets relieved by
other consumers that were connected to it and is therefore not deemed a possible cause of the observed
discrepancy either.

As the transceiver cannot be turned on, while consuming no power, either the current sensor on the
transceivers circuit board is malfunctioning or the transceiver is turned off, even though it is supposed
to be turned on. The fault detection system identified the transceiver as a symptom component, and the
diagnosis only contained the symptomatic transceiver. The fault detection system could not find any
other discrepancies. The solution to this anomaly turned out to be that the data was generated during
component tests and that the transceivers connection to the satellites power supply was cut off, while
the transceiver was externally supplied with power. Therefore, the transceiver could be turned on, while
drawing 0 mA current from the satellites power supply. The ability of Transceiver1 to be externally
powered was not considered during modelling and it was unexpected when encountered first. This

Aerospace 2019, 6, 105 26 of 34

experiment showed that the fault detection and diagnosis system is able to detect malfunctions that are
caused by arbitrary behavior that deviates from the nominal behavior of a component.

Aerospace 2019, 6, x 27 of 36

abnormal behavior in time, before a limit is violated, allows for counter measures to be initiated,
which may prevent a system failure.

5.2 Transceiver Malfunction

A special anomaly was detected within the unmodified housekeeping data of the qualification
model of the SONATE Nano-satellite. One of the transceivers was turned on, but its power
consumption was measured to be 0 mA, as opposed to an expected value of approximately 16.14 mA.
This discrepancy can be seen at the port CurrentOut (CO) of Transceiver1 in Figure 23. The cause for
the discrepancy is Transceiver1, Boostconverter1, or Bus1. As Boostconverter1 is an excluded
component, it cannot have caused the discrepancy and, while Bus1 is initially suspected by
Transceiver1, it gets relieved by other consumers that were connected to it and is therefore not
deemed a possible cause of the observed discrepancy either.

Figure 23. Simplified schematic depiction of the suspected component Transceiver1 and its relevant
surrounding components (explanation see Figure 20).

As the transceiver cannot be turned on, while consuming no power, either the current sensor on
the transceivers circuit board is malfunctioning or the transceiver is turned off, even though it is
supposed to be turned on. The fault detection system identified the transceiver as a symptom
component, and the diagnosis only contained the symptomatic transceiver. The fault detection
system could not find any other discrepancies. The solution to this anomaly turned out to be that the
data was generated during component tests and that the transceivers connection to the satellites
power supply was cut off, while the transceiver was externally supplied with power. Therefore, the
transceiver could be turned on, while drawing 0 mA current from the satellites power supply. The
ability of Transceiver1 to be externally powered was not considered during modelling and it was
unexpected when encountered first. This experiment showed that the fault detection and diagnosis
system is able to detect malfunctions that are caused by arbitrary behavior that deviates from the
nominal behavior of a component.

5.3 OBDH Voltage Converter Malfunction

For the next experiment, a malfunction of the voltage converter OBDH1Conv of OBDH1 was
simulated. Instead of generating a 3.3 V output via its outport VoltageOut (VO), its output is observed
to be 3.12 V, as can be seen in Figure 24. While Bus1 and Bus2 might supply OBDH1Conv, it can only
be supplied by one of them at a given time. A parameter, modeled as input value defines which bus
supplies OBDH1Conv. In this case, OBDH1Conv is supplied by, and draws from, Bus2. The dynamic
port dependencies therefore do not contain the connections to Bus1, causing Bus1 and
Boostconverter1 not to be considered. The remaining components that might have caused the
observed discrepancy are OBDH1Conv itself, OBDH1, Bus2, or Boostconverter2. As OBDH1 and

Figure 23. Simplified schematic depiction of the suspected component Transceiver1 and its relevant
surrounding components (explanation see Figure 20).

5.3. OBDH Voltage Converter Malfunction

For the next experiment, a malfunction of the voltage converter OBDH1Conv of OBDH1 was
simulated. Instead of generating a 3.3 V output via its outport VoltageOut (VO), its output is observed
to be 3.12 V, as can be seen in Figure 24. While Bus1 and Bus2 might supply OBDH1Conv, it can only
be supplied by one of them at a given time. A parameter, modeled as input value defines which bus
supplies OBDH1Conv. In this case, OBDH1Conv is supplied by, and draws from, Bus2. The dynamic
port dependencies therefore do not contain the connections to Bus1, causing Bus1 and Boostconverter1
not to be considered. The remaining components that might have caused the observed discrepancy are
OBDH1Conv itself, OBDH1, Bus2, or Boostconverter2. As OBDH1 and Boostconverter2 are excluded
components and other consumers relieve Bus2, OBDH1Conv is the only suspected component.

Aerospace 2019, 6, x 28 of 36

Boostconverter2 are excluded components and other consumers relieve Bus2, OBDH1Conv is the
only suspected component.

Figure 24. Simplified schematic depiction of the suspected component OBDH1Conv and its relevant
surrounding components (explanation see Figure 20).

The diagnosis system identified OBDH1Conv as symptom component and the diagnosis only
contained ODBH1Conv. Therefore, the malfunction of OBDH1Conv was successfully detected and
no other component was wrongfully suspected to malfunction.

Figure 24. Simplified schematic depiction of the suspected component OBDH1Conv and its relevant
surrounding components (explanation see Figure 20).

Aerospace 2019, 6, 105 27 of 34

The diagnosis system identified OBDH1Conv as symptom component and the diagnosis only
contained ODBH1Conv. Therefore, the malfunction of OBDH1Conv was successfully detected and no
other component was wrongfully suspected to malfunction.

5.4. OBDH Voltage Converter and OBDH Malfunction

Two discrepancies were induced for the next experiment. The voltage converter OBDH1Conv
was manipulated like before and, additionally, the current draw of OBDH1 caused a discrepancy at its
port CurrentOut (CO), as can be seen in Figure 25. Like in the previous experiment OBDH1Conv and
therefore Bus2 supplies OBDH1, therefore Bus1 and Boostconverter1 have no effect on the behavior
of OBDH1Conv and OBDH1. The component Boostconverter2 is an excluded component and Bus2
is relieved by other consumers, causing it to be deemed to be working correctly. In contrast to the
previous experiment, OBDH1 is now suspected to malfunction because of the discrepancy at its port
CurrentOut (CO). Due to the cyclical relation of OBDH1Conv and OBDH1, a malfunction of OBDH1
can explain the discrepancies detected at OBDH1 and OBDH1Conv and a malfunction of OBDH1Conv
can explain the discrepancies that were detected at OBDH1Conv and OBDH1.

Aerospace 2019, 6, x 29 of 36

5.4 OBDH Voltage Converter and OBDH Malfunction

Two discrepancies were induced for the next experiment. The voltage converter OBDH1Conv
was manipulated like before and, additionally, the current draw of OBDH1 caused a discrepancy at
its port CurrentOut (CO), as can be seen in Figure 25. Like in the previous experiment OBDH1Conv
and therefore Bus2 supplies OBDH1, therefore Bus1 and Boostconverter1 have no effect on the
behavior of OBDH1Conv and OBDH1. The component Boostconverter2 is an excluded component
and Bus2 is relieved by other consumers, causing it to be deemed to be working correctly. In contrast
to the previous experiment, OBDH1 is now suspected to malfunction because of the discrepancy at
its port CurrentOut (CO). Due to the cyclical relation of OBDH1Conv and OBDH1, a malfunction of
OBDH1 can explain the discrepancies detected at OBDH1 and OBDH1Conv and a malfunction of
OBDH1Conv can explain the discrepancies that were detected at OBDH1Conv and OBDH1.

Figure 25. Simplified schematic depiction of the suspected component OBDH1Conv and OBDH1 and
its relevant surrounding components. In addition to the explanation of Figure 20, OBDH1Conv and
OBDH1 are depicted in a lighter shade of red to indicate that the probability of their respective
diagnosis is lower than in the previous experiments.

Due to the cyclical relationship of the OBDH and its voltage converter, the malfunction of
OBDH1 might have been induced by a (not necessarily observed) previous fault occurring at
OBDH1Conv and the malfunction of OBDH1Conv may have been induced by a fault occurring at
OBDH1. Correctly, OBDH1 is contained in the conflict set of OBDH1Conv and OBDH1Conv is
contained in the conflict set of OBDH1.

Figure 26 shows the symptom components that are listed in the diagnosis.xml-file. Both of the
discrepancies were detected by the fault detection system. The diagnoses that were contained in the
diagnosis.xml-file can be seen in Figure 27.

Figure 26. The symptom components OBDH1 and OBDH1Conv corresponding to the detected
discrepancies listed in the diagnosis.xml-file.

Figure 25. Simplified schematic depiction of the suspected component OBDH1Conv and OBDH1
and its relevant surrounding components. In addition to the explanation of Figure 20, OBDH1Conv
and OBDH1 are depicted in a lighter shade of red to indicate that the probability of their respective
diagnosis is lower than in the previous experiments.

Due to the cyclical relationship of the OBDH and its voltage converter, the malfunction of OBDH1
might have been induced by a (not necessarily observed) previous fault occurring at OBDH1Conv and
the malfunction of OBDH1Conv may have been induced by a fault occurring at OBDH1. Correctly,
OBDH1 is contained in the conflict set of OBDH1Conv and OBDH1Conv is contained in the conflict
set of OBDH1.

Figure 26 shows the symptom components that are listed in the diagnosis.xml-file. Both of the
discrepancies were detected by the fault detection system. The diagnoses that were contained in the
diagnosis.xml-file can be seen in Figure 27.

Aerospace 2019, 6, 105 28 of 34

Aerospace 2019, 6, x 29 of 36

5.4 OBDH Voltage Converter and OBDH Malfunction

Two discrepancies were induced for the next experiment. The voltage converter OBDH1Conv
was manipulated like before and, additionally, the current draw of OBDH1 caused a discrepancy at
its port CurrentOut (CO), as can be seen in Figure 25. Like in the previous experiment OBDH1Conv
and therefore Bus2 supplies OBDH1, therefore Bus1 and Boostconverter1 have no effect on the
behavior of OBDH1Conv and OBDH1. The component Boostconverter2 is an excluded component
and Bus2 is relieved by other consumers, causing it to be deemed to be working correctly. In contrast
to the previous experiment, OBDH1 is now suspected to malfunction because of the discrepancy at
its port CurrentOut (CO). Due to the cyclical relation of OBDH1Conv and OBDH1, a malfunction of
OBDH1 can explain the discrepancies detected at OBDH1 and OBDH1Conv and a malfunction of
OBDH1Conv can explain the discrepancies that were detected at OBDH1Conv and OBDH1.

Figure 25. Simplified schematic depiction of the suspected component OBDH1Conv and OBDH1 and
its relevant surrounding components. In addition to the explanation of Figure 20, OBDH1Conv and
OBDH1 are depicted in a lighter shade of red to indicate that the probability of their respective
diagnosis is lower than in the previous experiments.

Due to the cyclical relationship of the OBDH and its voltage converter, the malfunction of
OBDH1 might have been induced by a (not necessarily observed) previous fault occurring at
OBDH1Conv and the malfunction of OBDH1Conv may have been induced by a fault occurring at
OBDH1. Correctly, OBDH1 is contained in the conflict set of OBDH1Conv and OBDH1Conv is
contained in the conflict set of OBDH1.

Figure 26 shows the symptom components that are listed in the diagnosis.xml-file. Both of the
discrepancies were detected by the fault detection system. The diagnoses that were contained in the
diagnosis.xml-file can be seen in Figure 27.

Figure 26. The symptom components OBDH1 and OBDH1Conv corresponding to the detected
discrepancies listed in the diagnosis.xml-file.
Figure 26. The symptom components OBDH1 and OBDH1Conv corresponding to the detected
discrepancies listed in the diagnosis.xml-file.Aerospace 2019, 6, x 30 of 36

Figure 27. The two diagnoses contained in the diagnosis.xml-file. The first diagnosis is the
malfunction of OBDH1 and the second diagnosis is the malfunction of OBDH1Conv. Both diagnoses
have the same probability (probability = 0.5), because OBDH1 and OBDH1Conv have the same a
priori failure probability (modeled in the component class definitions) and both can explain all
observed discrepancies.

In the models graph, both of the components are displayed in a lighter shade of red than in the
previous experiments, as for each component, the relative probability to be the root cause of all
symptoms is now lower, since each component is equally likely (probability = 0.5) to be the root cause,
given equal failure probabilities of OBDH1Conv and OBDH1.

5.5 Interface Board Malfunction

For the next experiment, a malfunction of Interfaceboard1 with turned on ADCS1, AROS1,
Reactionhweel1, and Reactionwheel2 components was simulated. The malfunction causes the supply
voltage to abnormally drop at Interfaceboard1, which in turn leads to an increase in the current drawn
by the consumers connected to it. This causes a discrepancy at the port CurrentOut (CO) of AROS1,
at the port CurrentOut (CO) of Reactionhweel1 and at the port CurrentOut (CO) of Reactionhweel2,
as can be seen in Figure 28. As Interfaceboard1 is not directly measured, no discrepancy can be
detected at Interfaceboard1 and no symptom can be generated for it. A malfunction of
Interfaceboard1 can only be detected by observing the deviation of the observed behavior of the
connected consumers from their expected behavior. The consumers that may be affected by a
malfunction of Interfaceboard1 are Reactionhweel1, Reactionhweel2, AROS1, and the ASAP payload
(not depicted because it is turned off). However, if abnormal behavior is observed at these
components, then a malfunction of Interfaceboard1 is just one of multiple possible causes. Since all
of the components are connected to the power supply via a bus, a malfunction of the power supply
is also a viable candidate. Additionally, the reaction wheels are controlled by both ADCS systems,
ADCS1 and ADCS2 (not depicted because it is turned off), which makes them a candidate to cause
abnormal behaviour that is associated with the reaction wheels. The simplest explanation for a
malfunction of the payloads is that the payloads themselves are malfunctioning. However, this
becomes less likely, the more payloads are simultaneously malfunctioning. As ASAP is turned off, it
has no effect on the remaining system. Each ADCS system is able to control all of the reaction wheels
and therefore has a connection to each of them, but only one ADCS system is active at a time. as
ADCS2 is turned off, the dynamic port dependencies do not include connections to ADCS2.
Therefore, ADCS2 is not considered. The components Boostconverter1 and ADCS1 are excluded
components, since there exist measured and simulated values for all of their output ports, which do
not deviate from each other more than allowed by their respective tolerance intervals and no
measured value violates a threshold limit. The remaining components that can cause the observed
discrepancies are AROS1, Reactionwheel1, Reactionhweel2, Interfaceboard1, and Bus1. Bus1 is
relieved by other consumers, including ADCS1 via the ADCS1Conv component (not depicted due to
readability reasons) and deemed to be not suspicious. Interfaceboard1 is relieved by Boostconverter1,
but, as it is suspected by all symptom components, Interfaceboard1 is found to be malfunctioning.

Figure 27. The two diagnoses contained in the diagnosis.xml-file. The first diagnosis is the malfunction
of OBDH1 and the second diagnosis is the malfunction of OBDH1Conv. Both diagnoses have the
same probability (probability = 0.5), because OBDH1 and OBDH1Conv have the same a priori failure
probability (modeled in the component class definitions) and both can explain all observed discrepancies.

In the models graph, both of the components are displayed in a lighter shade of red than in
the previous experiments, as for each component, the relative probability to be the root cause of all
symptoms is now lower, since each component is equally likely (probability = 0.5) to be the root cause,
given equal failure probabilities of OBDH1Conv and OBDH1.

5.5. Interface Board Malfunction

For the next experiment, a malfunction of Interfaceboard1 with turned on ADCS1, AROS1,
Reactionhweel1, and Reactionwheel2 components was simulated. The malfunction causes the supply
voltage to abnormally drop at Interfaceboard1, which in turn leads to an increase in the current drawn
by the consumers connected to it. This causes a discrepancy at the port CurrentOut (CO) of AROS1, at
the port CurrentOut (CO) of Reactionhweel1 and at the port CurrentOut (CO) of Reactionhweel2, as
can be seen in Figure 28. As Interfaceboard1 is not directly measured, no discrepancy can be detected
at Interfaceboard1 and no symptom can be generated for it. A malfunction of Interfaceboard1 can
only be detected by observing the deviation of the observed behavior of the connected consumers
from their expected behavior. The consumers that may be affected by a malfunction of Interfaceboard1
are Reactionhweel1, Reactionhweel2, AROS1, and the ASAP payload (not depicted because it is
turned off). However, if abnormal behavior is observed at these components, then a malfunction of
Interfaceboard1 is just one of multiple possible causes. Since all of the components are connected to
the power supply via a bus, a malfunction of the power supply is also a viable candidate. Additionally,
the reaction wheels are controlled by both ADCS systems, ADCS1 and ADCS2 (not depicted because
it is turned off), which makes them a candidate to cause abnormal behaviour that is associated
with the reaction wheels. The simplest explanation for a malfunction of the payloads is that the
payloads themselves are malfunctioning. However, this becomes less likely, the more payloads are
simultaneously malfunctioning. As ASAP is turned off, it has no effect on the remaining system.
Each ADCS system is able to control all of the reaction wheels and therefore has a connection to
each of them, but only one ADCS system is active at a time. as ADCS2 is turned off, the dynamic
port dependencies do not include connections to ADCS2. Therefore, ADCS2 is not considered.
The components Boostconverter1 and ADCS1 are excluded components, since there exist measured and
simulated values for all of their output ports, which do not deviate from each other more than allowed
by their respective tolerance intervals and no measured value violates a threshold limit. The remaining

Aerospace 2019, 6, 105 29 of 34

components that can cause the observed discrepancies are AROS1, Reactionwheel1, Reactionhweel2,
Interfaceboard1, and Bus1. Bus1 is relieved by other consumers, including ADCS1 via the ADCS1Conv
component (not depicted due to readability reasons) and deemed to be not suspicious. Interfaceboard1
is relieved by Boostconverter1, but, as it is suspected by all symptom components, Interfaceboard1 is
found to be malfunctioning.Aerospace 2019, 6, x 31 of 36

Figure 28. Simplified schematic depiction of the suspected components AROS1, Reactionwheel1,
Reactionwheel2, and Interfaceboard1 and its relevant surrounding components (explanation see
Figure 20). The dark red coloring of Interfaceboard1 indicates that it is part of a diagnosis with a high
probability and the light red coloring of AROS1, Reactionwheel1, and Reactionwheel2 indicates that
they are part of a diagnosis with a lower probability.

A look into the diagnosis.xml-file gives more information about the observed discrepancies.
Figure 29 shows the symptom components, corresponding to the detected discrepancies, as listed in
the diagnosis.xml-file. The symptom components are AROS1, Reactionwheel1, and Reactionwheel2.
Even though the malfunction was induced for Interfaceboard1, it is not a symptom component, as
neither of its outputs can be measured, and therefore no abnormal behavior can be directly observed
at Interfaceboard1.

Figure 29. The symptom components AROS1, Reactionhweel1, and Reactionhweel2 corresponding to
the detected discrepancies listed in the diagnosis.xml-file.

Figure 30 shows the diagnoses that were computed by the fault detection system. In this case
there exist two diagnoses. The first diagnosis is a malfunction of Interfaceboard1 and the second
diagnosis is a simultaneous malfunction of AROS1, Reactionwheel1, and Reactionwheel2. The first
diagnosis has a significantly higher pseudo probability. It is more likely for Interfaceboard1 to
malfunction and cause all symptoms, then for AROS1, Reactionhweel1, and Reactionwheel2 to
malfunction simultaneously and cause the symptoms associated with each of them independently.
The second diagnosis however is not impossible either, since no definitive statement about the state
of Interfaceboard1 can be made, as it is not directly measurable. The second diagnosis could have
been omitted by using an appropriate cut-off factor. As the anomalous behaving components are
connected to Bus1, the components that are connected to Bus2 are unaffected. The fault detection
system detected the abnormal behavior of AROS1, Reactionwheel1, and Reactionwheel2, identified
the possible causes and focused on the actual malfunction.

Figure 28. Simplified schematic depiction of the suspected components AROS1, Reactionwheel1,
Reactionwheel2, and Interfaceboard1 and its relevant surrounding components (explanation see
Figure 20). The dark red coloring of Interfaceboard1 indicates that it is part of a diagnosis with a high
probability and the light red coloring of AROS1, Reactionwheel1, and Reactionwheel2 indicates that
they are part of a diagnosis with a lower probability.

A look into the diagnosis.xml-file gives more information about the observed discrepancies.
Figure 29 shows the symptom components, corresponding to the detected discrepancies, as listed

in the diagnosis.xml-file. The symptom components are AROS1, Reactionwheel1, and Reactionwheel2.
Even though the malfunction was induced for Interfaceboard1, it is not a symptom component, as
neither of its outputs can be measured, and therefore no abnormal behavior can be directly observed
at Interfaceboard1.

Aerospace 2019, 6, x 31 of 36

Figure 28. Simplified schematic depiction of the suspected components AROS1, Reactionwheel1,
Reactionwheel2, and Interfaceboard1 and its relevant surrounding components (explanation see
Figure 20). The dark red coloring of Interfaceboard1 indicates that it is part of a diagnosis with a high
probability and the light red coloring of AROS1, Reactionwheel1, and Reactionwheel2 indicates that
they are part of a diagnosis with a lower probability.

A look into the diagnosis.xml-file gives more information about the observed discrepancies.
Figure 29 shows the symptom components, corresponding to the detected discrepancies, as listed in
the diagnosis.xml-file. The symptom components are AROS1, Reactionwheel1, and Reactionwheel2.
Even though the malfunction was induced for Interfaceboard1, it is not a symptom component, as
neither of its outputs can be measured, and therefore no abnormal behavior can be directly observed
at Interfaceboard1.

Figure 29. The symptom components AROS1, Reactionhweel1, and Reactionhweel2 corresponding to
the detected discrepancies listed in the diagnosis.xml-file.

Figure 30 shows the diagnoses that were computed by the fault detection system. In this case
there exist two diagnoses. The first diagnosis is a malfunction of Interfaceboard1 and the second
diagnosis is a simultaneous malfunction of AROS1, Reactionwheel1, and Reactionwheel2. The first
diagnosis has a significantly higher pseudo probability. It is more likely for Interfaceboard1 to
malfunction and cause all symptoms, then for AROS1, Reactionhweel1, and Reactionwheel2 to
malfunction simultaneously and cause the symptoms associated with each of them independently.
The second diagnosis however is not impossible either, since no definitive statement about the state
of Interfaceboard1 can be made, as it is not directly measurable. The second diagnosis could have
been omitted by using an appropriate cut-off factor. As the anomalous behaving components are
connected to Bus1, the components that are connected to Bus2 are unaffected. The fault detection
system detected the abnormal behavior of AROS1, Reactionwheel1, and Reactionwheel2, identified
the possible causes and focused on the actual malfunction.

Figure 29. The symptom components AROS1, Reactionhweel1, and Reactionhweel2 corresponding to
the detected discrepancies listed in the diagnosis.xml-file.

Figure 30 shows the diagnoses that were computed by the fault detection system. In this case there
exist two diagnoses. The first diagnosis is a malfunction of Interfaceboard1 and the second diagnosis is
a simultaneous malfunction of AROS1, Reactionwheel1, and Reactionwheel2. The first diagnosis has a
significantly higher pseudo probability. It is more likely for Interfaceboard1 to malfunction and cause
all symptoms, then for AROS1, Reactionhweel1, and Reactionwheel2 to malfunction simultaneously
and cause the symptoms associated with each of them independently. The second diagnosis however
is not impossible either, since no definitive statement about the state of Interfaceboard1 can be made, as
it is not directly measurable. The second diagnosis could have been omitted by using an appropriate
cut-off factor. As the anomalous behaving components are connected to Bus1, the components that

Aerospace 2019, 6, 105 30 of 34

are connected to Bus2 are unaffected. The fault detection system detected the abnormal behavior
of AROS1, Reactionwheel1, and Reactionwheel2, identified the possible causes and focused on the
actual malfunction.Aerospace 2019, 6, x 32 of 36

Figure 30. The two diagnoses listed in the diagnosis.xml-file. The first diagnosis only contains
Interfaceboard1 and has a probability of 0.93 and the second diagnosis consists of AROS1,
Reactionwheel1, as well as Reactionwheel2 and it has a probability of 0.07.

5.6 Summary of Results

The experiments showed that the fault detection system was able to identify the induced
malfunctions and find the root causes. Three single faults, a cyclical fault, and a fault that can only be
indirectly observed were considered and diagnosed. The single faults of Boostconverter2 (Section 5.1)
and OBDH1Conv (Section 5.3) were successfully identified and correctly diagnosed. The unexpected
behavior of Transceiver1 was successfully identified even though Transceiver1 was not considered
to be powered externally during modelling (Section 5.2). The cyclical relationship of the components
OBDH1Conv and OBDH1, for which discrepancies were detected, was successfully captured and
diagnosed (Section 5.4). In the case of the not directly observable malfunction of Interfaceboard1, all
of the discrepancies were detected and Interfaceboard1 was correctly found to be malfunctioning
with a very high diagnosis probability. Components that were not involved in the malfunctions were
identified and no unrelated component was wrongfully suspected to malfunction. As no threshold
limit violations occurred during any of the experiments, the detected discrepancies in the
experiments could not have been detected by an operator while using telemetry alone. Table 2
summarizes the different experiments performed and their results.

Table 2. Summary of the different experiments performed and their results

Ex. Malfunctioning
Components

Detected
Discrepancies

Identified
Diagnoses

(Probability)
Result

1 Boostconverter2
CDO at

Boostconverter2
Boostconverter2

(100%)
Cause of discrepancy
correctly diagnosed.

2 Transceiver1
CO at

Transceiver1
Transceiver1

(100%)
Cause of discrepancy
correctly diagnosed.

3 OBDH1Conv VO at
OBDH1Conv

OBDH1Conv
(100%)

Cause of discrepancy
correctly diagnosed.

4 OBDH1Conv
VO at

OBDH1Conv,
CO at OBDH1

OBDH1Conv
(50%)/

OBDH1 (50%)

Both discrepancies
detected. Cyclical

relationship identified
and most viable

diagnoses computed.

5 Interfaceboard1

CO at AROS1,
CO at

Reactionwheel1,
CO at

Reactionwheel2

Interfaceboard1
(93%)/

AROS1,
Reactionwheel1,
Reactionwheel2

(7%)

Discrepancies caused by
not directly observable
malfunction detected.

Root cause determined
and plausible

probabilities assigned to
diagnoses.

Figure 30. The two diagnoses listed in the diagnosis.xml-file. The first diagnosis only contains
Interfaceboard1 and has a probability of 0.93 and the second diagnosis consists of AROS1,
Reactionwheel1, as well as Reactionwheel2 and it has a probability of 0.07.

5.6. Summary of Results

The experiments showed that the fault detection system was able to identify the induced
malfunctions and find the root causes. Three single faults, a cyclical fault, and a fault that can only be
indirectly observed were considered and diagnosed. The single faults of Boostconverter2 (Section 5.1)
and OBDH1Conv (Section 5.3) were successfully identified and correctly diagnosed. The unexpected
behavior of Transceiver1 was successfully identified even though Transceiver1 was not considered to
be powered externally during modelling (Section 5.2). The cyclical relationship of the components
OBDH1Conv and OBDH1, for which discrepancies were detected, was successfully captured and
diagnosed (Section 5.4). In the case of the not directly observable malfunction of Interfaceboard1,
all of the discrepancies were detected and Interfaceboard1 was correctly found to be malfunctioning
with a very high diagnosis probability. Components that were not involved in the malfunctions were
identified and no unrelated component was wrongfully suspected to malfunction. As no threshold
limit violations occurred during any of the experiments, the detected discrepancies in the experiments
could not have been detected by an operator while using telemetry alone. Table 2 summarizes the
different experiments performed and their results.

Table 2. Summary of the different experiments performed and their results

Ex. Malfunctioning
Components

Detected
Discrepancies

Identified Diagnoses
(Probability) Result

1 Boostconverter2 CDO at
Boostconverter2 Boostconverter2 (100%) Cause of discrepancy

correctly diagnosed.

2 Transceiver1 CO at Transceiver1 Transceiver1 (100%) Cause of discrepancy
correctly diagnosed.

3 OBDH1Conv VO at OBDH1Conv OBDH1Conv (100%) Cause of discrepancy
correctly diagnosed.

4 OBDH1Conv VO at OBDH1Conv,
CO at OBDH1

OBDH1Conv (50%)/OBDH1
(50%)

Both discrepancies detected.
Cyclical relationship

identified and most viable
diagnoses computed.

5 Interfaceboard1

CO at AROS1, CO
at Reactionwheel1,

CO at
Reactionwheel2

Interfaceboard1 (93%)/AROS1,
Reactionwheel1,

Reactionwheel2 (7%)

Discrepancies caused by not
directly observable

malfunction detected. Root
cause determined and
plausible probabilities
assigned to diagnoses.

Aerospace 2019, 6, 105 31 of 34

6. Discussion

The experiments showed that the model-based fault detection system allows for the detection
of abnormal behavior, which cannot always be detected using the telemetry data alone. The most
interesting types of malfunctions are those that do not cause a complete component failure immediately.
These types of malfunctions usually occur prior to a component failure and they should therefore
be detected early on, in order to be able to initiate countermeasures in time. These slight deviations
however are difficult to capture using a classical approach and often go unnoticed. With the help of
the model-based fault detection system, such deviations can be found while using a model of only
the nominal behavior of the spacecraft. To reduce the time from the occurrence of a malfunction to
the time the first countermeasure is initiated, the fault-detection system uses a diagnosis component,
which narrows down the possible causes of the detected anomalies. These diagnoses help the operator
to focus his or her attention on the components that are most likely to malfunction. Additionally,
a graphical user interface displays the model graph and visually notifies the operator when an anomaly
has been detected. The fault-detection system itself works autonomously, even when no operator
is present and it needs no active maintenance. Due to the strict separation of the model from the
diagnostic algorithm, the diagnostic capabilities of a spacecraft can be adapted and expanded, simply
by adjusting the model. Changes of model parameters, e.g., due to recalibration, can be performed
without additional downtime of the fault detection and diagnosis system. Additionally, the system
can easily be transferred from one spacecraft to another, since only the model needs to be changed,
while the diagnostic algorithm requires no re-engineering. The main drawback of the model-based
approach is the dependency on a sufficiently accurate system model. While white box and expert
knowledge may be obtained fairly easily, the model calibration is still a tedious and time consuming
task. Components whose behavior is of highly dynamic nature need special attention, since they
require the most amounts of data and time for calibration. The authors of this paper recommend the
use of a global optimization algorithm to either calibrate those components automatically, or to produce
good initial parameter values for a consequent manual calibration. To ensure that a model is sufficiently
accurate and correctly calibrated, a goodness of fit metric, like the root-mean-squared error (RMSE),
should be used on recoded data, prior to putting the model into operation. Using a model that does
not capture the systems nominal behavior sufficiently accurately or a model that is not well calibrated
might cause the fault-detection system to produce either false-positives, false-negatives, or both. In the
case of false-positives the operator will have to filter out wrongly detected malfunctions, while in
the case of false-negatives, actual malfunctions are not detected. Besides the initial calibration, wear
and degradation might affect the components of the spacecraft. Natural degradation is not always an
indicator of a malfunction and should therefore be accounted for by recalibration. Natural degradation
mainly affects mechanical parts, but also components, like batteries, with the most common form of
degradation being a reduced battery capacity after a large number of charge-discharge cycles. Another
factor that affects the quality of the fault-detection is the accuracy of the sensors used within the
spacecraft. A recorded sudden current spike for example could be interpreted as an anomaly and cause
a false-positive. Inaccurate sensors cause the need for larger tolerance intervals, which in turn decreases
the sensitivity of the model and therefore might increase the amount of false-negatives. For an optimal
operation of the fault-detection system, the sensors should be as accurate as possible and the data
collection well timed, so that the delay between the times of measurement of the different parameter
values supplied to the fault-detection system at one time step is minimal. The fault-detection system
should be automatically supplied with the spacecraft’s housekeeping data. To enable continuous
operation of the fault-detection system, it should have direct access to the housekeeping data without
the interaction of an operator needed.

7. Conclusions

We have presented a quantitative model-based fault detection and diagnosis system that strictly
separates the model from the diagnosis algorithm and demonstrated its applicability by using a model

Aerospace 2019, 6, 105 32 of 34

of the power supply of the qualification model of the SONATE-Nano satellite. We have done so,
by modifying actual housekeeping data of the qualification model of the SONATE-Nano satellite to
simulate malfunctions, which then were diagnosed by the fault detection system. We have illustrated
that the malfunctions were difficult to spot while using the telemetry alone, while the fault detection
system was able to easily identify the malfunctioning components. Future work will include the
adaption of the fault detection system to the flight model of the SONATE-Nano satellite and the
successive porting of the fault detection system to be uploaded and run on board the SONATE-Nano
satellite, which was launched July 5th 2019, shortly before the end of the ADIA-L project, during which
the fault detection system that is presented in this paper was developed. The fault detection system is
supposed to work autonomously on board and transmit the detected malfunctions as telemetry to a
ground station during contact times. First, the simulator and the symptom calculation will be ported
and then, later, the conflict and hitting set computation. Long-term development includes the tackling
of transient phenomena, e.g., current spikes, adaptive tolerance intervals using machine learning
techniques, the implementation of a rule-based component to directly initiate counter measures when
a malfunction is detected, an increased incorporation of heuristic knowledge, and a closed loop of
periodic automatic recalibration of the systems model during operation.

Author Contributions: The concept was proposed by F.P. The funding was acquired by F.P. and H.K. The ADIA++
and ADIA-L projects were supervised by F.P. and H.K. The algorithms were developed by K.D. The Experiments
were performed by K.D. under the supervision of F.P. and H.K. The manuscript was written by K.D. and reviewed
by F.P. and H.K.

Funding: This work was done as part of the ADIA-L Project (FKZ: 50 RM 1723), which is a continuation of the
ADIA++ Project (FKZ: 50 RM 1524) and part of the SONATE Project (FKZ: 50 RM 1606), funded by the German
Federal Ministry of Economics and Technology through the German Space Agency DLR e.V. This publication was
funded by the German Research Foundation (DFG) and the University of Wuerzburg in the funding programme
Open Access Publishing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shim, D.; Yang, C. Optimal Configuration of Redundant Inertial Sensors for Navigation and FDI Performance.
Sensors 2010, 10, 6497–6512. [CrossRef]

2. Bouallègue, W.; Bouslama Bouabdallah, S.; Tagina, M. Causal approaches and fuzzy logic in FDI of Bond Graph
uncertain parameters systems. In Proceedings of the IEEE International Conference on Communications,
Computing and Control Applications (CCCA), Hammamet, Tunisia, 3–5 March 2011.

3. Venkatasubramanian, V.; Rengaswamy, R.; Yin, K.; Kavuri, S. A review of process fault detection and
diagnosis: Part I: Quantitative model-based methods. Comput. Chem. Eng. 2003, 27, 293–311. [CrossRef]

4. Thirumarimurugan, M.; Bagyalakshmi, N.; Paarkavi, P. Comparison of fault detection and isolation methods:
A review. In Proceedings of the 2016 10th International Conference on Intelligent Systems and Control
(ISCO), Coimbatore, India, 7–8 January 2016. [CrossRef]

5. Patton, R.; Uppal, F.; Simani, S.; Polle, B. Robust FDI applied to thruster faults of a satellite system. Control
Eng. Pract. 2010, 18, 1093–1109. [CrossRef]

6. Falcoz, A.; Henry, D.; Zolghadri, A. Robust Fault Diagnosis for Atmospheric Reentry Vehicles: A Case Study.
IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 40, 886–899. [CrossRef]

7. Reiter, R. A theory of diagnosis from first principles. Artif. Intell. 1987, 32, 57–95. [CrossRef]
8. de Kleer, J.; Williams, B. Diagnosing multiple faults. Artif. Intell. 1987, 32, 97–130. [CrossRef]
9. Fellinger, G.; Dietrich, G.; Fette, G.; Kayal, H.; Puppe, F.; Schneider, V.; Wojtkowiak, H. ADIA: A Novel

Onboard Failure Diagnostic System for Nanosatellites. In Proceedings of the 64th International Astronautical
Congress 2013, Beijing, China, 23–27 September 2013.

10. Picardi, C. A Short Tutorial on Model-Based Diagnosis. 2005. Available online: https://pdfs.semanticscholar.org/

e3e7/fbf0581d05aeff0e213641f5b36886264dbd.pdf?_ga=2.250857024.778130362.1569288585-1114982217.1569288585
(accessed on 7 August 2019).

http://dx.doi.org/10.3390/s100706497
http://dx.doi.org/10.1016/S0098-1354(02)00160-6
http://dx.doi.org/10.1109/ISCO.2016.7726957
http://dx.doi.org/10.1016/j.conengprac.2009.04.011
http://dx.doi.org/10.1109/TSMCA.2010.2063022
http://dx.doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1016/0004-3702(87)90063-4
https://pdfs.semanticscholar.org/e3e7/fbf0581d05aeff0e213641f5b36886264dbd.pdf?_ga=2.250857024.778130362.1569288585-1114982217.1569288585
https://pdfs.semanticscholar.org/e3e7/fbf0581d05aeff0e213641f5b36886264dbd.pdf?_ga=2.250857024.778130362.1569288585-1114982217.1569288585

Aerospace 2019, 6, 105 33 of 34

11. De Kleer, J.; Kurien, J. Fundamentals of model-based diagnosis. In Proceedings of the Fifth IFAC Symposium
on Fault Detection, Supervision and Safety of Technical Processes (Safeprocess), Washington, DC, USA,
23–27 June 2003.

12. De Kleer, J.; Mackworth, A.; Reiter, R. Characterizing diagnoses and systems. Artif. Intell. 1992, 56, 197–222.
[CrossRef]

13. Fröhlich, S. Model-Based Error Detection and Diagnostics in Real Time Using the Example of a Fuel Cell
(Modellbasierte Fehlererkennung und Diagnose in Echtzeit am Beispiel einer Brennstoffzelle). Ph.D. Thesis,
University of Kassel, Kassel, Germany, 2009.

14. Dang Duc, N. Conception and Evaluation of a Hybrid, Scalable Tool for Mechatronic System Diagnostics
Using the Example of a Diagnostic System for Independent Garages (Konzeption und Evaluation eines
Hybriden, Skalierbaren Werkzeugs zur Mechatronischen Systemdiagnose am Beispiel eines Diagnosesystems
für freie Kfz-Werkstätten). Ph.D. Thesis, University of Würzburg, Würzburg, Germany, 2011.

15. Dang Duc, N.; Engel, P.; de Boer, G.; Puppe, F. Hybrid, scalable diagnostic system for independent garages
(Hybrides, skalierbares Diagnose-System für freie Kfz-Werkstätten). Artif. Intell. 2009, 23, 31–37.

16. Williams, B.C.; Nayak, P.P. A model-based approach to reactive self-configuring systems. In Proceedings of
the Thirteenth National Conference on Artificial Intelligence (AAAI-96), Portland, OR, USA, 4–8 August
1996.

17. Hayden, S.; Sweet, A.; Shulman, S. Lessons learned in the Livingstone 2 on Earth Observing One flight
experiment. In Proceedings of the Infotech@Aerospace, Arlington, VA, USA, 26–29 September 2005.

18. Sweet, A.; Bajwa, A. Lessons Learned from Using a Livingstone Model to Diagnose a Main Propulsion
System. In Proceedings of the JANNAF 39th CS/27th APS/21st PSHS/3rd MSS Joint Subcommittee Meeting,
Colorado Springs, CO, USA, 1–5 December 2003.

19. Kolcio, K. Model-Based Fault Detection and Identification System for Increased Autonomy. In Proceedings
of the AIAA SPACE 2016, Long Beach, CA, USA, 13–16 September 2016.

20. Cordier, M.; Dague, P.; Levy, F.; Montmain, J.; Staroswiecki, M.; Trave-Massuyes, L. Conflicts versus Analytical
Redundancy Relations: A Comparative Analysis of the Model Based Diagnosis Approach from the Artificial
Intelligence and Automatic Control Perspectives. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2004, 34,
2163–2177. [CrossRef]

21. Kayal, H.; Balagurin, O.; Djebko, K.; Fellinger, G.; Puppe, F.; Schartel, A.; Schwarz, T.; Vodopivec, A.;
Wojtkowiak, H. SONATE—A Nano Satellite for the in-Orbit Verification of Autonomous Detection, Planning
and Diagnosis Technologies. In Proceedings of the AIAA SPACE 2016, Long Beach, CA, USA, 13–16 September
2016.

22. Fellinger, G.; Djebko, K.; Jäger, E.; Kayal, H.; Puppe, F. ADIA++: An Autonomous Onboard Diagnostic
System for Nanosatellites. In Proceedings of the AIAA SPACE 2016, Long Beach, CA, USA, 13–16 September
2016.

23. Havelka, T.; Stumptner, M.; Wotawa, F. AD2L-A Programming Language for Model-Based Systems
(Preliminary Report). In Proceedings of the Eleventh International Workshop on Principles of Diagnosis
(DX-00), Morelia, Mexico, 8–10 June 2000.

24. Fleischanderl, G.; Havelka, T.; Schreiner, H.; Stumptner, M.; Wotawa, F. DiKe—A Model-Based Diagnosis
Kernel and Its Application. In Proceedings of the KI 2001: Advances in Artificial Intelligence, Vienna,
Austria, 19–21 September 2001; pp. 440–454. [CrossRef]

25. Koitz, R.; Wotawa, F. SAT-Based Abductive Diagnosis. In Proceedings of the 26th International Workshop on
Principles of Diagnosis, Paris, France, 31 August–3 September 2015.

26. Zhao, X.; Zhang, L.; Ouyang, D.; Jiao, Y. Deriving all minimal consistency-based diagnosis sets using SAT
solvers. Prog. Nat. Sci. 2009, 19, 489–494. [CrossRef]

27. Pill, I.; Quaritsch, T.; Wotawa, F. From conflicts to diagnoses: An empirical evaluation of minimal hitting
set algorithms. In Proceedings of the 22nd International Workshop on Principles of Diagnosis (DX-2011),
Murnau, Germany, 4–7 October 2011.

28. Greiner, R.; Smith, B.; Wilkerson, R. A correction to the algorithm in reiter’s theory of diagnosis. Artif. Intell.
1989, 41, 79–88. [CrossRef]

29. Djebko, K.; Fellinger, G.; Puppe, F.; Kayal, H. Cyclic Genetic Algorithm for High Quality Automatic
Calibration of Simulation Models with an Use Case in Satellite Technology. Int. J. Model. Simul 2019. under
review.

http://dx.doi.org/10.1016/0004-3702(92)90027-U
http://dx.doi.org/10.1109/TSMCB.2004.835010
http://dx.doi.org/10.1007/3-540-45422-5_31
http://dx.doi.org/10.1016/j.pnsc.2008.07.017
http://dx.doi.org/10.1016/0004-3702(89)90079-9

Aerospace 2019, 6, 105 34 of 34

30. Holland, J. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA,
1975.

31. Russel, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Upper Saddle River, NJ,
USA, 2009.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Classical Health Monitoring and Fault Detection
	Model-Based Diagnosis
	Model and Simulator
	Model Editor
	Component Class Format
	Connector Format
	Port Dependencies

	Simulation
	Diagnostic Algorithm
	Symptoms
	Computation of Conflict Sets
	Computation of Hitting Sets

	Satellite Model
	Model Calibration
	Data and Interfaces

	Experiments
	Boost Converter Malfunction
	Transceiver Malfunction
	OBDH Voltage Converter Malfunction
	OBDH Voltage Converter and OBDH Malfunction
	Interface Board Malfunction
	Summary of Results

	Discussion
	Conclusions
	References

