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Abstract: The airworthiness certification of aerospace cyber-physical systems traditionally relies
on the probabilistic safety assessment as a standard engineering methodology to quantify the
potential risks associated with faults in system components. This paper presents and discusses the
probabilistic safety assessment of detect and avoid (DAA) systems relying on multiple cooperative and
non-cooperative tracking technologies to identify the risk of collision of unmanned aircraft systems
(UAS) with other flight vehicles. In particular, fault tree analysis (FTA) is utilized to measure the
overall system unavailability for each basic component failure. Considering the inter-dependencies
of navigation and surveillance systems, the common cause failure (CCF)-beta model is applied to
calculate the system risk associated with common failures. Additionally, an importance analysis
is conducted to quantify the safety measures and identify the most significant component failures.
Results indicate that the failure in traffic detection by cooperative surveillance systems contribute
more to the overall DAA system functionality and that the probability of failure for ownship
locatability in cooperative surveillance is greater than its traffic detection function. Although all the
sensors individually yield 99.9% operational availability, the implementation of adequate multi-sensor
DAA system relying on both cooperative and non-cooperative technologies is shown to be necessary
to achieve the desired levels of safety in all possible encounters. These results strongly support the
adoption of a unified analytical framework for cooperative/non-cooperative UAS DAA and elicits an
evolution of the current certification framework to properly account for artificial intelligence and
machine-learning based systems.

Keywords: unmanned aircraft systems; sense and avoid; unified analytical framework; ADS-B;
surveillance sensor; fault tree analysis; importance measure

1. Introduction

While a steady growth of manned aviation has driven the advancement of communication,
navigation and sensing (CNS) technologies to support a denser airspace exploitation, various
technological and regulatory challenges have affected the development of autonomous separation
assurance and collision avoidance (SA&CA) capabilities for unmanned aircraft systems (UAS).
Surveillance systems such as transponders, traffic collision avoidance system (TCAS), and automatic
dependent surveillance-broadcast (ADS-B) are conceived to support the in-flight SA&CA while also
incorporating, to the extent possible, the pilot’s situational assessment, training, experience, and
aircraft capabilities. The detect and avoid (DAA) function in a non-segregated UAS operational context,
however, demands transitions from the pilot’s decision-making to a fully autonomous decision-making,
which is one of the largest challenges faced by the UAS sector today. An accurate performance
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modelling of current airborne surveillance technologies for maintaining SA&CA without the pilot
onboard is critical to evaluate and certify the criteria of equivalent level of safety in the UAS platform.
The International Civil Aviation Organization (ICAO) outlined successive steps towards the integration
of UAS in controlled airspace as well as into the aerodrome areas, which are identified in the Aviation
System Block Upgrades (ASBU) [1]. The United States (US) Federal Aviation Administration (FAA) also
provisioned to integrate UAS into the National Airspace System (NAS) in two different phases [2–4].
Phase 1 incorporates rural, Class Golf (G) airspace and is compatible with agricultural, mapping
and survey applications, whereas phase 2 comprises controlled airspace that requires technologies
to maintain safe separation from cooperative and non-cooperative air traffic [5]. The European
Commission’s Directorate General for Mobility and Transport (DG MOVE), the European Defence
Agency (EDA), the European Aviation Safety Agency (EASA), and the Single European Sky Air Traffic
Management (ATM) Research (SESAR) Joint Undertaking (SJU) are also stepping up the efforts to safely
accommodate UAS into the European aviation and ATM system [6]. In parallel with these government
and industry-led initiatives, the aerospace research community has been continuously working on
several challenges of integrating UAS into non-segregated airspaces including separation thresholds
and methods for small UAS [7,8], UAS encounter modelling and collision avoidance [9–11], 3D obstacle
avoidance strategies for UAS [12–15] dynamic model augmentation [16], Global Navigation Satellite
Systems (GNSS) integrity augmentation for UAS [17], surveillance sensor integration in the UAS
platform [18,19] and well-clear boundary models for UAS DAA [20–24].

1.1. Detect and Avoid (DAA) Safety Assessment

Although adequate performance standards were established for various surveillance equipment,
to date the impacts of surveillance system failures in terms of separation degradation, specifically in
the UAS platform, have not been defined. Moreover, traditional radar and Mode-A/C transponder
technologies show inherent deficiencies in different airspace and equipage scenarios especially in the
presence of high air traffic densities [25–33]. The failure modes for different cooperative sensors such as
Mode S, TCAS, ADS-B are well defined and safety assessments have been carried out on the individual
surveillance sensor considering functions in the manned aircraft. While the availability of ATM
deconfliction service provides mitigation to these faults when available, the risk is still notably higher
when considering highly autonomous UAS operations. The FAA conducted a safety assessment on
the TCAS application in the unmanned platforms [34–36]. A thorough probabilistic safety assessment
has been carried out on ADS-B system considering both the ground and airborne segment in [37].
Safety assessment of the surveillance sensor failure in the UAS platform was carried out in [38] with an
encounter analysis considering the unmanned aircraft platform only. A simplified model is developed
in [39] to assess and predict the risk associated with a given UAS operation. In [40], the authors
provided a framework that consists of a target level of safety (TLS) approach using an event tree
format to develop specific SAA effectiveness standards based on UAS weight and airspace class
combinations. The provision of certified autonomous DAA capabilities is an indispensable milestone
for the certification of UAS for safe non-segregated and beyond line of sight (BLOS) operations. This
is a widely recognized issue in the aerospace research community but to date, despite the extensive
efforts, the various proposed DAA approaches have not satisfactorily addressed the overall safety risks.
In this paper, a comprehensive safety assessment is conducted considering the sensitivities, failures
and degraded operations of systems and components of the overall DAA architecture. Both qualitative
and quantitative analysis are performed to identify and derive the risks of different component failure
in both airborne and ground control platform using probabilistic safety assessment.

Probabilistic safety assessment is a technique to quantify risk measures numerically by identifying
the specific events that lead to hazards [41]. Fault tree analysis (FTA) relates the logical relationship
between component failures which are the basic failures and their contributions to the system failures
and the importance analysis provides the importance ranks of the components to the overall risk.
Therefore, the combination of these two techniques provides an overall approach to determine
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the impacts of individual sensor failure as well as the significance of individual risk contributors.
In particular, a case study for ADS-B as a candidate technology to support DAA is addressed in
this paper. The safety analysis indicates the validity of ADS-B for cooperative approach providing a
pathway for certification of the unified framework. Section 2 describes the unified analytical framework
and overall DAA architecture and Section 3 outlines the assessment methodology. The risk measure
and importance analysis are presented in Section 4. A case study of ADS-B as a cooperative surveillance
means in specified UAS flight envelope is illustrated in Sections 5 and 6 contains the discussion of
overall findings.

2. Unified Analytical Framework and DAA Architecture

In recent research [42,43], a unified analytical framework has been proposed, and a novel
methodology is demonstrated to integrate the data provided by cooperative systems (reliance on own
and intruder aircraft avionics) and non-cooperative sensors (reliance on own aircraft avionics only).
Figure 1 illustrates the conceptual top-level architecture of the proposed DAA system, which uses
active and passive forward-looking sensors (FLS) in addition to ADS-B and Mode-S transponders.
Navigation data is extracted from GNSS, inertial measurement units (IMU) and vision-based sensors.

Aerospace 2018, 5, x FOR PEER REVIEW  3 of 20 

 

determine the impacts of individual sensor failure as well as the significance of individual risk 95 
contributors. In particular, a case study for ADS-B as a candidate technology to support DAA is 96 
addressed in this paper. The safety analysis indicates the validity of ADS-B for cooperative approach 97 
providing a pathway for certification of the unified framework. Section 2describes the unified 98 
analytical framework and overall DAA architecture and section 3 outlines the assessment 99 
methodology. The risk measure and importance analysis are presented in section 4. A case study of 100 
ADS-B as a cooperative surveillance means in specified UAS flight envelope is illustrated in section 101 
5 and section 6 contains the discussion of overall findings. 102 

2. Unified Analytical Framework and DAA Architecture 103 
In recent research [42,43], a unified analytical framework has been proposed, and a novel 104 

methodology is demonstrated to integrate the data provided by cooperative systems (reliance on own 105 
and intruder aircraft avionics) and non-cooperative sensors (reliance on own aircraft avionics only). 106 
Figure 1 illustrates the conceptual top-level architecture of the proposed DAA system, which uses 107 
active and passive forward-looking sensors (FLS) in addition to ADS-B and Mode-S transponders. 108 
Navigation data is extracted from GNSS, inertial measurement units (IMU) and vision-based sensors. 109 

 110 
Figure 1. Conceptual high-level detect and avoid (DAA) system architecture adapted from [43]. 111 

State-of-the-art active and passive FLS include visual/infrared cameras, RADAR and LIDAR. 112 
Mode S transponders are cooperative surveillance employ ground components and an airborne 113 
transponder. Mode S has been designed as an evolutionary addition to the Air Traffic Control Radar 114 
Beacon System (ATCRBS) [44] for the provision of enhanced surveillance and communication 115 
capability which is required for the automation of air traffic control. TCAS was developed as a back-116 
up airborne collision avoidance system (ACAS) which provides vertical maneuvering guidance to 117 
the pilot in the event of a possible collision threat [45]. ADS-B is a system that periodically transmits 118 
its state vector including horizontal and vertical position, and velocity as well as some other intent 119 
information [46]. The system comprises two separate components, ADS-B Out and ADS-B In. ADS-B 120 
is called dependent surveillance as it requires that the aircraft state vector and additional information 121 
be derived from the on-board navigation equipment. It is automated in the sense that it doesn’t need 122 
pilot or controller input to transmit information. Cooperative/non-cooperative tracking data and host 123 
platform navigation data are processed using a dedicated algorithm within the central DAA 124 
processor onboard the UAS to produce avoidance volumes in the airspace surrounding each 125 
conflicting intruder/obstacle track. This algorithm ensures the rigorous mathematical treatment of the 126 
errors affecting the state measurements (correlated and uncorrelated measurements) and accounts 127 
for the host–obstacle relative dynamics, with due consideration for the environmental conditions 128 
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State-of-the-art active and passive FLS include visual/infrared cameras, RADAR and LIDAR.
Mode S transponders are cooperative surveillance employ ground components and an airborne
transponder. Mode S has been designed as an evolutionary addition to the Air Traffic Control
Radar Beacon System (ATCRBS) [44] for the provision of enhanced surveillance and communication
capability which is required for the automation of air traffic control. TCAS was developed as a back-up
airborne collision avoidance system (ACAS) which provides vertical maneuvering guidance to the
pilot in the event of a possible collision threat [45]. ADS-B is a system that periodically transmits
its state vector including horizontal and vertical position, and velocity as well as some other intent
information [46]. The system comprises two separate components, ADS-B Out and ADS-B In. ADS-B
is called dependent surveillance as it requires that the aircraft state vector and additional information
be derived from the on-board navigation equipment. It is automated in the sense that it doesn’t need
pilot or controller input to transmit information. Cooperative/non-cooperative tracking data and
host platform navigation data are processed using a dedicated algorithm within the central DAA
processor onboard the UAS to produce avoidance volumes in the airspace surrounding each conflicting
intruder/obstacle track. This algorithm ensures the rigorous mathematical treatment of the errors
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affecting the state measurements (correlated and uncorrelated measurements) and accounts for the
host–obstacle relative dynamics, with due consideration for the environmental conditions (wind,
turbulence, etc.) affecting the aircraft dynamics. A conceptual representation of this approach for the
case of a single aerial encounter is depicted in Figure 2.
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Figure 2. Conceptual depiction of the proposed DAA approach (single aerial encounter).

In particular, the figure shows both the overall avoidance volume and the optimal avoidance
trajectory, which is computed by a real-time trajectory optimization algorithm. If the original trajectory
of the DAA system host platform intersects the calculated avoidance volume, a risk of collision (RoC)
flag is generated [47,48]. This RoC flag initiates the real-time trajectory optimization process and the
associated steering commands are provided to the aircraft flight controls.

DAA Reference Architecture

The components of the UAS DAA system are partly located onboard the unmanned aircraft (UA)
platform and partly in its ground control station (GCS). In particular, all non-cooperative sensors and
cooperative surveillance systems as well as autonomous collision avoidance functions are installed
onboard, whereas all the human–machine interfaces (HMI) are integrated in the GCS. Both the UA and
the GCS are equipped with Command and Control (C2) data link transceivers to transmit the data from
the UA platform to GCS and commands from GCS to UA platform. The UAS pilot-in-command (PIC)
manning the GCS is responsible for the safe operation of the UAS and for executing ATM directives
unless they pose a hazard to the UAS. Figure 3 provides a simplified schematic diagram of the overall
DAA system architecture.

The UA platform includes four major elements namely the surveillance components, DAA
processor, onboard navigation system, and the C2 datalink. The state-of-the-art of cooperative
surveillance sensors include Active Mode S surveillance, TCAS II, and ADS-B. The non-cooperative
surveillance sensors comprise Radar, Light Detection and Ranging (LIDAR), cameras such as thermal
camera, infrared cameras etc. Air-to-air radar systems operate in the C, X, or Ku-frequency bands of the
aeronautical radio navigation spectrum (ARNS) [49]. Usage of a frequency will be depending on the
type of operation. LIDAR is another prominent surveillance sensor which shows great promise
for non-cooperative UAS collision avoidance [50]. LIDAR is a remote sensing technology that
scans the environment and the 3D image of the environment is constructed from the individual
distance points within an aggregate of points gathered during the scanning process. Some different
laser scanning techniques are available to steer the beam and achieve very wide fields of vision
(FoV). Although current LIDAR systems are still of considerable size, weight, power and cost
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(SWaP-C), considerable progresses are being made thanks to their extensive usage in the autonomous
driving domain. The availability of advanced cameras and development of vision-algorithms
made them popular for use in the unmanned platform especially in low altitude operation. These
non-cooperative sensors complement other on-board airborne surveillance sensors by providing
detection of non-cooperative traffic.
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The equipage of surveillance sensors depends on the type of unmanned aircraft system,
the airspace and the certification. According to DO-365 [49] which was developed by Special
Committee-228 [51], UA surveillance equipment will minimally include:

• active Mode S surveillance that use 1030/1090 MHz frequencies;
• ADS-B In to detect the broadcast directly from the intruder aircraft ADS-B Out or through ADS-R

or TIS-B channel;
• air-to-air radar system to detect the non-cooperative traffic.

This equipage is referred to as Class 1 DAA system. The Class 2 DAA system will include TCAS
II along with class 1 DAA system. As for the manned aircraft TCAS serves to improve the pilot’s
awareness of other air traffic, in UAS it would be serving the PIC [35] and no maneuvers will be
initiated automatically only on this guidance.

The UA onboard processor receives onboard navigation sensor data, data from onboard active
surveillance airborne to detect transponder equipped intruders, ADS-B receiving equipment to detect
ADS-B equipped intruders, and radar data to detect non-cooperative intruders. The intruder data
received by multiple sensors are then processed by the UA processor. From the intruder state and
intent data, the UA processor initially evaluates the intended track of the intruder. The initial track
and other information are then sent to the command and non-payload communications datalink
for transmission to the GCS. The ATM can locate the UAS via ADS-B out messages and Active
Mode S transponder. At all times, PIC can maintain communication with ATM via datalink or voice
communication. In the GCS, the processor receives prioritized track data and DAA status data from
the UA platform and DAA mode control commands from the GCS control. It then processes the data
and forwards the information to the DAA display. The mode control is the interface between the
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PIC, the UA, and GCS DAA processors. The command functions are executed through this interface
and then sent to the GCS processors and then via data link to UA platform. The command is then
executed by the UA platform. In order to obtain the certification, surveillance sensors need to provide
equivalent level of safety as of manned aircraft. This include providing surveillance support suitable
for the entire operational flight envelope. The UA operational flight envelope may include five phases;
namely takeoff, climb, cruise, descent and landing where the takeoff and landing phase will require
low altitude flying and ground roll. The takeoff and landing may take place on airport and a separate
launch/recovery zone. Due to the different traffic mix at each altitude, different flight dynamics
characteristics and different conflict geometries characterizing each phase, the safety-criticality of
DAA sensors and systems will likely change as a function of the flight phase. The unified analytical
framework and the associated DAA system safety analysis allows to either define the safely flyable
envelope as a function of the available sensors and their reliability or to identify the sensors and their
required reliability as a function of the desired safe envelope.

3. Safety Assessment Methodology

As already mentioned in Section 1.1, the qualitative analysis involved in the FTA methodology
lists all the possible combinations of factors, normal events and component failures resulting in a top
event, whereas the quantitative evaluation allows to determine the probability of failure of the top
event from the failure probability values of basic events that propagated up through the fault tree. The
reliability data or the failure rate of the components is crucial for FTA and is obtained from component
manufacturers (typically in the form of mean time between failures—MTBF) and/or from the literature,
including among others Aviation Standard Documents by RTCA, FAA and Eurocontrol [37,49,52–56].
The basic events represent component failures and the logic gates dictate how faults of the particular
component within the system can combine to result in the failure in the top event.

In this study, FaultTree++ from isograph [57] is utilized to carry out the safety assessment and
calculate the top-level event probabilities. Before constructing the fault tree, based on the system
overview provided in Section 2, intermediate events leading to failure in onboard DAA capability are
identified. We note that the navigation and guidance functionality failures have not been presented
in detail as this would be beyond the scope of the article, except for the subsystems on which
DAA components directly depend such as onboard Global Positioning System (GPS) and barometric
altimeter. The symbols that are used to create the fault tree are illustrated in Table 1.

Table 1. Fault tree symbols used in this study and their significance.

Symbol Name Significance
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datalink. For example, barometric altimeter data is used by both Active Mode S and the ADS-B Out
system. Hence, error in the barometric altimeter will affect both systems. Figure 4 illustrates the
dependency between onboard navigation and surveillance systems in a high-level architecture.
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Figure 4. Top-level data flow diagram showing the dependencies between onboard navigation and
surveillance systems.

To properly capture failures that affect multiple systems, the common cause failure (CCF) analysis
is utilized. The CCF is a failure event that affects multiple components or functions [58]. In CCF
analysis, there are two relevant factors: the root cause, which is a single failure event, and the coupling
factor. The coupling factor describes the dependency of multiple systems on a common data source.
While calculating the overall risk for surveillance system failure, it is crucial to take care of the
CCF because, as shown in the architecture in Figure 4, some of the basic events affect a multiple
surveillance system at the same time. The most commonly-used method to account for CCF is the beta
factor method [59,60]. To calculate the failure rate due to common causes, the beta factor is simply
multiplied by the component failure rate. In essence, the beta factor simply represents the percentage
of component failures that are due to common causes. A beta factor of 0.05 is chosen for this analysis
based on the literature and the International Electrotechnical Commission (IEC) method checklist.

In this work, the contribution of individual failure events to their related system failure are
determined based on the specific functional dependencies. For example, while in the event of ADS-B
out failure, the ownship is not locatable by other platforms through ADS-B, it still can detect intruder
traffic with a working ADS-B In. Hence, the detection capability will not be compromised due to
the failure of ADS-B out system and can still avoid intruders. Therefore, only the failure in traffic
detection capability is considered in the DAA functionality. The ownship surveillance function failure,
referred to as a failure in ownship locatability function, is deduced in a different tree. Figures 5–7
illustrate the DAA capability failure considering the function of traffic detection and avoid capability
and Figures 8–12 demonstrate the failure in ownship locatability function.

As depicted in Figure 5, the failure in DAA capability onboard can be the result of five alternative
events. Three of them are intermediate events: DAA 1A-failure in traffic detection function by
cooperative sensors, DAA 2-failure on non-cooperative sensors and DAA 3-evaluation function failure.
DAA 1A and DAA 2 are transferred to separate trees and illustrated in Figures 6 and 7. The evaluation
function failure traces the data processing function failure which indicates the failure in multi-sensor
data fusion and the track evaluation failure indicates the failure probability of intruder track evaluation.
The execute function failure is the failure probability to execute appropriate maneuvers as commanded.
DAA 5 is the failure of the data link that is used to transfer data and receive command from the ground
control station.

Figure 6 outline the intermediate events DAA 1A. As stated earlier, this subtree specifies the
failure probability of traffic detection function by cooperative surveillance. In this work, a voting OR
gate is utilized to calculate the failure probability of DAA 1. VOTING OR indicates that the event will
occur of k out of n events occur. In the fault tree presented in Figure 6, the DAA occurs if two out
of three surveillance sensors failed to detect a traffic. VOTING OR gate is considered to account the
current equipage scenario for unmanned as well as manned aircraft system. Using a universal AND
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gate would give a lower failure rate whereas using a universal OR gate would provide a higher failure
rate than in an actual encounter scenario. For example, if onboard active surveillance system and
TCAS system fails and the intruder which can be manned or unmanned, is not equipped with ADS-B,
in spite of having a working ADS-B In ownship will fail to detect the intruder. Also, it is considered
that without any catastrophic power failure onboard or without any external attack three systems will
not be down at the same time. Thus, VOTING OR encompasses all the scenarios.

Figure 7 presents the intermediate event DAA 2-failure in non-cooperative sensor which is the
result of two alternatives sensors failure: one is air-to-air radar failure, and another is vision-based
sensor failure. While tracing the events for vision-based sensor, a component wise failure probability
is adopted as the component is assumed to be acquired off the shelf with a specified MTBF.

As stated earlier, a separate fault tree is constructed to determine the failure in ownship locatability
function due to failure of cooperative surveillance system. Figures 8–12 illustrate the faults trees of
main event and intermediate events. As detailed in Figure 8, the failure in cooperative surveillance
function occurs if either Mode S or ADS-B out failed. This is a conservative choice that assumes mixed
equipage requirements. The ownship ADS-B out system depends on the onboard satellite navigation
and pressure altimeter. Figures 9 and 10 present the transferred trees from the ADS-B out; Figure 10
outlines the failure in ADS-B due to onboard satellite navigation loss and Figure 11 outlines the failure
due to corrupted data from navigation sources. Finally, Figure 12 shows the fault tree for Mode S
surveillance only.
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The reliability data for the basic events used in the fault tree are extracted from the literature,
aviation standard documents and Original Equipment Manufacturer (OEM) and presented in Table 2.

Table 2. Failure probability associated to the basic events.

Basic Events Description Failure Probability, q

DAA 3A Data Processing Failure 1 × 10−13 as in [61]
DAA 3B Track Evaluation Failure 1 × 10−13 as in [61]
DAA 4 Execution Function Failure 1 × 10−6 as in [49]
DAA 5A Command Datalink Failure (Loss of Function) 1 × 10−6 as in [49]
DAA 5B Command Datalink Failure (Unannounciated Failure) 1 × 10−7 as in [49]
AS 1/TC-3/AO 3A /AO 3B/MS-3 Transponder Failure (Main/Backup) 1 × 10−4 as in [61]
AS 2/MS-2 Misleading Information from Mode S Function 1 × 10−5 as in [38]
AI 1 Failure in ADS-B In Receiver 1 × 10−4 as in [37]
AI 2 Failure in Report Assembly Module 1 × 10−7 as in [37]
AI 3/AO 2 Loss of Function of ADS-B System 1 × 10−5 as in [38]
TC 1 Failure in Radio Altimeter 1 × 10−4 as in [38]

TC 2 Failure in Traffic Collison Avoidance System
(TCAS) Function 1 × 10−5 as in [36]

AAR 1 Air-to-Air Radar (Loss of Function) 1 × 10−7 as in [62]
AAR 2 Air-to-Air Radar (Unannounciated Function) 1 × 10−6 as in [62]
VS 1 Electronics Failure 1 × 10−7 as in [63]
VS 2 Optical Failure 1 × 10−6 as in [64]
VS 3 Vision Logic Failure (Data processing failure) 1 × 10−13 as in [61]
AO 4 Misleading Information from ADS-B Function 1 × 10−5 as in [38]
AO 6 Transponder Jamming 1 × 10−13 as in [37]
AO 1A Loss of Geometry from Satellite 1 × 10−8 as in [37]
AO 1B GPS Receiver Malfunction 1 × 10−4 as in [37]
AO 1C GPS Antenna Failure 1 × 10−4 as in [37]
AO 1D Jamming of Satellite 1 × 10−13 as in [37]
AO 1E Satellite Failure 1 × 10−13 as in [37]
AO 5AI/AO 5AII Horizontal Position Error (Latitude/Longitude) 1 × 10−5 as in [38]
AO 5BI Misleading Information from Barometric Altimeter 1 × 10−9 as in [63]
AO 5BII GPS Vertical Error 1 × 10−5 as in [38]
MS 1 Failure in Barometric Altimeter 1.1 × 10−7 as in [63]

Note: the acronyms used in the Basic Events column are defined in Figures 5–12.

For the failure probability value of command datalink and air to air radar, the value is taken from
technical standard orders, which state the loss of function (air to air radar and command datalink)
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cannot be greater than 1× 10−6 per fight hour and unannounciated failure can be greater than 1× 10−7

per flight hour. Although vision-based sensors are widely accepted as a means of UAS non-cooperative
surveillance, so far, no specific technical standard defined the reliability requirements for DAA-grade
vision sensors. Hence, the vision sensor failure is deduced considering its main component and the
reliability data for airborne electronics / optical instruments during nominal condition is considered
in the study.

4. Result and Analysis

Based on the FTA presented in Section 3, two different further analyses have been carried out
in this study. In Section 4.1, we present the results related to the top events failure and the system
availability that can be calculated from it. In the second analysis, the results of which are presented in
Section 4.2, the importance measure is discussed, which relates the component significance to the top
event failure.

4.1. System Availability

For the safety assessment in this study, a general model is used, which considers the failure
probability as constant across the lifespan of the component. Denoting basic failure probability as Qi
with i = 1 . . . n and the top event failure as Q, assuming all basic events are independent, the model
can be expressed as:

Q(t) = f (Q1(t), Q2(t), . . . Qn(t)) (1)

This implies that if the state of each component in the fault tree is known at time t, then the
state of the top event can also be determined regardless of what has happened up to time t. The top
event probability is calculated by logically tracing the failure of basic events. Q(t), the probability
of the hazard/top event occurrence is also known as the risk measure or unavailability [52]. Thus,
the availability of the system can be obtained as:

Operational Availability = 1 − Q(t) (2)

The failure in the DAA capability onboard deduced in Figure 5 is 9.356 × 10−6, which implies
operational availability of higher than 99.99%. For the fault tree presented in Figure 5, two most
important intermediate events are failure in cooperative and non-cooperative surveillance sensor
failure. Tables 3–5 summarize the results of intermediate events fault trees.

Table 3. Result summary for DAA capability fault tree analysis (FTA) as per Figure 5.

Function Failure Probability Operational Availability

Failure in Cooperative System
(Traffic Detection Function), DAA 1 5.056 × 10−6 0.999994944

Failure in Non-cooperative
Surveillance System, DAA 2 2.2 × 10−6 0.9999978

Command Datalink Failure, DAA 5 1.1 × 10−6 0.9999989
Execution Function Failure, DAA 4 1 × 10−6 0.999999
Evaluation Function Failure, DAA 3 2 × 10−13 ~1

Table 4. Result summary for the cooperative surveillance (traffic detection function) FTA as per Figure 6.

Function Failure Probability Operational Availability

Failure in Active Surveillance System, AS 0.00011 0.99989
Failure in ADS-B In, AS 0.0001101 0.9998899
Failure in TCAS system, TC 0.00021 0.99979
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Table 5. Result summary for the non-cooperative surveillance FTA as per Figure 7.

Function Failure Probability Operational Availability

Failure in Air-to-Air Radar, DAA 2A 1.1 × 10−6 0.9999989
Failure in Vision Based Sensor, DAA 2B 1.1 × 10−6 0.9999989

From the results presented in Table 4, the probability of cooperative surveillance system traffic
detection capability is in order of 10−6 which can be referred to as remote [65]. From Figure 12 it can
be seen that Mode S has the lowest failure probability where TCAS has most likely to failure (referred
to Figure 6). Also, in Figure 6 it is also illustrated that ADS-B In failure probability is intermediate
between Mode S and TCAS system. For all of three systems, the operational availability is higher
than 99.9%. The failure in non-cooperative surveillance is also in the order of 10−6 as detailed in
Table 5, but the value is lower than that of surveillance sensor failure. The lower level fault trees
are generated based on the very basic reliability data and need future work to incorporate system
specific information.

The failure of the cooperative surveillance to successfully locate ownship to intruder as well as
ATM is deduced in a separate tree. This way the impact of particular system failure does not affect the
failure of certain functionality. Table 6 summarizes the results.

Table 6. Result summary for ADS-B Out system FTA as per Figure 8.

Function Failure Probability Operational Availability

Failure in Active Surveillance, MS 0.0003601 0.9996399
Failure in ADS-B Out, AO 0.00025 0.99975

Note: the acronyms MS and AO are consistent with Figures 5–12 and Table 2.

Comparing Tables 4 and 6, it can be noted that the surveillance system may fail to locate ownship
more than it may fail to detect the intruder. This may occur because any misleading information or loss
of data from intruder aircraft was not considered, while the ownship surveillance sensor are bound to
corrupted data error from onboard navigation.

4.2. Importance Measure

A component or cut set’s contribution to the top event occurrence is termed as importance [66].
Importance measures of the basic events are associated with the risk-significance and safety-significance
of the related components. They are normally used to rank the system’s components with respect to
their contribution to the reliability and availability of the overall system. In this study, three different
importance measures are used to quantify the risks. The first one is the Fussell–Vessely factor (F–V).
The Fussell–Vessely factor measures the overall percent contribution of cut sets containing a basic
event of interest to the total risk.

FV =
(Probability o f top event due only to cutsets o f interest)

(Probability o f top event)
(3)

The second one is Risk Reduction Worth (RRW), a measure of the change in risk of the system
when the system component is perfect, or failure probability is zero. This measure helps to identify the
components that are the best candidates to improve for overall safety.

RRW =
(Probability o f top event)

(Probability o f top event with component f ailure probability = 0)
(4)
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The third factor is risk achievement worth (RAW) measure of the increase in risk when a system
is unavailable. Mathematically,

RAW =
(probability o f top event with component f ailure probability = 1)

(probability o f top event)
(5)

Table 7 summarizes the importance analysis for each of platform failure and ranked them
according to their significance on the total failure.

Table 7. Risk measure and importance analysis for the DAA capability FTA as per Figure 5.

Events F–V RRW RAW

DAA 1 0.5404 2.176 1.069 × 104

DAA 2 0.2351 1.307 1.069 × 104

DAA 3 2.683 × 10−8 1 1.069 × 104

DAA 4 0.1069 1.12 1.069 × 104

DAA 5 0.11 1.133 1.069 × 104

The F–V value for DAA 1 failure in cooperative surveillance system is higher than all the events
indicating that it contributes most to the system failure. Any improvement in the reliability of DAA 1
will decrease the risk with RRW = 2.176. Failure in non-cooperative surveillance system is the second
highest effect on the DAA failure. The ability of airborne processor is rigid, and the failure of processor
is considered extremely improbable, therefore its contribution is minimal to the DAA failure. Table 8
summarize the importance measure value for the fault tree presented in Figure 8.

Table 8. Risk measure and importance analysis for the ADS-B Out System FTA as per Figure 8.

Events F–V RRW RAW

MS 0.6942 3.12 1.341 × 104

AO 0.3058 2.211 1.341 × 104

Note: the acronyms MS and AO are consistent with Figures 5–12 and Table 2.

The results summarize in Table 8, depicts that Mode S failure affects and contribute more to the
overall system failure. This can also be concluded from the failure probability value of each system.
The failure probability was higher for mode S surveillance than the ADS-B Out system.

5. Pathway to DAA Certification: ADS-B Suitability

DAA systems capable of consistently and reliably performing equally or exceed the see-and-avoid
performance of a human pilot are indispensable to mitigate the risks associated with possible
errors/failures in the command and control (C2) loops involving the remote pilot and to support
safe autonomous operations. Previous undertakings in the domain only managed to establish the
safety cases for UAS operating within the line-of-sight (LOS) of their pilots or segregated from other
traffic and well clear of public infrastructure and major urban settlements. For BLOS operation and
safe integration of UAS in non-segregated airspace, the provision of certified autonomous DAA
capabilities is an indispensable milestone. The current LOS operations/segregated airspace constraints
are preventing further exploitations of UAS technology and impeding many practical uses. For instance,
the use of UAS to survey large areas, to deliver essential goods in remote locations and to provide
communication services over wide geographic regions, to name a few, all require non-segregated
BLOS operational capabilities. From the FTA carried out in this study, the system availability is greater
than 99.98% for both ADS-B Out and ADS-B In systems. The availability of ADS-B In system is solely
based on the host platform and any failure or malfunction from the intruder platform is not considered.
The Minimum Aviation System Performance Standards for ADS-B [67] specify the availability of
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ADS-B to be greater than 99.9% if used as primary means of surveillance and greater than 95% if
used as supplementary means of surveillance. The Civil Aviation Certification Authority (CASA) in
Australia has mandated using ADS-B for aircraft flying above FL285 and also for Instrument Flight
Rule (IFR) traffic as specified in CAO 20.18. The FAA also mandated all the general aviation aircraft to
be equipped with ADS-B within 2020 [68]. Although the failure of the ADS-B system (1.2 × 10−3) is
lower comparative to other surveillance sensors, researcher working on DAA capability concluded that
only an adequate exploitation of multi-sensor architecture will potentially meet the safety requirements
in all flight phases. Therefore, depending on the operational flight envelope ADS-B data shall be
fused with other cooperative and non-cooperative surveillance data. Therefore, ADS-B systems can be
used as a cooperative sensor especially in the airspace with IFR traffic allowing the safe operation of
unmanned platforms in non-segregated airspace. The mathematical approach proposed in the unified
framework allows us to determine the safe-to-fly portions of the host UAS operational flight envelope
based on the avionics sensors/systems available onboard or, alternatively, to identify the required
sensors/systems required for operating in a certain predefined portion of the host UAS operational
flight envelope. Figure 13 conceptually depicts the two-way certification approach.

Aerospace 2018, 5, x FOR PEER REVIEW  16 of 20 

 

capabilities is an indispensable milestone. The current LOS operations/segregated airspace 398 
constraints are preventing further exploitations of UAS technology and impeding many practical 399 
uses. For instance, the use of UAS to survey large areas, to deliver essential goods in remote locations 400 
and to provide communication services over wide geographic regions, to name a few, all require non-401 
segregated BLOS operational capabilities. From the FTA carried out in this study, the system 402 
availability is greater than 99.98% for both ADS-B Out and ADS-B In systems. The availability of 403 
ADS-B In system is solely based on the host platform and any failure or malfunction from the intruder 404 
platform is not considered. The Minimum Aviation System Performance Standards for ADS-B [67] 405 
specify the availability of ADS-B to be greater than 99.9% if used as primary means of surveillance 406 
and greater than 95% if used as supplementary means of surveillance. The Civil Aviation Certification 407 
Authority (CASA) in Australia has mandated using ADS-B for aircraft flying above FL285 and also 408 
for Instrument Flight Rule (IFR) traffic as specified in CAO 20.18. The FAA also mandated all the 409 
general aviation aircraft to be equipped with ADS-B within 2020 [68]. Although the failure of the 410 
ADS-B system (1.2 × 10−3) is lower comparative to other surveillance sensors, researcher working on 411 
DAA capability concluded that only an adequate exploitation of multi-sensor architecture will 412 
potentially meet the safety requirements in all flight phases. Therefore, depending on the operational 413 
flight envelope ADS-B data shall be fused with other cooperative and non-cooperative surveillance 414 
data. Therefore, ADS-B systems can be used as a cooperative sensor especially in the airspace with 415 
IFR traffic allowing the safe operation of unmanned platforms in non-segregated airspace. The 416 
mathematical approach proposed in the unified framework allows us to determine the safe-to-fly 417 
portions of the host UAS operational flight envelope based on the avionics sensors/systems available 418 
onboard or, alternatively, to identify the required sensors/systems required for operating in a certain 419 
predefined portion of the host UAS operational flight envelope. Figure 13 conceptually depicts the 420 
two-way certification approach.  421 

 422 
Figure 13. Two-way approach to certification. 423 

In particular, considering the nominal flight envelopes of the host UAS/intruders and the 424 
characteristics of the on-board sensors/systems, the algorithms will determine the applicable safety 425 
envelope restrictions. Conversely, based on a predefined (required) flight envelope and on the 426 
intruder dynamics, the algorithms will allow an identification of the specific avionics sensors/systems 427 

Figure 13. Two-way approach to certification.

In particular, considering the nominal flight envelopes of the host UAS/intruders and the
characteristics of the on-board sensors/systems, the algorithms will determine the applicable safety
envelope restrictions. Conversely, based on a predefined (required) flight envelope and on the intruder
dynamics, the algorithms will allow an identification of the specific avionics sensors/systems that
must be integrated in the UAS. This approach will lay the foundations for the development of an
airworthy DAA capability and a pathway for manned/unmanned aircraft coexistence in all classes
of airspace.

Moreover, the research community determined that only the exploitation of machine learning and
artificial intelligence technologies will allow to develop a DAA capability that can perform reliably with
the predicted levels of traffic density and the infinite combination of possible encounter characteristics,
which already exceed the cognitive capabilities of human operators. This has been the chosen path, for
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instance, in the development of the ACAS-Xa variant. However, the current regulatory framework
does not cater for the certification of non-deterministic behavior avionics systems, hence significant
evolutions will be required to the framework [69], which shall also account for the ever-increasing
air-ground functional integration as part of the so-called CNS+A (i.e., CNS/ATM and Avionics)
paradigm, which demands that cohesive safety certification requirements are adopted for both airborne
and ground-based systems [69,70].

6. Conclusions

The reliability of UAS DAA systems based on ADS-B and other cooperative/non-cooperative
sensors was analyzed in this paper. The unified analytical framework has been utilised for the
mathematical fusion of navigation and tracking errors, supporting the development of low SWaP-C
DAA systems exploiting cooperative and non-cooperative surveillance technologies. The paper also
briefly discussed the need for an evolution of the certification framework to accommodate the adoption
of non-deterministic systems and to encompass the ever-increasing functional integration between
airborne and ground-based systems. The analysis highlighted the safety significance and importance
of the onboard surveillance equipment. The cooperative surveillance system failure contributes most to
the DAA capability failure. Another important finding is that for the cooperative surveillance system,
the failure in ownship surveillance capability is higher than the failure in traffic detection capability.
The adequacy of ADS-B as a cooperative surveillance system for conventional one-to-one encounters
was also discussed. The calculated failure probability is in the order of 10−6, which is remote. Although
the severity analysis has not been included in this study, the implications of the failure will depend on
the airspace characteristics. In particular, in uncontrolled airspace, where ATM deconfliction service
is not available or limited, the consequences will be likely more severe than in controlled airspace.
Additionally, the severity also depends on the intruder equipage, as inadequate maneuvers can be
initiated due to CNS performance limitations in the intruder platform. Hence, depending on airspace
and UAS performance characteristics, specific avionics sensors/systems will have to be integrated.
In conclusion, ADS-B has a good potential to be utilized as the main cooperative system especially
in airspace with IFR traffic. Further evaluation will have to consider intruder equipage failures as
well as different airspace and conflict scenarios. This future work will prompt an evolution of the
conventional probabilistic safety assessment methodology.
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