
aerospace

Article

Computational Analysis of Compressed Stiffened
Composite Panels with Impact Damage

Alexander A. Ryabov 1, Evgeny E. Maslov 1, Dmitry Y. Strelets 2,* and
Vladimir G. Slobodchikov 3

1 Sarov Engineering Center, Nizhny Novgorod Region, Techno-Park «Sarov» 607328, Russia;
Alex.ryabov@saec.ru (A.A.R.); maslov.evgeny@mail.ru (E.E.M.)

2 Moscow Aviation Institute, National Research University, Moscow 125993, Russia
3 Joint-Stock Company, Aero Composite, Moscow 125284, Russia; v_slobodchikov@aerocomposit.ru
* Correspondence: maksmai33@gmail.com

Received: 15 November 2018; Accepted: 15 February 2019; Published: 27 February 2019
����������
�������

Abstract: A complex modeling technique is presented in this paper for a numerical analysis of
compressed stiffened composite panels with impact damage. The numerical technique is based on
the LS-Dyna code application, which simulates both the dynamic deformation of the panel subjected
to a local impact and the quasi-static uniform compression of the panel within the local damage zone.
The technique has been validated by both impact and compression experimental tests of the stiffened
composite panel. The obtained numerical results show that impact damage to the composite panel can
reduce the carrying capacity in more than 50% of damaged panels compared to undamaged panels.

Keywords: composite stiffened panels; stresses; strains; kinetic energy; carrying capacity;
dynamic loading; impact damage; static compression; finite element method; explicit scheme

1. Introduction

Fiber reinforced polymer (FRP), which has high strength characteristics, is widely used in
aerospace, shipbuilding, and other industries. Scientific investigations of composite structures
have been carried out over several decades [1–12]. General aspects of the numerical modeling
of deformations and failure of aircraft structures, made of composite materials are presented
in [12]. This paper points out that the increased use of FRP presents new difficulties for stress
analysis due to the complicated structure and highly complex failure modes of composite materials.
When solving problems with composite materials it is necessary to take into account physical
nonlinearity, large displacements, and contact interactions of layers and fibers of FRP laminates.
It is important for correct predictions of reciprocal action of the possible buckling and instability of
loading process and damage growth, reducing residual strength of composite structure. It is well
known that composite plates and shells are very sensitive to local dynamic loads, such as the hail,
and the impact of small stones from the runway. It is noted in [11] that, with relatively low levels
of kinetic energy, impact damage appears inside composite materials and can be invisible on the
external surface of the structure. The experimental results show that the damage occurs within a
conical contact zone with the apex at the point of impact [13]. A real damage zone also includes broken
fibers, matrix cracks, and delamination of plies. In the compression of thin panels, this local damaged
zone with delamination allows the fibers to buckle at much lower strains than in an undamaged region.
Therefore, predicting delamination growth due to buckling is very important.

Some results of numerical simulations of the post-buckling delamination growth in compressed
composite plates and shells are presented in [14–17]. A finite-element nonlinear analysis of the
post-buckling behavior of a compressed rectangular plate with circular delamination was conducted
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in [15] with the ABAQUS code and validated by experimental data. There was a discrepancy within
10% between the predicted load for delamination growth and the values measured from the tests.
In general, the “compression after impact” problem remains for composite materials, limiting allowable
compressive strains, often as low as ε = 0.3%.

Different approaches for numerical simulations of impulse dynamic loading, predicting impact
damage of composite structures and analysis of experimental data, are described in [18–26]. Most of
the numerical test results presented in these papers have been obtained on coupons with an impact
velocity of less than 5 m/s and a mass of less than 5 kg. The tests [18,19] show that the damage caused
by the low-velocity impact with kinetic energy of Ek ~60 J can reduce the compressive properties
of coupons by up to 50% and reduce the compressive properties of stringer stiffened panels by as
much as 20% [21]. A series of carbon composite thin plates were tested in the range of impact
energy Ek = 0.60–9.34 J in [20] and compared with numerical results obtained with finite-element
impact code FE77 with explicit solver and the LS-Dyna code. The developed modeling technique has
worked well for carbon composites and allowed the predication of the force history and the onset of
delamination. Additionally, different composite plates and stiffened panels subjected to impacts with
an energy of Ek = 13–25 J were studied in [22]. It is noted in this paper that the debilitating effects on
compression strength limit the permissible design strain levels to 0.3–0.4%. A modeling technique
based on the LS-Dyna code was developed in [23] using single-layer shell elements to predict both the
in-plane damage and delamination. This technique was applied to a stiffened composite plate loaded
with Ek ~ 15 J and validated by comparing the numerical and test results of [21], with differences of
16% for force–time response and 20% for damage area being obtained. Delamination threshold load
assessment was studied in [24] for 100 × 100 mm square samples of glass–carbon–epoxy composite.
It was experimentally found that there was a threshold impact energy of Ek = 1.5 J independent of the
glass fiber stacking sequence. Moreover, 150 × 100 mm rectangular plates of carbon fiber–epoxy were
tested in [26] with low-velocity impacts in the range of Ek = 15–35 J. It is pointed out in this paper that
delamination area and its shape depend on the stacking sequence.

A brief literature survey shows that all observed publications can be divided into two separate
groups: the first one includes investigations of damage in composite structures subjected to local
dynamic loading, and the second one presents an analysis of the post-buckling behavior of the initially
damaged structures to predict load for delamination growth. In the present paper, an attempt has
been made to develop a modeling tool and conduct complex analysis simulating both stages on the
base of one platform using the LS-Dyna code: dynamic loading by impactor and static compression of
stiffened panel with impact damage obtained in the first stage.

All new aircrafts have to meet very stringent requirements of national and international aviation
rules. A designer must demonstrate the static strength and carrying capacity of the units made
of composite materials, preliminarily subjected to local dynamic loading with kinetic energy of
Ek = 135 J [11]. This impulse is transmitted by an impactor with a spherical end. Such loading
conditions are investigated here.

2. Statement of Work and Governing Equations

Deformations of a thin-walled stiffened panel are described according to the Lagrange
approach [27]. There are two coordinate systems: the first one is a fixed rectangular Cartesian
coordinate system, X = [X1X2X3], and the second one is a local coordinate system, x = [x1x2x3],
with directional cosines nij:

xi = nijXj, i, j = 1, 3. (1)

The origin of the local coordinates is located at a midsurface of the panel, axis x3 is a normal to the
midsurface, and x1, x2 are orthogonal to x3. We assume that transverse shear deformations are small,
which allows us to suppose that the local basis is orthogonal during all the process of deformation.
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The velocity–strain components in the local basis
.
εij are defined by velocity–strain components in the
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where displacements Ui are defined in Cartesian coordinate system X, comma means a space derivative,
and a superposed dot denotes a time derivative.

The equation of motion is written in the form of the variation principle of balance of virtual
powers of work [28,29]:∫
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where: σij—components of stress tensor, ρ—density, Pq
i —contact pressure, Pi—distributed load,

Ω—volume of structure, Γq—contact surface, Γp—surface of external pressure is applied, δ
.
εij,

δ
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.
εij, and

.
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Equations of state for polymer composite material with sandwich structure of fiber plies are
formulated as for orthotropic material model Chang-Chang [30], which can be written for 2D in-plane
state of stress, typical for layers of stiffened panel, in the following form:

ε11 = 1
E1
(σ11 − ν1 · σ22)

ε22 = 1
E2
(σ22 − ν2 · σ11)

2ε12 = 1
G12

τ12 + α · τ3
12

(5)

where: E1, ν1—elastic moduli and Poisson ratio, respectively, in the longitudinal direction;
E2, ν2—elastic moduli and Poisson ratio, respectively, in transverse direction; and G12—shear modulus
of monolayer. The third equation in (4) defines the nonlinear shear-stress parameter α. A fiber matrix
shearing term augments each damage mode:

τ =

τ2
12

2G12
+ 3

4 ατ4
12

S2
12

2G12
+ 3

4 αS4
12

, (6)

which is the ratio of the shear stress to the shear strength S12. The failure criteria for matrix cracking
Fmatrix, compression Fcomp, and fiber breakage Ffiber are given by the following equations:

Fmatrix =

(
σ22

S2

)2
+ τ, (7)

Fcomp =

(
σ22

2S2

)2
+

[(
C2

2S12

)2
− 1

]
σ22

C2
+ τ, (8)

Ff iber =

(
σ11

S1

)2
+ τ, (9)

where: S1, S2—longitudinal and transverse tensile strength, S12—shear strength, and C2—transverse
compressive strength. Failure is assumed if any criteria Fmatrix, (comp, fiber) > 1 and constants E1, E2, G12,
ν1, and ν2 are set to zero.



Aerospace 2019, 6, 25 4 of 11

Modeling of delaminations: In the suggested approach, every composite layer is simulated
as a separate domain. For every pair of adjacent domains, the specific contact algorithm,
CONTACT...TIEBREAK [31], is applied. Delamination between domains appears if:( σn

NFLS

)2
+
( σS

SFLS

)2
≥ 1 (10)

where: σn, σs—normal and shear stresses in the connection, respectively NFLS, SFLS—ultimate normal
and shear stresses, respectively. If delamination appears between domains, usual contact interaction is
applied for further simulation.

An explicit scheme for time discretization and the finite element method [28] are used to
numerically solve Equations (1)–(10).

The problem of local dynamic loading and consequent uniform static compression of the stiffened
composite rectangular flat panel of constant thickness h1 with sizes of a × 2b is considered in this
paper (see Figure 1). At the first stage, the panel is locally impacted by dynamic force P caused by
steel impactor. Then, at the second stage, the panel is statically loaded by longitudinal compression
applied as uniform displacements at the free edge of the panel. The opposite edge of the panel is
rigidly restrained, and symmetrical boundary conditions are applied at the side edges of the panel.
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Figure 1. Stiffened panel with impact damage. a—panel length; b—half panel width or the
distance between the stringers; h1—the composite plating thickness; b1, b2, h2—the stringer geometric
parameters; h3—the sum of the stringer shelf thickness and the composite plating thickness; h—the
sum of stringer height and the composite plating thickness; P—force caused by impactor.

The panel is made of carbon/epoxy FRP with laminate stacking sequence (+45◦, 0◦, −45◦, 0◦, 90◦,
0◦, −45◦, 0◦, and +45◦)3s. The normalized dimensions of the panel are presented in Table 1.

Table 1. Main normalized dimensions of the carbon/epoxy fiber reinforced polymer pane 1.

h h2 h3 a b b1 b2

7.5 2.0 2.0 66 23.3 17.0 11.4
1 Dimensions are normalized by h1 value.

3. Local Dynamic Deformation of the Panel

The finite-element model based on 8-node brick elements SOLID_ORTHO [31] was developed
to simulate dynamic deformation of the panel subjected to local impact. In this computing model,
every fiber layer is simulated by a separate layer of solid finite elements (Figure 2). The number of
finite elements in this model is about 1.25 million.
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Figure 2. Fragment of the panel finite-element model. V—the impactor initial velocity, M—the
impactor weight.

The weight M and initial velocity V of the dropping pin impacting the panel between stringers
with kinetic energy Ek = 140 J are presented in Figure 2. Some results of numerical simulations obtained
with LS-Dyna code are shown in Figures 3 and 4. A comparison of contact interaction force P between
rod and panel via time obtained in experiment (curve 1) and in simulation (curve 2) is shown in Figure 3.
A Dynatup INSTRON 9250 HV (Instron, High Wycombe, UK) pile driver with vertical dropping pin,
having a spherical end with a diameter of 25.4 mm, was used to inflict impact damage. It can be seen
that there is a small reduction of the contact force at Pexp ~ 6.5 kN and t1 ~ 0.6 ms in the experiment,
perhaps due to partial failure of fibers and matrix. The numerical curve also demonstrates some
reduction of the contact force at Pnum ~ 12.3 kN at t2 ~ 1.2 ms. In general, numerical and experimental
force time histories are close to each other when they grow. At the same time, the maximal level of
the numerical force, Pnum max ~ 19.3 kN, exceeds the experimental level, Pexp max ~ 16.1 kN, by ~ 20%.
The numerical duration of the impulse also exceeds the experimental one. There is one more curve 3 in
Figure 3, obtained for the same level of kinetic energy, Ek = 140 J, and impactor weight of M = 1.7 kg.
It can be seen from Figure 3 that the same level of kinetic energy provides a different impulse of the
contact force.Aerospace 2018, 5, x FOR PEER REVIEW  6 of 12 
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Figure 4. Experimental and numerical damage zones.

Figure 4 shows delamination zones defined with acoustic ultrasonic control in four tests (curve 1)
and corresponding numerical damage zones obtained for an impactor of M = 15.8 kg (curve 2) and for
an impactor of M = 1.7 kg (curve 3). The quantity b is the distance between stringers. A comparison of
the test sizes and numerical dimensions of the damage zones are presented in Table 2.

Table 2. The sizes of the damage zone.

Results Experiment Simulation *

Size in X direction 0.64–0.75b 0.65b
Size in Y direction 0.63–0.70b 0.88b

* Simulations with M = 15.8 kg.

Curves of dimensionless stresses in the longitudinal direction alone fibers (σ1) and in the
transversal direction (σ2) in the top monolayer (dotted line) and bottom monolayer (solid line) are
shown in Figure 5 for two impacts with the same kinetic energy, Ek = 136 J, for two impactors having
masses of M1 = 1 kg (curve 1) and M2 = 10 kg (curve 2). Top and bottom points in which stresses have
collected are located on the axis of impact. Dimensionless stresses are normalized with corresponding
ultimate stresses of tension (+) and compression (−) of fibers and matrix. Numerical results show that
bottom fibers maintain strength and top fibers do not for both impactor masses. Failure of the top
compressed fibers for both masses begins at approximately t ~ 0.4–0.5ms. Stress σ2 in the matrix of the
top monolayer does not reach limit stress of compression, however in the bottom monolayer it exceeds
this limit slightly only for mass M2 = 10 kg.

Due to impact loading damage appears in the layers of fibers and between layers. Any fibers can
be ruptured due to tension or destroyed by bending and compression in the layers, and the matrix also
can be damaged. Modeling technique allows the prediction of sizes of damage zones for both matrix
failure and delamination of layers.
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Cross-sections of calculated impact damage zones in the longitudinal direction are presented
in Figure 6. The dimensionless sizes of the damage zones are normalized by the distance between
stringers—b. It can be seen that loading with the same kinetic energy, Ek = 136 J = const., in two loading
cases with rod masses M1 = 1 kg and M2 = 10 kg provides different sizes of damage zones, with the
impact of the heavy rod causing an increase of damage areas of 15–20%.Aerospace 2018, 5, x FOR PEER REVIEW  8 of 12 
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4. Quasi-Static Compression of the Panel

The impact damage zone is specified as a delaminated area with contact interaction between
composite layers with overall sizes preliminarily defined by numerical simulations and ultrasonic
control of the panel. The broken fibers and matrix cracks in layers are not included in the computing
model. Solving of the problem is carried out with explicit method [27] by slow growing of the edge
uniform displacements to exclude dynamic effects. Some numerical results are presented in Figures 7–9.

Dimensionless load–displacement curves are shown in Figure 7 for undamaged panel (curve 1)
and for the panel with impact damage (curve 2). The dimensionless load q is normalized with a critical
level of compressive load and dimensionless displacement is normalized with the thickness of the
plate. The maximal displacement of the undamaged panel grows monotonically. In the panel with
local impact damage, displacement demonstrates complicated behavior, caused by the local buckling
in the damage zone. As can be seen from Figures 7 and 8, weak bending of the layers with small
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hardening occurs in the damage area at a load of about q = 0.4. General delamination of the layers
and separation of the stringers begin at a load of q = 1.0, and it follows to the formation of general
transversal buckling folding and defines a carrying capacity of the damaged panel.Aerospace 2018, 5, x FOR PEER REVIEW  9 of 12 
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The level of the load at which the ultimate compression stress of the fibers is reached in the
undamaged panel, q = 2.2, is marked by a small cross on curve 1. It can be concluded that the local
impact damage zone reduces the carrying capacity of composite panel by more than 50%.

The curves of longitudinal strains specific points on the external surface of the panel near the
impact damage zone are shown in Figure 9. The numbers of the curves corresponding to the point
numbers are presented in Figure 9. The panel is compressed along the line crossing gauges located
at points 4–7. Numerical results show that deformations at all points grow nearly linearly to a level
of ε ~ 0.26–0.27%, up to a load of q = 0.4–0.45. Then, the deformations are changed significantly
with load growing up to the level of q = 1.0. Gauge 2 is located just on the top of the buckling fold
crossing the panel in the transverse direction (see Figure 7). That is why, due to extensive bending
compression, strain at point 2 is reduced rapidly, passing into tension deformation. A small reduction
of compression strains takes place at points 5 and 6 closing to the damage delaminated zone. In the
adjacent points 4 and 7 located at the same axis, compression deformations remain close to the constant
level by the load of q = 1.0. Compression strains at points 1 and 3 continue to grow due to additional
bending during the formation of the buckle fold.

A comparison of the obtained numerical results and experimental data is presented in Table 3.
Compression tests of the panels were implemented with MTS500 automatic hydraulic test bench (PCE
Group CO KG, Meschede, Germany) with a maximal load of 5000 kN and measuring accuracy of 1%.
Strain measurement was conducted with CTMM strain gage equipment.

Table 3. Longitudinal strains ε near damage zone (q—dimensionless load).

Load q Points Experimental ε, % Numerical ε, %

1.0

1 −0.45 −0.44
3 −0.48 −0.45
4 −0.26 −0.25
7 −0.30 −0.27

One can see that the calculated strains agree with measured ultimate deformations corresponding
to the carrying capacity level of the damaged panel.
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5. Conclusions

1. A complex modeling technique has been developed on the basis of the LS-Dyna code for the
prediction of local impact damage and its influence on the carrying capacity of a compressed
flat stiffened composite panel. The numerical analysis shows that local buckling of delaminated
fibers in impact damage zone is one of the main reasons for a significant reduction of the carrying
capacity of the compressed FRP stiffened panel.

2. The validity of the modeling technique was confirmed by the agreement between the numerical
and experimental results. The maximal dynamic force and impulse duration in the simulation of
local impact exceed experimental data by no more than ~20%. The numerical and experimental
sizes of the impact damage zone are ~0.7b and close to each other. These predictions could be
quite acceptable for preliminary engineering analysis.

3. The fixed level of the kinetic energy of Ek = const. is not a fully correct measure of local damage
for FRP stiffened panel, since the decrease of the impactor weight and keeping Ek = const. cause
decreasing sizes of damage zone.

4. Quasi-static simulation of the damaged panel at the stage of longitudinal compression
allows the prediction of the ultimate longitudinal strains near the impact damage zone:
εnum = −0.25 to −0.48%, which are close to the experimental levels: εexp = −0.27% to −0.45%,
corresponding to the carrying load of the FRP panel.

5. The obtained numerical results show that the local impact damage zone can reduce the carrying
capacity of the compressed composite panel by more than 50% compared to the undamaged
composite panel.
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