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Abstract: Active control techniques are a key factor in today’s aircraft developments to reduce
structural loads and thereby enable highly efficient aircraft designs. Likewise, increasing the
autonomy of aircraft systems aims to maintain the highest degree of operational performance also in
fault scenarios. Motivated by these two aspects, this article describes the design and validation of a
fault tolerant gust load alleviation control system on a flexible wing in a wind tunnel. The baseline
gust load alleviation controller isolates and damps the weakly damped first wing bending mode.
The mode isolation is performed via an H;-optimal blending of control inputs and measurement
outputs, which allows for the design of a simple single-input single-output controller to actively damp
the mode. To handle actuator faults, a control allocation scheme based on quadratic programming
is implemented, which distributes the required control energy to the remaining available control
surfaces. The control allocation is triggered in fault scenarios by a fault detection scheme developed
to monitor the actuators using nullspace based filter design techniques. Finally, the fault tolerant
control scheme is verified by wind tunnel experiments.

Keywords: fault tolerant control; fault detection; control allocation; actuator faults; structural mode
damping; wind tunnel experiments

1. Introduction

Today’s aircraft manufacturers are eager to fulfill the greener imperative demanded by society and
allow for a more economic operation of aircraft. Besides the efficiency of engines and aerodynamics,
the aircraft weight is a key factor for increased aircraft performance and decreased fuel costs.
Active control techniques can alleviate wing gust loads. This alleviation allows to relax the structural
design constraints and reducing weight, see for example, References [1-3]. Another main field of
interest in the aircraft industry is the increase of flight autonomy. Providing the highest degree of
automation enables the most efficient aircraft operation [4,5]. Future gust load alleviation systems
must not only be high performing algorithms but also provide autonomy in case of faults. Thus, in the
work presented herein, a fault tolerant gust load alleviation system is designed and experimentally
verified in a wind tunnel test campaign.

The developed control system herein consists of three main parts: a baseline controller to mitigate
the loads in the wing; a fault detection system to monitor the actuator condition; and a reconfigurable
control allocation allowing to mitigate the fault effect when detected. To reduce structural loads,
damping needs to be added to the aeroelastic system. This is achieved by blending the control
inputs and measurement outputs such that the aeroelastic mode causing the largest loads is isolated
and can be damped by a simple single-input and single-output (SISO) controller. The idea of this
blending based controller design has been introduced in Reference [6], where it is denoted as “modal
isolation and damping for adaptive aeroservoelastic suppression” (MIDAAS). Here, the H;-optimal
blending approach developed in References [7,8] is used, which has also been successfully applied to a
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flutter demonstrator in Reference [9]. In Section 2 the fundamentals of the modal control approach
are summarized.

The core element of the fault detection system is a linear fault detection filter designed by
means of the nullspace based design technique discussed in the first part of Section 3. This technique
for designing minimal order fault detection filter has been proposed in Reference [10], where the
numerical properties of the solution techniques have been improved in References [11,12]. The method
has been applied to design residual filters for flight actuators in Reference [13], processing both the
in- and output signal of the actuators. The filters have been verified on a real flight actuation system.
In Reference [5], the nullspace based design technique has been applied and tested on a high fidelity
aircraft simulator to detect aircraft sensor faults using a rigid body model of the aircraft. Furthermore,
in Reference [3] the approach has been applied the first time to high order aeroelastic aircraft models
to detect incoming gusts. The work presented herein applies the method to a high order, aeroelastic
model of a highly flexible wing and brings the method to life in realistic wind tunnel experiments.
The fault detection system sets the basis for the fault tolerant control (FTC) approach. To detect aircraft
sensor faults and trigger a reconfiguration, the FTC architecture developed in References [5,14] serves
as basis for the FTC system design herein. The FTC architecture includes a fault detection system with
a residual filter, a residual evaluator and a decision-making module to monitor the control surface
actuator. In case of detected actuator faults, the blending of the control inputs is reconfigured by
solving a constrained control allocation problem in real time. The theoretical background of this
control allocation is provided in the second part of Section 3. In the literature different fault tolerant
control approaches via control allocation techniques are available, see for example, References [15,16].
The control allocation scheme used herein solves a quadratic optimization each time step to allocate
the control input accordingly. The fault tolerance is achieved by adapting the optimization constraints
in case a fault is confirmed by the fault detection module. This allows maintaining the fault free control
behavior, fully or at least with a minimum controller performance degradation.

The presented approaches are applied to an experimental wing for which detailed linear
aeroelastic models have been derived, see References [17,18]. In Section 4 the design and modeling
of the experimental wing are discussed in detail, setting the basis for the development of the fault
tolerant control system in Section 5. Section 6 presents the results of the control system validation in
an extensive wind tunnel test campaign. This includes open- and closed-loop experiments with and
without faults to show the achieved load reduction by the baseline controller, which is maintained by
the fault tolerant control architecture during fault scenarios.

2. Input-Output Blending Based Modal Control

In this section, the theoretical background to optimally blend inputs and outputs for modal control
is provided. The approach blends the inputs and outputs of the system such that the controllability
and observability of the mode to be controlled is maximized in terms of the H-norm. For aeroelastic
control problems, this approach is especially applicable since no model order reduction of the typically
high dimensional simulation model is required. Furthermore, a high number of sensors, for example,
strain or acceleration measurements, are available and need to be fused accordingly within the
control algorithm.

2.1. Modal Description of Linear Time-Invariant Systems

A linear time-invariant (LTI) system with n, inputs, n, outputs and 1, states which is physically
realizable is described by the transfer function matrix

G(s)=C(sI—A)"'B+D, 1)



Aerospace 2019, 6,76 30f 19

where A € R™*" B ¢ R"™*"m C ¢ RW*™ D ¢ R™*™ and s denotes the Laplace variable.
Assuming that A is diagonalizable, a modal decomposition of G(s) is possible such that

M

G@%:Z;MM@+D,

where the individual modes m =1, ..., ny;, are given as

st i S (p) = 0

- FPm

My, (S) = = (2)
Rin + Rin otherwise.

5= Pm S_?m

According to (2), a mode m is either described by a single real pole p,;, with an imaginary part
S (pm) = 0 or a conjugate complex pole pair p,, and p,,. Hence, the number of modes 1, does not
necessarily equal the number of states ny, that is, n,, < ny. Each pole p,, is associated with a residue
Ry, where the residues of a conjugate complex pole pair are also conjugate complex.

In general, a mode m is considered to be asymptotically stable if R(p,) < 0 and unstable if
R(pm) > 0. In case N(py) = 0, the mode is considered to be undamped, which also includes a pole in
the origin. Furthermore, the natural frequency of a mode is given as wn, = |pm| and for wn, # 0,
the corresponding relative damping is {, = —R(pm)/wn,m. Note that for a conjugate complex pole
pair, the corresponding real parts ®(p,;) = R(p,,) and magnitudes |p,| = |p,,| are equal.

2.2. Hy-Optimal Blending of Inputs and Outputs for Modal Control

The task of controlling a single mode M(s) € {My(s)} of a high order dynamic system is
challenging, especially when the number of control inputs or measurement outputs is large. To reduce
the complexity of the control problem, it is proposed to weight and sum the measurement signals
such that the resulting virtual measurement output v, best represents the response of the mode to
be controlled. Similarly, it is proposed to generate a virtual control input v, which is distributed
to available control inputs such that the target mode is best controlled. In other words, the inputs
and outputs are blended such that a maximum controllability and observability of the mode to be
controlled is achieved. Quantifying the combined controllability and observability in terms of the
‘Hy-norm as proposed in Reference [7], the resulting blending vector design problem is formulated as

maximize Hk; M(s)ky,
ki R e, €R™Y Ha
subject to lkull, =1 ©)
lkyll, =1,

where the input and output blending vectors k, € R"™ and k, € R" are enforced to be of unit
length. Solving the optimization problem (3) by means of the numerically efficient algorithm
derived in Reference [8] yields blending vectors depending on the shape but not frequency of
the target mode, which implies a high robustness against frequency variations. In case an explicit
decoupling of the target mode is desired, for example, to avoid spillover effects, corresponding mode
decoupling constraints may be considered during blending vector design as proposed in Reference [8].
Furthermore, for an unstable mode M(s) the corresponding Hy-norm is infinite and it is proposed to
reformulate the optimization problem (3) according to Reference [8]. Blending the inputs and outputs
with k;, and k,, respectively, the target mode can be controlled by a simple SISO controller csiso(s).
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Hence, the multiple-inputs multiple-outputs control design problem becomes a SISO one, where the
resulting feedback controller is given as

K(S) = ku CSISO(S) k;. (4)

Figure 1 illustrates the blending idea in the closed-loop, where the available measurements y are
blended to a scalar signal v, which is the input signal to the controller csiso(s). Its output signal v, is
blended back to the available control commands u. The architecture can be easily extended to isolate
more than one mode and design a SISO controller for each isolated mode, see References [7,8].

v

- G(s)

Figure 1. Block diagram representation of the blending approach.
3. Fault Detection Based Fault Tolerant Control Allocation

The fault tolerant control approach in this work is based on two main modules: a fault detection
system to detect the fault; and a reconfigurable control allocation triggered by the information of the
fault detection system to recover the best possible control performance during the fault scenario(s).
The design techniques for modules are explained as follows.

3.1. Fault Detection System

The fault detection system consists of a linear fault detection filter of minimal state order
generating a residual signal. The residual signal is evaluated over time and compared against a
predefined threshold to derive a Boolean variable indicating the presence or absence of a fault. In the
following subsections, the fault detection filter design based on nullspace computation techniques for
linear systems is discussed and insights into the decision-making process are given.

3.1.1. Linear Residual Filter Design

The linear residual filter design is based on advanced nullspace computation techniques presented
in Reference [12]. These techniques provide residual filters of minimal dependence on the underlying
model by providing the least possible filter order, which allows to check a-priori if a fault detection
problem is solvable and enable a free definition of the filter dynamics. Below, a short introduction into
the idea of the residual filter generation is given.

Consider the linear model described by the input-output form

y(s) = Gu(s)u(s) + Gyd(s) + Gf(s), ®)

where y(s), u(s) and d(s) are the Laplace-transformed vectors of the 1,-dimensional system output
vector y(t), the n,-dimensional control input vector u(t), the n;-dimensional disturbance vector d(t)
and the 1y dimensional fault vector f(t), respectively. Gy (s), Gy(s), Gs(s) are the transfer function
matrices from control inputs to outputs, disturbance inputs to outputs and fault inputs to outputs,
respectively. For the system described in (5), a linear fault detection filter processes the measurable
system outputs y(t) and the control inputs u(t) to generate the residual 7(t). In the input-output form,
this can be described by

r(s) = Qofs) W] , ©
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where Qq(s) is the transfer function matrix of the fault detection filter. For a physically realizable
filter, Qo(s) must be proper and stable. The order of Qq(s) is the dimension of the state vector of a
minimal state-space realization of Qq(s). The general description in (6) allows the definition of the
fault detection problem: Design a physically realizable linear residual filter of the form (6) such that
for all u(t) and d(t)

(i) r(t) =0when f(t) =0

(ii)  r(t) # 0when f(t) # 0

(iii) r(t) is asymptotically bounded.

Additionally, Qo (s) shall be of minimal order (iv).

The requirements (i) and (ii) of the fault detection problem are easily transformed into algebraic
conditions. Therefore, the system’s input-output Equation (5) is inserted in the residual filter
Equation (6), so that the residual filter depends on the control, disturbance and faults inputs, that is,

Gu(s) Gals) G(s)

b, 0 o | [46)]- )

r(s) = Qo(s) l

The decoupling condition (7) requires that the residual r(s) is decoupled from any inputs u(s)
and disturbances d(s). This is equivalent to demand

Gu(s) Gy(s)

Qo(s) I, 0

= Qo(s)Ge(s) = 0. ®)

It follows that Qq(s) needs to be a left annihilator of G,(s). By deriving a minimal basis for the
left nullspace of G, (s), the design conditions (i) and (iv) can be tackled. For the design condition (ii),
the basic constraint
Gy(s)

0o |70 ©)

Qo(s)

must be fulfilled. This can only be achieved, if the fault detection problem is solvable. The solvability
condition follows the theorem presented in Reference [19], that is,

rank <{Gd(s) Gf(s)D > rank(Gy(s)). (10)

Thus, the fault to be detected needs to be linearly independent of all the disturbances. Note that
the condition (10) is independent of the control input u. Thus, for the case n; = 0, the fault detection
problem is always solvable. This makes sense as just known inputs and unknown faults act on the
system. Finally, condition (iii) is achieved as the poles of the system can be freely designed when
making the minimal nullspace basis physically realizable, that is, providing a proper residual filter.

To solve the fault detection problem and generate linear residual filter of minimal order, advanced
numerical tools are readily available and are used for the work described herein. Readers interested in
more details on how these problems are solved and in the corresponding software tools are referred
to Reference [12]. Note that in case of linear design models of high state dimensions, which are, for
example, present when dealing with aeroelastic models, an a-priori approximation of the high order
model is recommended.

In practice, it is often desired to add an additional dynamic filter W,,(s) to the residual filter to
suppress contributions at certain frequencies the considered faults will not be present. This increases
the order of the linear overall filter, however, also increases the robustness against false alarms in
certain frequency ranges. The overall filter structure is then given by

7(s) = Q(s)r(s) = Wa(s)Qo(s)r(s)- (11)
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3.1.2. Residual Evaluation and Decision-Making

To finally take a decision if a fault is present in the system and indicated via the residual 7,
the signal energy of the residual is computed. To approximate the signal energy, the residual evaluation
scheme of the form

o(1) = alr (0] +5 [ Ir(o)lar, )

is used, determining the energy over a specific time window T, > 0 with the instantaneous and

long-term residual values weighted via the parameters « > 0 and 8 > 0, respectively. The evaluation

signal 6(t) is compared to a specific threshold 7 in the decision-making process to determine the
auxiliary decision signal ((¢) using the decision logic

1, if6(t) > 1

() = { ) 2 (13)

0 otherwise.

The threshold 7 is selected based on real test data in fault free scenarios. To increase the robustness
of the fault detection system, a confirmation time is considered. Only if the auxiliary decision signal
is above its threshold for a defined time window T}, the fault occurrence is confirmed. As the signal
¢ can just take values of 0 and 1 this test can be mathematically expressed by integrating ¢ over and
comparing it to the defined time window, i.e,

1, if ff o (ndt =T,
if(t) = Jimg, {0 = Ta (14)
0 otherwise.

Finally, the Boolean decision signal if(t) is passed on to the fault tolerant control allocation
algorithm to provide the required status information of the actuators to be monitored.

3.2. Fault Tolerant Control Allocation

As previously described, the virtual control input v, is distributed to the actual control inputs
by means of the input blending vector k,, which can be seen as an unconstrained control allocation.
Considering physical limitations of the actuation system or actuator fault scenarios like jamming,
however, requires formulating a constrained control allocation problem, see for example, Reference [20].
To that end, the constraint allocation problem needs to be solved at each time sample with the goal
to adequately distribute the current virtual control input v, under the momentarily given actuator
constraints. A common control allocation approach is to minimize the additional control input
Au € R™ required to keep the nominal control input # within the lower and upper bound upi, € R™
and umax € R™, respectively. In case of the blending approach presented in Section 2, the nominal
input is given as # = k,v,. Considering a quadratic objective function, the resulting optimization
problem, which needs to be solved each time step, can be formulated

minimize AuTWy,Au + 12
AucRM neR
subject to AuTk, =0 (15)

Umin < U < Umax-

The constraint AuTk, = 0 in (15) enforces the additional control input Au to be orthogonal on
the input blending vector k; to avoid an interference with the nominal controller. In case there is no
feasible solution, nominal controller performance cannot be maintained. For this scenario, the slacking
variable 77 € R is introduced, which is also subject to being minimized [20]. The slacking variable is
between 0 < 1 < 1 and can be interpreted as a controller performance degradation in case the current
virtual control input v, cannot be realized. The case 17 = 0 represents the scenario without performance
loss, while for 77 = 1 the controller is actually inactive (assuming that Au = 0). To balance the slacking
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variable # and the individual elements of Au, a positive definite weighting matrix W, € R"*"™ is
introduced in the objective function. Finally, deriving the optimal Au and 7 for each time step by
solving (15), the control input u to the wing is computed as

u=(1—n)i+Au=(1-n)ko,+ Au. (16)

To solve the quadratic program defined in (15), efficient methods are readily available. Herein,
a derivative of the KWIK algorithm described in Reference [21] is used.

The presented approach is classically used to allocate the control inputs in an over-actuated
system in case of position saturation on the actuators but can easily be extended to cover also rate
saturation scenarios [20]. Furthermore, it can be used to achieve fault tolerance in case an actuator
jamming occurs and is successfully detected. To that end, the constraints in (15) are adapted when
a fault is detected by setting the lower and upper saturation limits i, and u#max to zero. Thereby,
the demanded control input to the faulty control surface is reduced to zero and the required control
inputs are realized, if possible, via the remaining fault-free control surfaces.

4. The Flexible Wing

To validate the newly developed modal controller together with the fault tolerant control system,
they are tested on the flexible wing depicted in Figure 2 mounted in a wind tunnel. The rectangular
wing with a NACA 0015 profile consists of a foam core and glass fiber skins and has a length of 1.6 m,
a cord length of 0.25m and a weight of about 3.6 kg.

Figure 2. Wing mounted to pitch motor at the wing root in the wind tunnel.

To counteract the gust excitations simulated by pitching motions of the wing, three equally
sized control surfaces are mounted near the trailing edge of the wing. A schematic illustration of
the wing with the three control surfaces is depicted in Figure 3. Also depicted in Figure 3 are the
positions of eight installed acceleration sensors, where four sensors are located equally spaced near
the leading edge and four sensors (1-4) are located equally spaced near the trailing edge (5-8) at the
same span location [22]. Additionally, a piezo balance measures forces and moments in three spatial
directions at the wing root. To have these forces and moments available allows for a realistic control
performance validation. On aircraft, the non-measured wing root moments are typically the sizing
parameters for the wing structure. Thus, any load alleviation controller needs to reduce these moments
amongst others.
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Figure 3. Schematic top-view illustration of the wing with three control surfaces, eight acceleration
sensor locations, pitch motor and load sensor location.

Modeling

To facilitate model based control and filter designs, a linear model of the wing has been
developed [17,18], which consists of four submodels:

(i) A structural model of the wing derived by modal analysis of the stiffness-optimized finite element
model (FEM), which has been generated via the aeroelastic-tailoring process described [23].
Note that the structural model also includes rigid body dynamics in terms of the non-fixed
pitching degree of freedom and considers only the seven flexible modes with the lowest natural
frequency, that is, it consists 16 states in total.

(ii) An aerodynamic model derived in frequency domain by means of the double lattice method,
which considers also unsteady aerodynamic effects. To obtain a suitable state space model, a
rational function approximation according to Roger [24] is carried out. Furthermore, the order of
the approximated aerodynamic model is reduced to 20 by means of balance and truncation.

(iii) Detailed models of the three control surface actuators, where each one features two states.

(iv) A fourth-order pitch motor model identified via hardware tests.

The four submodels are integrated together to derive an aeroelastic model of the wing.
The interconnection of the models is illustrated in Figure 4, where the forced pitching moment F; acting
on the wing is computed from the commanded pitch angle «.. The signals 6. = [(551) (56(2) (553)]T
are the commanded deflections of the inner, mid and outer surface deflections, respectively. They are
transformed to the actual control surface deflections § = [6(1)  §(2) 5T via three decoupled linear
first order models of the actuators with a time constant of 0.01 s, unit gain and a time delay of 0.008 s.

Further, F, are the aerodynamic forces and x the modal deflections of the wing. On the output side of
the model yacc = [ygg e yffég} T represent the eight acceleration measurements on the wing installed
for feedback control, where the indexes correspond to the position depicted in Figure 3. The six load

measurements measured at the wing root are summarized in yy,,,.

a, F, Wing Viwr
— —
Motor Structure Yace
F X

Aerodynamics

— Actuators

Figure 4. Schematic block diagram of the elastic wing model structure including aerodynamics, elastic
structure, control surface actuators and pitch motor.

To increase model accuracy, a modal test has been carried on the wing using the techniques
described in References [25,26] and the FEM has been updated accordingly. The first four structural
eigenmodes of the wing are the first bending mode at around 8 Hz with a damping of 0.004, the first
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in-plane mode at 29.1 Hz with a damping of 0.005, the second bending mode at 42.2 Hz with a damping
of 0.007 and the first torsion mode at 82.7 Hz with a damping of 0.019. Note that these frequencies
and damping ratios describe the characteristics of the wing structure without any surrounding airflow.
This means that aerodynamic effects which are in feedback with the wing structure, as illustrated in
Figure 2, are not considered. The aeroelastic modes of the model are slightly different and vary with
wind speed. To verify the aeroelastic modes of the model, on-line estimation techniques described in
References [27,28] have been performed during the wind tunnel experiments. For example, the first
wing bending mode has a damping of 0.1 when considering aerodynamic forces at a wind speed of
40m/s compared to 0.004 without them.

The overall LTI model used for controller and residual filter design for a defined wind velocity
has 46 states and is given in the form

(17)

[ylwr] = Cx-+dac+ Dé,
Yacc

with the state vector x € R* the model’s states space matrices A € R46x46 | ¢ R4 B ¢ R¥x3,
C € R, 4 € R’ and D € R?*3. Note that this model is available on a grid of different wind
speeds ranging from 10m/s to 50m/s. For this work, only the LTI model at 40m/s wind speed
is used, as the wind tunnel tests are performed at this wind speed. A detailed discussion and the
mathematical background on the generation, the integration and the description of the model is
provided in Reference [17].

5. Fault Tolerant Control System Design

This section presents the application of the theoretical approaches from Section 3 and Section 2
to the flexible wing model discussed in Section 4. The overall control system, depicted in Figure 5,
includes a baseline load alleviation controller designed to damp the first wing bending mode, a fault
detection module to detect faults on the actuators and the fault tolerant control allocation module to
counteract the fault effect. The design of the three components are discussed as follows.

Baseline | 9. FTC S —— Yace
> . > Elastic
Controller Allocation )
Wing
a{,‘
T
Y&y
Fault
»| Detection
if |

Figure 5. Schematic illustration of the fault tolerant control architecture.
5.1. Baseline Controller

First, a modal decomposition is carried out on the available LTI system of the wing described
in (17) . Thereby, it becomes clear that the lightly damped first and second wing bending modes
dominate the wing root bending moment. The second wing bending mode, however, is marginally
excited during gust encounter due to its high natural frequency and the low-pass characteristics of
gusts. Thus, the objective for baseline load alleviation controller design is to increase the damping of
the first wing bending mode. To that end, the H;-optimal blending approach described in Section 2
is applied. For the blending vector design, the three commanded control surface deflections J. are
considered at the input side and all eight vertical acceleration sensor signals y/,¢c are considered on
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the output side. Applying the computed blending vectors isolates the first wing bending mode and
enables the design of a SISO controller to increase its damping. The overall control law including the
blending vectors and the SISO controller has the form

- k:
5:(5) = Ku co150(5) kT Yace(s) = ku Wy (5) (kp n ;) KT Yace(s), (18)

where é.(s) is the Laplace-transformed vector of the 3-dimensional control input vector d.(t) and
Yace(5) is the Laplace-transformed vector of the 8-dimensional output vector yacc(t) including the
eight accelerations measurements on the wing. To smoothen the transfer behavior around the isolated
bending mode at 8 Hz and suppress noise at high frequencies, the blended measurements are filtered
by the band-pass filter Wy, (s). With the goal to maximize the damping of the first wing bending mode,
the proportional and integral controller gains k, = 1.6 x 107> and k; = 6.4 x 1072 are determined
such that actuator saturation does not occur for the considered gust excitations. Furthermore, classical
gain and phase margins of at least 6 dB and 45 deg are demanded. The blending vectors in the control
law (18) result in

T

ky = [0.208 0.565 0.798
(19)
ky

T
[0.099 0226 0379 0541 0.01 0.228 0.381 0.543] .

In diagram (a) of Figure 6, the comparison of the open-loop (*) and closed-loop () pole location
(positive imaginary axis only) for the first wing bending mode of the aeroelastic model is shown. It is
clearly visible that the damping ratio of the first bending mode is increased from about 0.1 to about
0.55 using the SISO PI controller. Note again that the damping of the open-loop aeroelastic first wing
bending mode (0.1) at 40m/s wind speed is higher than the damping of the structural first wing
bending mode (0.004) introduced in Section 4 due to the aerodynamics. In diagram (b) of Figure 6, a
magnitude plot of the SISO open-loop wing model (—), that is, with blended inputs and outputs, is
depicted. It shows the isolated first wing bending mode of the aeroelastic wing model at around 8 Hz.
In the plot, also the magnitude of the closed-loop is shown (—). It confirms the modal damping
increase when closing the loop and that no other peaks over the frequency range occur.

(@ | (b)
2 o048 0.36° 0.25 0.16 0.08¢p
| S : o DR A .
\% e @ _.: 1 |
< 40—'0-»62, s 8 2
& 0.78. _ b= B |
£ 20l 200 & 0
o0 .
: 094 T s
T 0 : t e 0 | x !
-30 20 -10 0 0 20 40 60
Real Axis (s 1) Frequency (Hz)

Figure 6. Open-loop (¢) and closed-loop (®) pole location of the wing’s first bending mode depicted
in (a). Magnitude plot of the wing model augmented with the blending vectors ( ) in (b) together
with the magnitude of closed-loop (—).

5.2. Fault Detection System

The main element of the fault detection system is the linear fault detection filter. For its design,
the 46 states of the wing model are reduced to ten states by deriving a canonical system realization
followed by a truncation to get rid of dynamics outside the excitable frequency range using standard
MATLAB tools. As known input signals to the wing, the three commanded control surfaces deflections
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551), 552) and 5C(3) and the commanded pitch motor deflection a. are available. Considering the
measurements, two of the eight acceleration sensor signals, denoted yé%l and ygﬁ, are selected as input
signals to the filter. The indexes correspond to the sensor numbering used in Figure 3. As one sensor is
located near the leading edge and the other one near the trailing edge, the sensors provide sufficiently
different, that is, non-redundant, measurement information. This is important for the filter design, as
redundant sensor information does not add any value for solving the fault detection problem. Due to
this fact, the other six sensors are discarded in the filter design.

To design a fault detection filter, the linear model (17) of the wing is augmented with a fault input
to derive a model according to (5). As faults, additive input faults on each of the three actuators are
defined. The transfer behavior from the faults to the system outputs equals the transfer behavior from
the actuator inputs to the system outputs [12]. Reducing and augmenting the model (17) with the new
inputs and outputs leads to the design model

2
N (20)

5(7)

[17532
Yacc

for the residual filter design, with ¥ € R10, A € R10x10,j ¢ R10, B € R10%3, € € R?*10, D € R2*3 and
deR?and f = [fi f» f3]T representing the three additive actuator faults.

For the available model of the wing, the fault detection problem can be solved for all three
actuators, that is, the scalar residual r will be excited by any fault on either of the actuators. However,
the fault isolation problem, that is, determining which actuator is faulty, is hardly solvable in practice
for this example. Physically this is due to very similar effectiveness of the three actuators. The small
difference in the effectiveness is not enough to overcome fault free residual excitations, for example,
due to model uncertainties and sensor noise. Nevertheless, this does not restrict the possibility to
validate the functionality of the methods developed herein, as on a real aircraft the required fault
isolation is usually achievable, see References [13,29]. For the remainder of the paper we will assume
that the fault isolation information is given if a fault is detected. Using the resulting model and
applying the tools provided in Reference [12], a residual filter Qg of the form

T
fo, = Agray+Bo v v@ a O] o
T
ro= ot [y& YL« o]

is designed, where xg, € IR5 is the state vector of the filter and Ag, € R5%6, Bg, € R5%5, co, € RS
and dg, € RS the state space matrices. To ensure a fast reaction to faults real parts below -5 have been
chosen during the design for the eigenvalues of the residual filter. To filter out steady state offsets
due to model uncertainties in the residual, a high pass filter of the from W, (s) = s/(0.01s 4+ 1) is
multiplied to the filter leading to the overall residual filter Q = W, (s)Qo(s).

In Figure 7, the Bode magnitude plot of the filter Qj from (21) connected to the wing model (20)
and multiplied with the filter Wy, (s) is depicted. In diagram (a), the decoupling of the three actuator
commands and the pitch motor commands from the residual is shown. The magnitude values over
the whole frequency range remains close to zero so that any control inputs do not affect the residual
signal. Diagram (b) shows the coupled fault to residual transfer behavior for a fault on the outer
actuator. The magnitude in diagram (b) is dominated by the two main low damped modes in the
system. Faults between approximately 30rad/s and 200rad/s are transferred to the residual with
more than —10 dB. The fact that low frequency faults are not transferred to the residual is due to the
acceleration measurements. Constant control surfaces deflections as well as constant motor deflections
do not result in steady-state accelerations, that is, differential behavior is present in the model which
cannot be compensated by stable residual filters. This behavior is also present in the fault to residual
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channel. Note, additional filtering can be used to shape this behavior as desired but turned out to be
not necessary for the detection of the considered fault.
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Figure 7. Bode magnitude plots from commanded deflections of inner ( ), mid ( ), outer (=)

control surfaces to residual and from pitch motor command to the residual (——) in (a) and from fault
to residual in (b).

For the computation of the residual energy via (12) the parameters « = 0 and § = 1 are selected to
allow for a better decision making, that is, not considering instantaneous contributions in the residual.
A time period of 0.125s for the time window Ty, in (12) is selected to accumulate enough signal energy
in 0 to decide if a fault is present or not. As threshold in (13) a value of 7; = 0.5 shows good coverage
of the uncertainty effects. Finally, a confirmation time window of T; = 0.5 is selected in (14).

5.3. Fault Tolerant Control Allocation

Adding the control allocation to the baseline control system leads to the controller structure
illustrated in Figure 8. The control allocation receives and modifies the control signal 5, = kv, and
solves the optimization problem (15) in each time step. Thereby, it provides the slacking variable 7
and the additional control input Ad.. This input modifies the nominal control input J. to generate
the control signals 6. = 56(1 —1)+ Aé,, which is then sent to the actuators. The algorithm tries

to restore the nominal control performance within the lower dpin = [(51(111)rl (51%)“ 51(1?2“

Omax = [JI(IQX (51(53)( (5533)(} T control limits of the three actuators. Note that in case of the unconstrained
problem, that is, if 5, is within the defined bounds émin > d; > dmax, the optimization problem (15)

results in Ad, = 0 with ¥ = 0. This means that J, = 5, and the nominal control performance

]T and upper

is guaranteed.

k, :
YVsen v Vy 6
T Vi > ¢
ky Wbp(S ) g ku
1
k. — —
i
S
SISO Controller
~ AS
Quadratic c
Program
Control
Allocation
| i

Figure 8. Single-input and single-output (SISO) controller illustration with blending vectors k; and k;,
and control allocation.

The constraint allocation is activated either in case of position saturation on the actuators or in
case of faults. To enable the fault tolerant control approach, the upper and lower actuation limits (51(3111
and 5r(rﬁ)ax are both set to zero in case a fault is detected on the ith actuator, with i = 1,2, 3. If a fault

is present is indicated by the variable if, which is received by control allocation algorithm to adapt
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the actuation limits in case of faults, that is, i = 1. Thus, the adaptive constraints in the optimization
problem (15) are defined by

-4 .

5(1.). . ifi =0

L;E?)m] o 22)
[0] otherwise,

max

fori = 1,2,3, which are re-evaluated in each time step. As described above, if i = 1 the constrained
optimization problem (15) is solved. For solving this, the weighting matrix W, = 5 x 107?13 is
selected in (15). Note that the small value implies a high weighting of the slacking variable 7 in the
optimization problem. As a large slacking variable corresponds to an increased loss of the nominal
control performance, the aim is to keep this loss as small as possible by penalizing the slacking variable
accordingly.

6. Wind Tunnel Based Control System Validation

The closed-loop mode, that is, the flexible wing in feedback interconnection with the fault tolerant
control system, is verified at the Crosswind Simulation Facility of the German Aerospace Center
(DLR) in Géttingen. The maximum flow velocity of the closed-circuit wind tunnel is 65 m/s and the
dimension of the test section is 2.4 m (width) by 1.6 m (height). The pitch excitation system with the
motor to excite the wing is installed outside of the wind tunnel, so that only the wing is exposed to the
incoming flow. The pitch motor allows to simulating gusts via an angle of attack change. The approach
to directly change the angle of attack is an elegant approximation of the gust effect and avoids the
more complex but more realistic approach of generating gusts by manipulating the incoming flow,
as presented in References [30,31]. The experiments presented herein are performed at a wind speed
of 40m/s, which corresponds to design speed of the controller as well as the fault detection filter.
The control system itself runs outside the wind tunnel on a Jager ADwin Gold real-time system.

6.1. Baseline Controller Validation

To provide insight into the performance of the baseline controller and validate the load reduction
capabilities, open-loop and closed-loop experiments are performed for different pitch motor excitation
signals. To start with, a sinusoidal input at 8 Hz is used, as this is the frequency of the wing’s first
bending mode and thereby represents a worst-case excitation signal. To consider a broader spectrum
of excitation frequencies, noise inputs are generated and tested. Further, to perform a more realistic
excitation, a so called “1 minus cosine” (short: 1-cosine) excitation is applied. Such a 1-cosine gust is
a standard certification requirement to test aircraft structures against incoming gusts as well as gust
load alleviation capabilities of controllers [32]. Each pitch excitation is run twice, with and without
gust load alleviation controller.

In the first row of Figure 9, the experimental wind tunnel data in the time domain of a sinusoidal
input of 1deg at 8 Hz is shown. The experiment is run first in open-loop, that is, the three control
surfaces are maintained at their zero position throughout the experiment. In the second run,
the controller is active and the control surfaces are deflected to counteract the pitch motor excitations.
In diagram (a) the excitation signal of the pitch motor for both experiments is depicted (—). For the
closed-loop experiment, the commanded deflections for the inner ( ), mid ( ) and outer (=)
control surface are depicted as well. Notably, the ratio between the three control surface commands
in diagram (a) remains constant, confirming that the blending vectors are unchanged by the control
allocation, which is active also during the fault free scenarios but not manipulating the commanded
signals. As all three signals are equal zero in the open-loop experiment they are not shown. Diagram (b)
compares the bending moment of the wing measured by sensors located at the wing root as depicted
in Figure 4. Clearly, the moment is reduced when closing the loop confirming the load reduction
capabilities of the baseline controller for an excitation of at 8 Hz. Note that the bending moment
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measurement is only used for control performance analyses and is not used in the feedback channels
of the controller. Thereby it provides an independent variable to validate the performance of the
algorithms. In diagrams (c) and (d) the results of Fast Fourier Transformations (FFTs) of the time
domain data are shown. In diagram (c) the FFT of the pitch excitation signal shows the dominant
magnitude at 8 Hz. The resonance frequency at 8 Hz is indicated by the vertical dotted line. Diagram (d)
compares the FFTs of the measured bending moments in the open-loop and closed-loop. As in the
time domain in diagram (b), the reduction in magnitude is clearly visible.
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Figure 9. Input and output data for a sinusoidal pitch excitation in the time domain in (a,b) and in
the frequency domain in (¢,d). In (a,c) the pitch excitation (=) is depicted. In (b,d) the resulting
) and closed-loop (——) bending moments are compared. Additionally, closed-loop

open-loop (
) and outer (=) control surface commands are shown in (a).
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Next, the first row of Figure 10 depicts the time domain data of the experiments with a 1-cosine

pitch excitation. Again, open- and closed-loop are simulated.
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Figure 10. Input and output data for a 1-cosine pitch excitation in the time domain in (a,b) and in the
frequency domain in (¢,d). In (a,c) the pitch excitation signal (=) is depicted. In (b,d) the open-loop
( ) and closed-loop (=) bending moments are compared. Additionally, closed-loop inner ( ),
mid ( ) and outer (=) control surface commands are shown in (a).

In diagram (a) the excitation signal for both experiments (——) together with the closed-loop
control surface commands are shown. The resulting reduction of the bending moment on the wing is
visible in diagram (b), comparing open- ( ) and closed-loop (—) responses. In the diagrams (c)
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and (d) the data is further analyzed using FFTs. Diagram (c) illustrates that the 1-cosine pitch signal
excites the system up to a frequency of about 15Hz, where the main energy is concentrated at the
lower frequency range. In diagram (d) the peak in the open-loop response lies at around 8 Hz due to
the undamped mode. The controller designed to increase the damping of this mode flattens the peak
and reduce the output energy around 8 Hz.

Finally, experiments with noise inputs on the pitch motor are performed to test a broader frequency
range. The noise is generated with a variance of 0.7 deg within a frequency range between 3 Hz and
20 Hz. A short section of the 300s long excitation time signal is depicted in diagram (a) in Figure 11.
In diagram (c) the FFT results of the 300 s long input signal is depicted. Note that the signal has been
smoothened for better readability. Clearly, the main energy of the input signal is concentrated in the
lower frequency range between 3 Hz and 10 Hz. In the time domain the reduction of bending moment
peaks by the controller are nicely visible when comparing the open-loop (——) and closed-loop (—)
in diagram (b). FFTs of these two signals further reveals that energy around 8 Hz is clearly reduced in
the closed-loop compared to the open-loop, see diagram (d). As for the 1-cosine excitation the main
energy in the output signal is concentrated around 8 Hz in the open-loop although it is not in the input
signal. This is due to the lowly damped first bending mode at 8 Hz. The increase of this damping by
the controller leads to the reduction of energy in the output signal.
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Figure 11. Input and output data for noise excitations in the time domain in (a,b) and the frequency
domain in (c,d). In (a,c) the pitch motor noise excitation (=) is depicted, while in (b,d) the open-
( ) and closed-loop (=) bending moment is compared.

6.2. Fault Detection System Validation

To test the fault detection system including the residual filter and the evaluation and decision
algorithms, different experiments are performed. First, the robustness against false alarms is tested.
In these scenarios, the residual needs to stay below the selected threshold so that no false alarm is
triggered. The scenarios and thus the input data for these experiments are the same as presented in
Section 6.1 for the baseline controller validation. Again, the experiments include both open-loop and
closed-loop experiments using the three different excitation signals.

In the first diagram of Figure 12, the evaluated residual signal 6 during a sinusoidal excitation with
1deg at 8 Hz is depicted for the open-loop (——) and closed-loop (—). The residual is higher when
performing the experiments in the closed-loop as in these scenarios also control surface commands
are present. This higher input energy unavoidably leads to a higher excitation of the residual due
to modeling errors and uncertainties. Both signals, however, stay below the selected threshold of
0.5. Diagram (b) shows the residuals in open- and closed-loop during succeeding 1-cosine gust
excitations of 3 deg. Again, the residual is slightly higher for the closed-loop experiment. In diagram
(c), the residual responses in the open-loop and closed-loop to the noise excitation with a variance
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of 0.7 deg in amplitude and a frequency range between 3 Hz and 20 Hz is shown. In both cases the
residual stay below the selected threshold of 0.5 and the closed-loop shows a slightly increased signal
compared to the open-loop.

In a second step, the detection performance in case of an occurring fault is tested. Therefore,
the outer control surface is frozen at its zero position during the experiment at a predefined instant of
time. As excitation, the sinusoidal input signal of 1 deg amplitude and 8 Hz frequency is commanded
to the pitch actuator during the whole experiment. In Figure 13, the evaluated residual signal 0 is
shown, where the fault appears at about 3.8 s, indicated by the vertical dotted line. The residual crosses
the threshold about 0.1 s after the fault occurrence, indicating an satisfactory detection performance.
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Figure 12. Residual signals during open-loop ( ) and closed-loop (=) experiments for sinusoidal
excitation (a), 1-cosine gust excitations (b) and noise excitations (c) compared to the threshold (—).
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Figure 13. Residual signal in a closed-loop experiment and a actuator stuck fault scenario compared to
the selected threshold (—).

6.3. Fault Tolerant Control Validation

Finally, an experiment to test the overall control system, including the baseline controller,
fault detection system and the reconfigurable control allocation is performed. As excitation signal,
the sinusoidal input of 1 deg amplitude and 8 Hz frequency is used. As fault scenario, the outer most
actuator is frozen at 2 deg. The resulting experimental data is depicted in Figure 14 and can be divided
in four main sections. The test is started in open-loop, that is, only the excitation signal at the pitch
motor is present and excites the wing while the baseline controller is switched off. After around 2s
the baseline controller is switched on. The first diagram (a) shows the commanded deflection signals
to the inner ( ), mid ( ) and outer (—) control surface counteracting the wing oscillations.
In diagram (b) the measured wing root bending moment is depicted. As soon as the baseline controller
is activated, the bending moment are reduced by about 50 %. The residual in diagram (c) is increased
when activating the controller due to additionally present actuator inputs. At around 4s the outer
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control surface is frozen at 2 deg. Note that the actual control surface positions are not plotted but the
controller commands. As the fault is present but the controller has not been reconfigured, commands
to the outer control surface are still present in the third part of the experiment, visible in diagram (a).
Due to the frozen actuator position, the wing root bending moment increases as seen in diagram (b).
Due to the increased control error, the baseline controller counteracts the fault, already achieving a
reduction of the bending moment compared to the open-loop.
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Figure 14. Input and output data of the fault tolerant control experiment for sinusoidal pitch excitations.

The diagrams show the commands for the inner ( ), mid ( ) and outer (=) control surface
in (a), measured bending moment in (b) and the residual with its threshold (——) in (c). In (b,c),
open-loop operation is indicated by ( ) and closed-loop operation by (=—).

The residual in diagram (c) increases due to the appearing fault and crosses its threshold at about
4.5 in the experiment. As 0.5 s confirmation time is considered, the control allocation is reconfigured at
around 5s in the experiment. From thereon, the required control effort is distributed to the remaining
two control surfaces, while the command to the faulty actuator is set to zero. Clearly visible in
diagram (a) is the increased effort commanded to the inner ( ) and mid ( ) control surface in
the fourth section. With this reconfiguration, the bending moment is reduced again as in the nominal
baseline control configuration (see diagram (b)). Taking a closer look, however, it can be recognized
that the bending moment resulting from the reconfigured control allocation, with only two flaps in
operation, is slightly smaller than the one resulting from baseline control with all three flaps working.
After some closer investigation, this curious result is traced back to the large free-play of the inner flap,
which is around 1.5 deg. Hence, in the nominal case with the baseline controller, the inner flap is not
deflected since the commanded deflections ( ) given in diagram (a) of Figure 14 are within free-play.
Obviously, this reduces nominal controller performance, which is confirmed in nonlinear simulations.
In contrast, the reconfigured control allocation commands larger deflections to the inner flap yielding
a smaller performance loss due to the increased operation outside of the free-play area. Note that
the residual falls below its threshold after the reconfiguration. The constant mismatch between the
commanded (0 deg) and actual actuator position (2 deg) is not visible due to the differentiating behavior
in the fault to residual channel. Due to this phenomenon, the decision variable indicating if a fault is
present on the actuator is held at 1 after the fault is confirmed at about 5. Finally, with this experiment,
however, the fault tolerant control system including the reconfiguration of the control allocation in
case of fault is successfully verified.
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7. Conclusions

In this paper the successful development and validation of a fault tolerant gust load alleviation
system for an aircraft wing has been presented. The control system, consisting of a baseline load
alleviation controller, a fault detection module and a reconfigurable control allocation, has been
developed using profound mathematical techniques. The control system for a manufactured flexible
wing has been successfully verified in an extensive wind tunnel campaign. The encouraging results
pave the way for further research activities to achieve the goal of an in-flight validation of the algorithms
in the future.
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