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Abstract: The bottleneck of today’s airspace is the Terminal Maneuvering Areas (TMA), where
aircraft leave their routes to descend to an airport or take off and reach the en-route sector. To avoid
congestion in these areas, an efficient design of departure and arrival routes is necessary. In this
paper, a solution for designing departure and arrival routes is proposed, which takes into account the
runway configuration, the surroundings of the airport and operational constraints such as limited
slopes or turn angles. The routes consist of two parts: a horizontal path in a graph constructed by
sampling the TMA around the runway, to which is associated a cone of altitudes. The set of all
routes is optimized by the Simulated Annealing metaheuristic. In the process and at each iteration,
each route is computed by defining adequately the cost of the arcs in the graph and then searching
a path on it. The costs are chosen so as to avoid zigzag behaviors as much as possible. Two tests
were performed, one on an instance taken from the literature and the other on an artificial problem
designed specifically to test this approach. The obtained results are satisfying with regard to the
current state of air operations management and constraints.

Keywords: SID STAR design; simulated annealing; global optimization

1. Introduction

The Terminal Manoeuvring Area (TMA) is a portion of controlled airspace surrounding airports
with high traffic. It is the first area within which the aircraft can begin to maneuver (initiate turns,
level flights, reduce speed etc.) after they take off, and the last one before they land. Its purpose is to
establish the connection between the airport runways and the airways. The TMA is usually a very
busy area, which requires much attention from the controllers, as arriving and departing aircraft may
cross paths, the first ones have to land as soon as possible, all on the same runway (or two, depending
on the airport) while the second ones must be dispatched to their different locations and altitudes.
Thus the design of the departure and arrival routes is very important, as it will determine the workload
for the controllers, and so their efficiency. The departure routes are called the Standard Instrument
Departure (SID), and the arrival routes are the Standard Terminal Arrival Routes (STAR). Their design
is a complex task which is carried out today by procedures designers by hand.

Currently, most SIDs and STARs rely on well-defined steps. For example, a SID will usually be
made of an initial climb, followed by a level flight to gain speed, and then a second climb to reach the
en-route sector. However, technological progress is bound to allow more possibilities in the future and
near future. For example, the concept of Performance Based Navigation (PBN), and more specifically
the Required Navigation Performance (RNP) procedures, are being developed to increase efficiency,
especially in areas such as the TMAs [1]. These procedures aim at broadening the range of actions
that an adequately equipped aircraft may perform, like Continuous Climb Operations (CCO) [2],
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which allows for more efficiency when taking off by removing the need for level flights, or its descent
equivalent (CDO) [3]. Our work aims to design a tool that can take advantage of these new possibilities
to design SIDs and STARs that are operationally usable.

The problem at stake thus falls into the path searching (or path planning) category. This is not
to be mistaken for trajectory planning, since in the present case the temporal aspect is not taken into
account as the routes are meant to be designed at the strategic level, which means that the procedures
are designed only once, for example when a new airport is built, and then serve as a reference for
daily operations. Thus, elements such as weather or moving obstacles cannot be taken into account in
this study. This problem has been addressed since the late 1950s with the Dijkstra [4] and Bellman [5]
algorithms on the shortest paths in a graph. The matter gained interest in the early 1980s with the
emergence of robotics and is still studied as of today. Several approaches to the topic can be found in
Reference [6]. The aeronautical sector also took interest in the subject, and some methods have been
tested in this particular case (summarized in Reference [7]). In the following, the approaches used in
the literature to the subject of aircraft path and trajectory planning will be reviewed with a focus on
different aspects such as 2D or 3D design, exact or heuristic approach, single or multiple routes design.

In the case of 2D path generation, the simplest approach when the obstacles are polygonal is
the Visibility Graph [8], which relies on the fact that the shortest path between two points in 2D with
polygonal obstacles passes through the summits of these obstacles. A variant of this is provided in
Reference [9] in the case where obstacles can be curves. To go further on the topic of circular obstacles,
Kim et al. proved that the shortest 2D path between two points lies in a convex hull around the
segment between the two points [10], which allows the reduction of the computation time in some
cases. This idea of the convex hull has been used in a certain number of works addressing the problem
of aircraft trajectories. For example, in Reference [11], the authors use the convex hull coupled with a
Genetic Algorithm (GA) to compute aircraft trajectories avoiding moving obstacles. The method is
also used in Reference [12] to help reduce the size of the search space.

The topic of route generation, as widely studied as it is in 2D, is way more complex to tackle in
3D. As an example, it is proven that the visibility graph extension in 3D becomes a Non-deterministic
Polynomial time (NP) hard problem, as explained in Reference [13]. In Reference [14], the problem
of 3D is addressed by imposing Cleared Flight Levels (CFL) on a linear climb or descent along a 2D
generated path. This path is computed using either an A* algorithm or a GA. In the same fashion,
the authors in Reference [15] explicitly take into account a minimum and a maximum climb or descent
slope to detect conflicts between a route and an obstacle and impose level flights to avoid them.

Be it in 2D or 3D, the route design problem becomes even more complex when the subject of
multiple routes design is addressed, as each one must be counted as an obstacle to the others due to
the route separation requirement. Two approaches can be considered. The first is to generate the routes
sequentially, for example in the decreasing order of traffic on the routes, so as to favor the busiest ones.
This method is used for example in Reference [16] where the routes are computed dynamically to
avoid hazardous weather, or in Reference [17] where the route generation focuses on the PBN concept
of Radius-to-Fix (RF). The other way of designing multiple routes is to compute them all at once using
a heuristic. For example, in Reference [18], the order of the routes generation is decided with an SA
algorithm, with each route being computed individually using a Fast Marching method and a Gradient
Descent method. Similarily, in Reference [14], the routes are all generated, then those in conflict are
penalized to allow the GA to find another solution without conflicts.

The routes design problem can be seen as an optimization problem, due to objective functions
being maximized or minimized (such as the routes length, for example). Many general-purpose
algorithms have been created to address the topics of space processing and shortest path finding and
every work in the literature is based on at least one of them. Some are exact algorithms, such as the
Bellman-Ford [5], the Dijkstra [4] or the Branch-and-Bound [19] algorithms. Their main advantage is
that they provide the optimal solution every time. However, their time complexity does not allow for
their use on large problems, for they are not able to yield a solution in a reasonable time. This aspect
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makes them very useful for computing a single path on a relatively small instance. On the other hand,
are the heuristics and metaheuristics family, with methods such as the A* [20] or its derivatives [21],
the Simulated Annealing [22] or the Genetic Algorithms [23]. They provide solutions in a reduced
time, although these solutions may not be optimal. A nice summary of metaheuristics can be found
in Reference [24]. These methods are better tailored for extensive problems such as multiple 3D
routes design.

In this paper a method is proposed that allows the design of multiple routes in a TMA with the
use of the Simulated Annealing (SA) meta heuristic combined with an exact method for the design of
each individual route. The main contribution of this work lies in the range of operational practices
and constraints that are taken into account. The routes are built in 3D, when most of the related works
focus on 2D paths, in such a way that their merging points are distributed in a way that allows the
controllers to handle the heavy traffic on them. This work also allows the taking into account other
elements, such as obstacles, military zones, cities or no-flight zones, or other aerial routes. The result
is a set of routes, each being represented as a succession of 2D segments associated with an altitude
cone. The 2D part of the route respects a limited turn angle constraint at all times and the cone of
altitudes allows the setting of level flights in order to avoid potential military zones or other routes.
The approach uses the SA meta heuristic to optimize a set of paths, each one being computed by a
deterministic path search algorithm in a graph. This requires the construction of a graph structure
to represent the TMA, which is achieved by sampling the TMA along concentric layers around each
runway inside it.

The paper is organized as follows: Section 2 introduces the subject, the objective of the work and
the main constraints associated to it. Then, in Section 3, the problem is expressed more precisely, in a
formal way. In Section 4, the approach used to address the problem is presented. Finally, in Section 5
several cases on which the algorithm has been tested are given, some from the literature and others
designed specifically for this resolution method.

2. Problem Statement

The objective of this work is to automatically design SIDs and STARs that allow for a maximum
number of aircraft to depart and arrive safely in a given time range, while avoiding flying over cities
as much as possible, without the use of level flights when possible. The routes designed must also be
usable in the current state of air traffic operations and minimize the workload for the controllers.

The number of constraints to take into account makes this task difficult to handle automatically.
The constraints are:

• Obstacle avoidance: The most important requirement. Aircraft must be sufficiently far from any
obstacle at all times. How to ensure such protection is a vast and complex topic and depends
(among other things) on the type of procedure that is designed ([1,25,26]). Based on the type of
instruments used to navigate, the margins can vary in wideness. Therefore, an RNP procedure
will allow for lesser space between the route and the obstacles than a standard procedure, since
the precision of the equipments is sharper. However, all aircraft may be equipped with various
instruments and the procedure designers must create the routes accordingly.

• Noise abatement: Quite related to the previous constraint, this one depends mainly on the size of
the city under consideration. Usually, designers try to create the routes in such a way that aircraft
will not fly over it (as much as possible), for noise abatement purposes. Sometimes, flying over a
city is totally prohibited and the problem is taken back to an obstacle avoidance constraint. In the
rest of the paper, the towns will be denoted τ ∈ T, the set of cities over which an aircraft may fly
when there is no other possibility.

• Route separation: In order to avoid aircraft coming too close to each other when flying different
routes (airprox) (generally 3 NM when they are in the same horizontal plane), these routes must
be sufficiently far from each other. When the horizontal separation between routes is not possible,
they have to be spaced by a minimum vertical separation (usually 1000 ft). This may require the
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use of level flights, yet it is preferable to use as few as possible. The exception to this constraint
is whenever two routes merge into one. In that case, the separation is impossible. These areas
require much attention from the controllers due to the risks of airprox.

• Merging points separation: In the case of STARs, all aircraft have to converge on a single route
in order to land. It is inconceivable to merge all routes on the same spot, as the workload would
be far too high for the controllers. Instead, the routes must merge progressively with one another,
only two at a time (three in some particular cases). These merge points will be where most conflicts
could occur and thus where the controllers will put their focus. Therefore, two merge points
cannot be too close to each other, or too close to the entries/exits of the TMA, to let them the time
to anticipate.

• Route flyability: Aircraft have certain structural limitations that do not allow them to climb too
fast or make a turn too sharp, for example. Each has a preferred and maximum possible bank
angle and rate of climb given by the constructor. These limits cannot be exceeded, so the SIDs and
STARs design must take these limitations into account to ensure that the aircraft will be able to fly
the routes. More information on aircraft operational characteristics can be found in Reference [27].

3. Problem Modelling

This paper proposes a mathematical model to automatically design routes while minimizing
some criteria for aircraft departures and arrivals that can be used is real-life scenarios. A discrete
approach is used, as it seems more appropriate in the current state of air traffic management. As of
today, both controllers and pilots prefer to set the courses in straight lines, and make punctual turns
when necessary. Thus the path modeling is mostly based on segments. Continuous approaches tend to
yield solutions that satisfy the criteria of obstacle avoidance or route separation but are often not suited
for the current state of aircraft control and management as they provide solutions with frequent turns
involved. References [28,29] are examples, even though they address the topic of en-route trajectories.

In this section, the representation chosen to model the problem is described, as well as the data
input, the decision variables, constraints and objective function.

3.1. Input Data

As part of the input to the problem are given:

• Location and orientation of each runway taken into account in the TMA
• All obstacles in the TMA (mountains, buildings, military zones...) denoted by the set O . The way

of protecting the routes from obstacles will not be discussed here. Therefore, it will be assumed
that all obstacles given comprise a satisfactory margin of protection. More information on how to
build protection areas around procedures can be found in Reference [30]. An obstacle o ∈ O is
viewed as a cylinder: a 2D polygon Bo, given as a list of points, forms the base, and a minimum
and a maximum altitude, lo and uo, that give the lower and upper limits of the obstacle. Later on,
an obstacle will be denoted as o = (Bo, lo, uo) for its base, lower and upper limits

• The set of cities T as 2D polygons on the ground Bτ with their population distribution ητ : Bτ →
R+ that gives the population density at a given point in the city. The cost of flying over a city is
denoted τ ∈ T as cτ : Bτ → R+

• The entry and exit points of the TMA P1, ...PNP . These are 2D points associated to an altitude
range. This range represents the minimum and maximum altitudes at which the aircraft can go
through the point.

• The expected traffic flow at each of these points F1, ...FNP

• A maximum turn angle θmax, as aircraft limitations and regulations prevent them from making
too sharp turns.

• A minimum and maximum climb and descent slope αmin and αmax in percentages.
• The maximum number and minimum and maximum length of the level flights (resp. nLF

max, lLF
min

and lLF
max)
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For the rest of this document and to simplify the presentation without any loss of generality, only
one runway will be considered, in a departure (SID) configuration.

As in Reference [12], a route R will be modeled by the means of two elements: a succession of
segments γh in the horizontal plane, to fit the current state of air traffic control and a vertical profile γv

to take into account the various capabilities of the aircraft. In the next paragraphs, the tools that allow
to define γh and γv will be introduced.

3.2. Tma Discretization

The aim is to create a discrete representation of the TMA and more specifically, to end up with a
graph structure in which the horizontal paths can be searched.

Vertices

Vertices can be assimilated to the waypoints by which the aircraft will pass. The aim is to generate
a set V of points that cover the TMA’s projection on the ground. This is achieved in the following way:

• The center is the first waypoint at which an aircraft is authorized to maneuver.
• This point will be the center of concentric layers (for example circles or squares) of increasing

size, such that the last one passes through the exit point that is farthest from the center in the
TMA. These layers are denoted L = {Li, i ∈ {1, ..., NL }} where NL is the number of layers.
The center itself is considered as the first layer. Layers can be any borders of an increasing family
of convex sets.

• Each Li is then sampled to create a 2D set points Vi = {vi
j, 1 ≤ j ≤ Ni} where Ni is the number of

points on Li. Let V =
⋃NL

i=1 Vi the set of all 2D points. In the rest of the document and without
loss of generality, it will be assumed that Ni = N for all i, and that all exit points are located on
the last layer LNL

in order to keep the notation simple.

Arcs

Now that V is created, a set E of arcs has to be defined. This set is built by applying the
following rules:

• All arcs are oriented, from a vertex on a layer Li to a vertex on the layer Li+1. The arc that
connects vi

j with vi+1
k will be denoted ei

j,k.
• The arcs between L1 (the center) and L2 are constructed by taking into account the direction of

the runway. An arc between L1 and L2 exists if and only if its angle with this direction is less
than the maximum authorized turn angle θmax.

• The other arcs are built recursively, layer by layer: all the arcs starting on a layer i are built before
any of those starting on the layer i + 1. An arc (vi

k, vi+1
l ) exists if and only if there exists vi−1

j

such that the angle formed by the segments [vi−1
j , vi

k] and [vi
k, vi+1

l ] is less than the maximum
authorized turn angle θmax.

The graph G = (V, E) will serve as a base for finding the paths (Figure 1).
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Figure 1. An example of discretization and graph construction (Five layers, one vertex every 5◦,
θmax = 30◦).

3.3. Route Modeling and Decision Variables

Based on the graph G, the result to find is a set of routes connecting the center to the exit points.
The variables of the problem are the routes to be designed. A route R for the exit P is

defined as an ordered subset of E to which is added a vertical profile. The vertical profile gives
the minimal and maximal possible altitudes at which an aircraft can fly at a given point along the
path. This representation is motivated by the observation of the take-off and landing profiles at
Charles-De-Gaulle airport (Figure 2), a large airport, representative of the ones this work aims to study.
It is built taking into account the curvilinear abscissa of the path, the minimum and maximum slopes
and the level flights on the path. The choice of this representation instead of 3D points has been made
because the current charts represent the procedures as 2D paths with optional mentions of constrained
altitudes. Thus the path and the altitude range are two distinct features of a procedure.

(a) Take-off profiles (b) Landing profiles

Figure 2. Take-off and landing profiles in Paris CDG airport [12].

Basically, the decision regarding the vertical profile lies in choosing to put a level flight or not at a
given arc. A route R can be defined by a couple (γh, γv) where:

γh = (e1
i1,i2 , e2

i2,i3 , ..., eNL−1
iNL −1,iNL

) ∈ ENL−1 (1)

γv = (z1, ..., zNL−1) ∈ {0, 1}NL−1 (2)
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The tuple γh is called the horizontal profile of the route. The component γv[i] indicates the
presence (1) or absence (0) of a level flight between the layers i and i + 1, that is, on the arc γh[i].
The horizontal profile γh can also be seen as a continuous piecewise linear function

γh : [0, 1]→ R2

In the rest of the paper, one definition or the other will be used indifferently, as they denote the
same object. Based on γh and γv, it is possible to give another point of view of the vertical profile
according to Algorithm 1. The idea is to create two functions:

z, z : [0, l(γh)] → R
s 7→ the minimum and maximum possible altitudes of an aircraft

at flown distance s from the center

where l(γh) :=
1∫

0
‖γh′(s)‖ ds is the length of γh. Later on, the curvilinear abscissa will be defined as the

value d(t) =
t∫

0
‖γh′(s)‖ ds which represents the distance flown from the center to γh(t). The functions

z, z are continuous piecewise linear and can be characterized by their values at curvilinear abscissa
of the intersection between the route and the layers. By abuse of notation, the values corresponding
to layer i are denoted by z[i], z[i]. The vertical profile γv will be referred to indifferently as either
(z1, ..., zN−1) or (z, z) depending on the context.

Algorithm 1 Construction of z, z

Require: HorizontalPath = γh, VerticalProfile = γv in the binary representation, an initial altitude Altinit,
a minimum slope Slopemin, a maximum slope Slopemax

1: Initialization: Let z = (Altinit,0,...0) and z = (Altinit,0...,0) two arrays of length NL , Altprevious
max = Altinit,

Altprevious
min = Altinit

2: for i from 1 to NL − 1 do
3: Let (vi

j, vi+1
k ) = HorizontalPath[i] and Alti = VerticalProfile[i]

4: Let d = d2D(vi
j, vi+1

k )

5: Let Altmin = Altprevious
min + Slopemin

d
100 and Altmax = Altprevious

max + Slopemax
d

100
6: if Alti is true then
7: z[i + 1]← min (Altprevious

max , Altmin)

8: z[i + 1]← Altprevious
max

9: Altprevious
min = min (Altprevious

max , Altmin)

10: else
11: z[i + 1]←Altmin

12: z[i + 1]←Altmax

13: Altprevious
max = Altmax

14: Altprevious
min = Altmin

15: end if
16: end for
17: return (z, z)

Figure 3 gives an example of the construction of the functions z, z, in which four layers are
represented (two normal climbs and two level flights in the picture on the right).
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(a) A vertical profile with a continuous climb (b) A vertical profile with two level flights

Figure 3. Illustration of the vertical profile zγ.

The horizontal and vertical portions of the route i that start at layer L1 and end at layer L2 will
be denoted as γi

h[l1, l2] and γi
v[l1, l2] respectively. This allows us to define the merging layer of two routes

i and j as
Lij = max

{
l ∈ {1, ..., NL }

∣∣∣ γi
h[1, l] = γ

j
h[1, l]

}
Note that, by construction, γi

v[1, lij] = γ
j
v[1, lij]. Also, lij always exists and can be 1. In this

case, the routes i and j only have the center in common. The merge point is then introduced as the
common node between γi

h and γ
j
h located on layer Lij. For example, in Figure 4, a merge point is

represented on the left, on layer 3. Finally, the family 0 = τi
l1
< τi

l2
< ... < τi

lNL
= 1 is defined, such

that γi
h([τlm , τln ]) = γi

h[lm, ln].

1 2 3 4

b

b
Merge point

5

Figure 4. A forbidden path with θmax = 30◦ (in red) and the illustration of a merge point (in blue).

3.4. Constraints

The constraints stated in Section 3 are expressed in the following way:
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• Obstacle avoidance:

∀o ∈ O , ∀i ∈ {1, ..., NP} , ∀t ∈ [0, 1] ,d(γi
h(t), Bo) ≥ dh or

max(zi(d(t)), lo)−min(zi(d(t)), uo) ≥ dv
(3)

where d is the euclidean distance between two objects (i.e., the minimum distance between two
points, one on the first object and the other on the second) and dh and dv are respectively the
minimum horizontal and vertical distances to keep with an obstacle.

• Route separation: The arcs of routes i and j starting on their merge point are denoted ei
m and ej

m .
The constraint is expressed as:

∀i, j ∈ {1, ..., NP} , j 6= i, ∀t ∈
[
τi

lij , 1
]

, ∀s ∈
[
τ

j
lij

, 1
]

,[
d(γi

h[lij + 1, N](s)− γ
j
h[lij + 1, N](t)) ≥ dh, or

max(zi(d(s)), zj(d(t)))−min(zi(d(s)), zj(d(t))) ≥ dv
(4)

and

∀i, j ∈ {1, ..., NP} , j 6= i, êi
mej

m ≥ θmin. (5)

This means that any two points belonging to two different routes must be horizontally separated
by a minimum distance. When it is not the case, their altitudes must differ by at least a minimum
vertical distance. Moreover, Equation (5) states that the angle between the two routes must be
greater than a limit value at the merge point.

• Limited turn constraint:

∀n ∈ {1, ...NP}, ∀ei−1
j,k = (vi−1

j , vi
k), ei

k,l = (vi
k, vi+1

l ) ∈ Rn, | ̂vi−1
j vi

kvi+1
l |≤ θmax (6)

Figure 4 illustrates this constraint: it shows (in red) a path that violates it by including too
sharp turns.

• Merge constraint:
Two merge points that belong to a same route
cannot be closer to each other than dm

(7)

• Level flights constraint: A level flight is defined as a maximum continuous portion of route on which
the maximum altitude is fixed. For example, a level flight in a SID will force the altitude to be no
greater than a fixed value. The constraints on level flights are imposed in order to maximize the
use of continuous climb:

The number of level flights cannot exceed a given value nLF
max

The length of each level flight cannot be less than a given distance lLF
min,

for this wouldn’t make sense in an operational context
The length of each level flight cannot be greater than a given distance lLF

max,
to allow the aircraft to climb

(8)

3.5. Objective Function

The problem is multi-objective in nature. However, to simplify the optimization process,
the objective function has been set as a weighted sum of three terms. A first goal is to create the
shortest possible routes (it is assumed here that these are the fastest, even though this may not always
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be true). This first part of the objective is expressed:

cdist =
NP

∑
i=1

Fi ∑
e∈γi

h

l(e) (9)

where l(e) is the length of arc e. This part of the objective is called the route length criterion.
The second part of the objective is the total length of the solution sub-graph:

cgraph = ∑
e∈E

χ(e)l(e) (10)

where χ(e) = 1 if e belongs to at least one route, 0 otherwise. It can easily be seen that this part of the
objective is different and sometimes contradictory with the previous one. This part of the objective is
called the graph weight.

The last part of the objective is about cities, regarding the noise disturbance. As the air traffic
and the population grow, it is more and more difficult to avoid flying over cities. However, this is
also more and more required when the routes are designed. Thus, it has been taken into account as
follows: the aircraft must avoid flying over them but if there is no choice, the impact has to be as small
as possible, so the routes must try to pass over the least populated areas.

cnoise =
NP

∑
i=1

Fi ∑
τ∈T

1∫
0

 zi(di(t))∫
zi(di(t))

cτ(γ
i
h(t), z)dz

dt (11)

where cτ(γi
h(t), z) is the cost of an aircraft flying at altitude z at γi

h(t) regarding noise emissions.
The noise intensity varies with the altitude of the aircraft and its calculation can take into account many
parameters [31]. As a simplification, this paper considers that the nominal noise (noise intensity besides
the aircraft) is decreased by 6 dB every time the distance to the aircraft is multiplied by 2. The nominal
noise at 3 meters is set here at 100 dB [32]. The cost cτ(x, y, z) for τ being a city is expressed as:

cτ(x, y, z) = η(x, y) ·max
((

100− 6
ln z

3
ln 2

)
, 0
)

(12)

Finally, the optimization problem is given by:

min αcdist + βcgraph + γcnoise

s.t. Obstacle avoidance constraint (3)
Route separation constraint (4) and (5)
Limited turn constraint (6)
Merge constraint (7)
Level flights constraint (8)

where α, β and γ are chosen by the user and express the relative importance of these criteria.
By choosing a single-objective function, all the criteria are combined into one. As a result,

the solutions may be optimal in neither of these criteria, as the route length and the graph weight
are contradictory objectives, most of the time (the route length objective tends to make the routes go
straight from the center to the exit point while the graph weight criterion will often push the merging
points towards the exits).

4. Resolution Approach

Compared to the problem modeling given in the previous section, in the resolution method some
of the constraints have been relaxed to make them a part of the objective function, as it can be quite
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difficult to find a solution that satisfy all constraints. The aim is to manipulate a linear combination
of all criteria as the objective function. The relative importance of all these criteria is for the user to
choose depending on those they want to focus on. Therefore, the following constraints are affected:

• Obstacle avoidance constraint: The obstacle avoidance becomes part of the objective: an extremely
high cost is added to the route objective compared to the other criteria whenever an obstacle is
traversed. This way, the priority of the algorithm is to avoid them, should it make a route longer,
for example. Therefore, in certain very complex situations, the algorithm may return a solution
that passes through obstacles

• Limited turn constraint: This constraint is affected in the same way as the obstacle avoidance
constraint: whenever a route contains illicit turns, it is heavily penalized in the objective.

• Route separation: The routes are created sequentially, by decreasing the order of expected traffic
flow. The aim is to prioritize the busiest routes. To handle this, all routes that have already been
designed are set as obstacles regarding the design of the next ones. The airprox (routes being too
close to each other) constraint then becomes similar to the obstacle constraint.

4.1. Simulated Annealing

To solve the described problem, the Simulated Annealing (SA) meta-heuristic is applied. It was
first introduced in the early 1980s [22]. The aim is to make an analogy with the annealing of physical
materials. The process involves bringing a solid to a sufficiently high temperature, and then let it cool
down slowly in order to make it reach an optimal arrangement of its molecules. This corresponds
to a state of minimum energy [33]. This method is quite efficient when it comes to optimizing a
single-objective function and works in the following way:

• Initialization: A first solution is computed, that will serve as the starting point of the algorithm.
In the mean time, an initial temperature is set (see Reference [33] for the choice of this temperature)

• Cooling loop:

• the result of the evaluation of the objective function for the current solution is denoted yi
and the current temperature of the algorithm is denoted T .

• Creation of a neighbor for the current solution
• Evaluation of the objective yj function for the neighbor
• If the objective is improved, the new solution is accepted as the starting point for the next

iteration. If not, it is accepted with a probability e
yi−yj

T .
• The temperature is decreased

• Stopping criterion: The algorithm stops when the temperature drops below a limit value. It can
also stop earlier if there is a way to know the value of the objective for the optimal solution. In this
case, the SA stops if the objective attains this value.

In this section is first described how this algorithm has been adapted to the problem. The next
paragraph will explain the way to build an initial solution for the starting point. Then the neighbor
generation process is described and finally the way to evaluate a solution is stated.

4.2. Generating a Solution

This is the key issue to be addressed by the algorithm. The paths are created one by one,
by decreasing order of traffic flow (so that the busiest path is the least constrained by the other routes).
Moreover, a set of merge layers is introduced, which is a subset of L . Their purpose is to define where
the merging points may be created.

4.2.1. Creating the Merge Layers

The merge layers can change during the execution of the algorithm. However, the center is always
considered as a merge layer and a minimum distance between two consecutive merge layers must
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always be ensured. To achieve this, for instance, it can be imposed that all Li are regularly spaced by
a known distance. Then, a merge layer can be set every nth layer starting from the center. If the last
merge layer is too close to the last layer LN , it must be removed so that the exit points are far enough
from any merge point.

4.2.2. Finding One Path

Each individual path is computed with a deterministic path search algorithm in a graph, with a
carefully chosen cost for the arcs, as the algorithm has to be able to explore various possible paths for
two given starting and ending points. This last point requires that the cost of the edges can vary during
the execution of the algorithm. Otherwise, for two given points, the result of the search would always
be the same. To achieve this, the algorithm biases the costs of the edges in the graph for each path to be
computed. To each merge layer is associated a number (the bias) between −1 and +1. A negative bias
will increase the costs of the arcs ’on the right’ of each node until the next merge layer, while a positive
bias will increase those ’on the left’ (see Figure 5). The closer the bias is to −1 or +1, the sharper the
turn will be, while a null bias will favor the straightforward paths. By resetting the costs of the arcs at
each path search, it is possible to explore the entirety of the graph while keeping a way to recreate any
path, given its start and end points along with the biases.

Figure 5. Two paths to the same exit and the associated biais functions.

The coefficients for the cost bias are chosen in a way that helps reducing the zigzag phenomenon.
The aim is to generate a sequence of numbers that are coherent with their predecessors and successors.
In order to achieve this, the generation is based on the raised cosine function:

rcos(x, µ, s) =
1
2s

[
1 + cos

(
x−µ

s
π

)]
on [µ−s, µ + s] (13)

The method works as follows, for a given starting vertex o (origin) and a given ending vertex
a (arrival):

• A number α ∈ [0, 1] and two signs sgn1, sgn2 ∈ {−1,+1} are randomly chosen.
• Three amplitude values A1, A2, A3 in [0, 1] are set. These values can be chosen randomly, but in

this work, they are decrease down to zero with the progress of the SA. This allows to explore the
state space when the temperature is high and focus on a narrower neighborhood when it is low.

• Three raised cosine functions are generated (see Figure 6):

• rcos1 = sgn1 ·A1 · α
2 · rcos(x, α

2 , α
2 )
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• rcos2 = − sgn1 ·A2 · 1−α
2 · rcos(x, α + 1−α

2 , 1−α
2 )

• rcos3 = sgn2 ·A3 · 1
2 · rcos(x, 1

2 , 1
2 )

• A function g is defined as g(x) = rcos1 + rcos2 + rcos3
2 on [0, 1], by setting rcos1 = 0 on ]α, 1] and

rcos2 = 0 on [0, α[
• The coefficients are chosen so that the route to find has the same shape relatively to the segment

[o , a] than g has relatively to [0 , 1]

Figure 6. The raised cosine functions to determine the biases in a general case.

4.2.3. Creating a Set of Paths

The paths are created sequentially so that the busiest routes are the least constrained. A complete
set of paths is created in the way described in the Algorithm 2:

Algorithm 2 Generating a set of routes

Require: The center center, the exits P1, ...PNP ordered by decreasing traffic flow.
1: Initialization: Set a starting point Start = center, an null matrix Biases of size NP × (NL − 1).
2: for i from 1 to NL − 1 do
3: Fill Biases with the biases using the raised cosine formula. If a route begins on a layer greater

than 1 or ends before the layer L , the corresponding cells of Biases are set to a default value less
than −1 or greater than 1.

4: Set the arcs costs according to the coefficients in Biases
5: Set Ri = Shortest path from Start to Pi

6: Set Start = a randomly selected intersection of one of R1, ...R i with a merge layer, that is not
already a merge point.

7: end for
8: return R1, ...Rn

Note that the first time this function is called, all values for Biases at step 3 are set to 0. This allows
to test the straightforward way, which can be the best one in some cases. The biases can start to change
at the first generation of a neighbor. Thus the initial solution is created by calling Algorithm 2 and by
always setting the biases (the values of the array Biases) to zero.

4.3. Generating a Neighbor

To create a neighbor, the algorithm can operate on several parameters:

• The route of connection (see step 6 in Algorithm 2)
• The layer on which a route connects to an other (i.e., the merge layer)
• The coefficients for the arcs bias algorithm
• The level flights on a route (choice of the zi)
• The merge layers, that can be changed. In this case, all routes are computed again. This is meant

to induce exploration at the beginning of the search

A neighbor is created by randomly changing one of these parameters on the current solution.
Sometimes, all of them are randomly changed, to allow for more exploration. However, the probability
of this happening greatly decreases with time.
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4.4. Evaluation

In the simulated annealing meta-heuristic, it is necessary to be able to evaluate frequently a given
solution (i.e., a set of routes). This evaluation is carried out in the same way as in Reference [12],
by means of a grid with the following features:

• The grid covers at least the area of the graph
• Each cell of the grid is a square whose side length is not greater than the minimum horizontal

separation (for example, 1 NM in this work).
• Each cell holds the following information:

– The height of the highest ground obstacle that can be found in this cell (mountain, antenna,
building...)

– The minimum and maximum altitudes of a forbidden flight zone in this area (if any)
– The density of population on the ground (if any)

Thus, the obstacles are ’widened’ due to the discretization. This allows to take additional margins,
but could also lead to the loss of potential solutions. This is why it is important to keep the grid
squares rather small. For the evaluation, each route is discretized with an arbitrary step, for example
dh. Each of the created points belongs to one cell of the grid according to its coordinates in the plane.
The evaluation of the point is carried out by considering its cell for the evaluation of obstacles or cities,
and by also considering its neighboring cells (more specifically all cells in a radius of dh around the
point) for the evaluation of conflicts between routes or with obstacles.

5. Simulation Results

The solution presented in this article has been implemented and tested for the design of multiple
routes. The proposed methodology is first tested on STARs design taken from the literature [34] with
different discretizations. Then the tests performed on artificially generated problems are presented,
with various numbers of routes to design, as well as various numbers and layout of obstacles. For all
of the tests, the center is the Final Approach Fix (FAF), or equivalent for the take-off. During the landing,
the FAF is the point from which the aircraft go straight to the runway. They cannot turn past this
point. In the same way, the center is chosen as the first point on which the aircraft can turn in the
SID configuration. The tests were run on a 2.70 GHz Intel Core i7 processor with 16 GB of RAM on a
Windows operating system.

5.1. The Stockholm Instance

This case is based on the study presented in Reference [34] in which the problem of STAR design
is addressed with an Integer Programming (IP) method to find arrival trees in the TMA in 2D. This
instance was chosen as it provides a nice example to compare the performances of this work with one
from the literature, with a single runway. The drawback of this approach is its execution time: 9447 s
(2 h 37 min 27 s) to find the minimum weight spanning tree. The result of this approach is shown in
Figure 8b. For this case, the following data were used:

• Center = (7,12)
• The runway is oriented by the vector (0, 1)
• The exits are located at (14,13), (9,20), (0,10), (7,0) by decreasing order of traffic flow
• The traffic flows are all equal
• The altitude range of the exit points is not relevant (so all ranges are accepted in the solution)
• Maximum turn angle θmax = 45◦

• Minimum angle at merge points θmin = 15◦

• The minimum and maximum slopes αmin and αmax are not relevant
• The number and minimum and maximum length of the level flights nLF

max, lLF
min and lLF

max are
not relevant

• The cities are considered as obstacles and are as described in Table 1
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Table 1. The obstacles for test 1.

Obstacle (B, l, u)

Enköping
((

(1,10);(3,10);(3,12);(1,12)
)
, 0, +∞

)
Stockholm

((
(7,6);(9,6);(9,8);(7,8)

)
, 0, +∞

)
Uppsala

((
(5,13);(6,13);(6,15);(5,15)

)
, 0, +∞

)
Sodertäle

((
(5,4);(5,5);(6,5);(6,4)

)
, 0, +∞

)

The method has been applied to two different discretizations with this configuration. In the first
one, 13 concentric square layers were used. Square i has a 2(i− 1) NM-long side, with square 1 being
the center at (7,12). There is a vertex each 1NM on each square starting from a corner (see Figure 7).
This corresponds to the grid used to formulate the IP problem in [34].

Figure 7. The configuration for the Stockholm instance with 7 of the 13 layers.

The algorithm runs in between 2.8 s and 3.2 s (the execution time has been measured on 20 runs
of the algorithm), at the expanse of the exactitude of the solution. The results are shown in Figure 8.

In contrast to Reference [34], the solution is not post-processed so as to avoid the zigzag behaviors.
The other point to be mentioned is that the algorithm does not allow for going from a layer Li to a layer
Lj with j ≤ i. This causes the route coming from the south to be longer than the IP route [34]. Overall,
in this case, a decent tradeoff between solution optimality and computation time can be achieved. This
allows to proceed much heavier instances so as to tackle more complex scenarios.

In the second discretization, the layers were 25 circles regularly spaced by 0.5 NM and uniformly
discretized into 360 points each in order to see if the result is different, and if so, in what way. The result
is shown in Figure 9.

The results are way less satisfactory than in the first case, as the routes are significantly longer and
occupy a wider surface. Thus the choice of the layout, and more particularly the shape of the layers,
has a great impact on the quality of the solution given by the algorithm.
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(a) The result obtained with the algorithm (b) The result from the literature

Figure 8. The Stockholm instance.

Figure 9. The result of the algorithm on the Stockholm instance by using circular layers.

5.2. Artificial Problem

In this part, the algorithm is tested on an artificial example, first by designing one route at a time
to test the effects of different types of obstacles such as a mountain, a city or a military zone, then by
measuring its performances by considering all the obstacles at once with two different discretizations.
The obstacles that were used are listed in Table 2.

Table 2. The obstacles and city for test 2 (see Figure 10).

Obstacle Number Obstacle Type (B, l, u) or (B, η)

1 Mountain
((

(300,−180); (300,178); (359,178); (359,−180)
)
, 0, 12

)
2 City

((
(−2,1); (−360,1); (−2359)

)
, (x, y) 7→ 806− (y− x)

)
3 Military Area

((
(−120,−355); (−80,−355); (−80,100); (−80,−355)

)
, 15, 50

)
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The same construction method as in the previous case was used, with the following data:

• Center: (0,0,0)
• The runway is oriented by the vector (0, 1)
• In polar coordinates, the exits are located at (346, 0◦), (346, 10◦), (346, 350◦), (346, 90◦), (328.5, 135◦),

(328.5, 230◦) by decreasing order of traffic flow
• The traffic flows, by decreasing order, are 26.67%, 24%, 21.33%, 13.33%, 12%, 2.67%
• The altitude range of the exit points is not relevant (so all ranges are accepted in the solution)
• Maximum turn angle θmax = 30◦

• Minimum angle at merge points θmin = 15◦

• Minimum slope αmin: 3.24%
• Maximum slope αmax: 16.2% .
• The maximum number of level flights nLF

max = 4
• The minimum length of the level flights was set to lLF

min = 35 NM and the maximum length lLF
max is

not relevant here
• The cities and obstacles are given in Table 2

b b

b

b

b

b

b

Center

Last 
ir
le

Exit point

City

Mountain

Military zone

Figure 10. The layout used to test the algorithm.

5.2.1. One Route Design and One Obstacle

This paper successively considers the effects of a mountain, a city and a military zone on the
design of one route. For each of these tests, the algorithm was first run without any obstacle, so as
to set a reference. The first obstacle that has been studied is a mountain, on the right-hand side of
the map (see Figure 10), too high for the route to fly in a straight line from the center to its exit point.
The results are shown in Figure 11.
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(a) The route without any obstacle

(b) The route with a mountain to avoid (c) The vertical profile of the route

Figure 11. The effects of a mountain on the route design.

It can be seen from Figure 11 that the route is lengthened for the aircraft to gain altitude and to be
able to fly over the obstacle.

The second obstacle that has been studied is a city, as shown in Figure 10, with the highest
population density at the center and decreasing towards the exterior. As before, the algorithm was
first run without any constraint to set a reference. The results are shown in Figure 12.

(a) The route without any obstacle (b) The route with a city to avoid

Figure 12. The effects of a city on the route design.
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The turn towards the exit point is delayed so as to avoid flying over the most populated areas of
the city and cause noise disturbance. Finally, the effects of a military zone between the center and an
exit point (see Figure 10) were tested. The results are shown in Figure 13.

(a) The route without any obstacle (b) The vertical profile with no obstacle

(c) The route with a military zone to avoid (d) The Vertical profile in presence of the zone

Figure 13. The effects of a military zone on the route design.

The algorithm does set level flights on the route for it to avoid the restricted area.
Thus, taken one by one, all the constraints are well handled by the algorithm. In the next part,the

effects of all obstacles at once with several routes to be designed are studied.

5.2.2. Six Routes Design with All Obstacles

The last test has been created specifically, in order to see how the algorithm performs in a case
designed to be problematic for it (Figure 10). It assumed an SID configuration with six exit points.
Three of them are located quite close to each other (on the right-hand side of the image), two others
at the top and a last one at the bottom. The aim is to see how the algorithm behaves when all the
elements discussed in Section 5.2.1 are added. As for the other test cases, a first computation of all
routes without any obstacle has been performed to set a reference. The results are shown in Figure 14.
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(a) The result of the algorithm without
any obstacle

(b) The result of the algorithm with
all obstacles

(c) The vertical profile for one of the routes
above the mountain

(d) The vertical profile for one of the routes
below the military zone

Figure 14. The result of the algorithm with all obstacles at once.

It can be seen from Figure 14a that the routes have the expected shape—they all go in a quite
straightforward way to their assigned exit points. The merges are located near the exits when several
of them are close to each other, while the route on the left merges with the others quite close to the
center, as no other exit is nearby. However, the routes are less straightforward than in the individual
cases. This is due to the increase in the number of possible changes for a given iteration. In Figure 14b,
both routes on the left have a significant change in shape. All obstacles are still avoided and the routes
remain quite straightforward, making the solution quite relevant.

Finally, the same test was run but with more circles and more points per circle (see Table 3), so as
to measure the performance of the algorithm in terms of computation time on large instances. This also
allows us to see if it leads to a significant change in the shape of the routes. The obtained results are
shown in Figure 15:
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(a) The result of the algorithm with all obstacles

(b) The vertical profile for one of the routes above
the mountain

(c) The vertical profile for the route below the
military zone

Figure 15. The result with all obstacles with a heavier discretization.

All the constraints are respected: the routes on the right fly over the mountain, and the route
on the left does not pass through the military zone. However, the shape of some routes has been
negatively affected compared to the previous case: both routes heading north are unnecessarily longer
and their separation at the merge point is reduced. The solution is, however, still acceptable. This test
makes it explicit that a heavier discretization does not necessarily improve the solution. An explanation
could be that in the last case, the number of possible routes is greatly increased while the algorithm
runs the same number of iterations. This causes an unnecessary exploration of similar non-viable
solutions and allows for fewer improvements on the good solutions. For all tests conducted on the
artificial instance, the layers have been arbitrarily chosen. Their aim is to provide a discretization
both precise enough to represent the TMA, as if there are not enough, a significant part of the possible
solutions can be missed, and sparse enough to keep the routes close to real ones, with a small enough
number of possible turns and a minimum distance between two potential decision-making points.
It also keeps the instance within the computational capabilities of the algorithm, as the computation
time increases greatly with the number of points used to discretize the TMA. Note that the number of
points used in a given solution does not affect the workload of the pilots, as procedures are integrated
once into the MCDU and pilots only have to select the entire procedure to follow, not every waypoint.
Table 3 gives some indicators on the performed tests.

In a nutshell, it can be concluded that the angular stone of the method lies in the choice of the
discretization: shape and number of the layers, number and points per layer. Although it has not
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been explicitly tested, it can also be inferred that the distribution of the points on the layers plays an
important role. An idea would be to increase their number in the vicinity of obstacles and allow fewer
of them in open areas.

Table 3. The numerical results of the experiments.

Test Case (# of Layers, # of
Points per Layer)

Computation
Time

Obstacles
(Table Number)

Routes Length
without Obstacles

Routes Length
with Obstacles

Graph Weight
without Obstacles

Graph Weight
with Obstacles

Stockholm
(13,*) 2.67 s All (1) **

51.81
**

43.39

(25,360) 1 min 48 s All (1) **
71.47

**
52.90

Single route

(50,72) 9 min 20 s 1 (2) 358.61
417.36

358.61
417.36

(50,72) 8 min 53 s 2 (2) 344.79
394.50

344.79
394.50

(50,72) 9 min 0 s 3 (2) 378.83
376.17

378.83
376.17

Six routes
(50,72) 4 min 08 s 1,2,3 (2) 2701.98

2970.13
1673.86

1874.41

(100,360) 19 min 38 s 1,2,3 (2) 2568.06
2928.00

1601.70
2096.64

** Tests without obstacles have not been conducted, as the example chosen from the literature took cities into
account. For the Single route tests and the first of the Six routes cases, the first circle has a radius of 6.5 NM and the
subsequent circles each have a radius 7 NM longer than the previous one. For Test case 3.2, the first circle has
a radius of 3 NM and the subsequent circles each have a radius 3.5 NM longer than the previous one. All run
times, as well as costs for the Six routes test are always computed as the mean value over at least 10 runs of the
algorithm. All distances and altitudes are measured in NM. The layers are concentric circles when not stated
otherwise. The discretization points are always uniformly distributed on each layer.

6. Conclusions

In this paper, a method for the design of multiple SIDs and STARs at a strategic level has been
proposed. The objective is to obtain a set of 3D routes that provides a balance between individual
route shortness and overall graph length. The proposed approach takes into account the presence
of obstacles, cities, the need to progressively merge the routes and the route separation constraints.
The routes are modeled as successions of arcs in a 2D graph to which are associated cones of altitudes
to represent the vertical profile.

The problem is modeled as a combinatorial optimization problem that is addressed with the
Simulated Annealing algorithm. The method has been tested on an example taken in the literature as
well as on an artificial scenario. The results are satisfactory in regard of the current state of Air Traffic
Management, especially for the controllers’ workload. The tests that were performed, however, show
that the operational relevance of the solutions given by the algorithm as well as the computation time
performance decrease with the increase in number of layers and discretization points. Depending on
the parameters chosen for the optimization process (relative importance of the graph weight, route
length and noise disturbance) as well as the number and shape of the layers, the solutions can vary
greatly. There is no generic way of constructing the layers, but as a guideline, it is suggested to space
them by at least the minimum distance to keep between aircraft and obstacles and by no more than
20% of the distance in a straight line between the center and the nearest exit of the TMA. An increased
density of points around obstacles should help finding better routes, while a heavy discretization is not
necessary in “empty” areas. Altogether, the approach proposed in this paper is expected to provide
satisfactory results in a real-life scenario, even though it must be viewed as a decision-making tool
rather than an autonomous procedure design program. The natural continuation of this work is to
extend it to the case of multiple runways and airports in the same TMA. It would also be interesting to
run a multi-objecive algorithm to obtain a Pareto front rather than a single solution to the problem.
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Nomenclature

P1, ...PNP the entry or exit points of the TMA
Fi the expected traffic flow on the entry/exit point Pi

R i an air route connecting Pi to the runway
γi

h the projection of route Ri on the horizontal plan
γi

v the vertical profile of route Ri
zi(s), zi(s) the minimal and maximal altitudes that an aircraft can attain at distance s from

the starting point of route Ri
O the set of all obstacles
o = (Bo, lo, uo) ∈ O an obstacle given by its base polygon Bo, lower and higher altitudes (resp. lo

and uo)
T the set of all cities
τ = (Bτ , ητ) ∈ T a city given by its location in the plane as a polygon Bτ , and the density function

ητ : Bτ → R+ that gives the population density at a given point in the city
αmin and αmax the minimum and maximum climb slopes
dh and dv respectively the minimum horizontal and vertical distances to keep with

an obstacle
dm the minimum distance to keep between two merge points
θmin the minimum angle between two routes at a merge point
θmax the maximum authorized turn angle
nLF

max the maximum number of level flights
lLF
min, lLF

max the minimum and maximum length of a level flight
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