
aerospace

Article

pyCycle: A Tool for Efficient Optimization
of Gas Turbine Engine Cycles

Eric S. Hendricks * and Justin S. Gray

NASA Glenn Research Center, Cleveland, OH 44135, USA
* Correspondence: eric.hendricks@nasa.gov; Tel.: +1-216-433-6612

Received: 24 June 2019; Accepted: 29 July 2019; Published: 8 August 2019
����������
�������

Abstract: Aviation researchers are increasingly focusing on unconventional vehicle designs
with tightly integrated propulsion systems to improve overall aircraft performance and reduce
environmental impact. Properly analyzing these types of vehicle and propulsion systems requires
multidisciplinary models that include many design variables and physics-based analysis tools.
This need poses a challenge from a propulsion modeling standpoint because current state-of-the-art
thermodynamic cycle analysis tools are not well suited to integration into vehicles level models or
to the application of efficient gradient-based optimization techniques that help to counteract the
increased computational costs. Therefore, the objective of this research effort was to investigate the
development a new thermodynamic cycle analysis code, called pyCycle, to address this limitation and
enable design optimization of these new vehicle concepts. This paper documents the development,
verification, and application of this code to the design optimization of an advanced turbofan engine.
The results of this study show that pyCycle models compute thermodynamic cycle data within 0.03%
of an identical Numerical Propulsion System Simulation (NPSS) model. pyCycle also provides more
accurate gradient information in three orders of magnitude less computational time by using analytic
derivatives. The ability of pyCycle to accurately and efficiently provide this derivative information
for gradient-based optimization was found to have a significant benefit on the overall optimization
process with wall times at least seven times faster than using finite difference methods around existing
tools. The results of this study demonstrate the value of using analytic derivatives for optimization
of cycle models, and provide a strong justification for integrating derivatives into other important
engineering analyses.

Keywords: thermodynamic cycle analysis; gradient-based optimization; analytic derivatives

1. Introduction

Thermodynamic cycle analysis is a fundamental technique for the analysis and design of gas
turbine engines. The importance of thermodynamic cycle analysis is demonstrated by the central role
the calculations hold in the engine design processes described by Saravanamutto et al. [1], Mattingly [2],
Walsh and Fletcher [3], and Hendricks [4]. As described by Oates [5]: “The object of cycle analysis is
to obtain estimates of the performance parameters (primarily thrust and specific fuel consumption)
in terms of the design limitations (such as the maximum allowable turbine temperature), the flight
conditions (the ambient pressure and temperature and the Mach number) and design choices (such as
the compressor pressure ratio, fan pressure ratio, by-pass ratio, etc.).” Given this system level focus,
cycle analysis is commonly one of the first steps in these design processes and is used to define the
initial design for the engine. Following more detailed design of the engine components and the
overall vehicle, improved component design information is fed back into the cycle analysis to ensure
that the overall design can satisfy the specified performance requirements. This creates an iterative

Aerospace 2019, 6, 87; doi:10.3390/aerospace6080087 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
http://www.mdpi.com/2226-4310/6/8/87?type=check_update&version=1
http://dx.doi.org/10.3390/aerospace6080087
http://www.mdpi.com/journal/aerospace

Aerospace 2019, 6, 87 2 of 36

design process with cycle analysis serving as the key analysis method for initializing, guiding the
development of, and then ultimately confirming the final engine design [6].

Cycle analysis techniques have been studied since the conception of the gas turbine engine
in the 1930s. While the fundamental equations governing cycle analysis are rooted in the laws
of thermodynamics for a steady one-dimensional flow, the implementation of these equations has
changed substantially over the years. These different implementations, predominantly in the form of
various computer codes, can be organized into several major eras as shown in Figure 1. This history
was pieced together from several sources [6–8] with incomplete or conflicting information, so it should
be noted that the dates defining the start and end of these eras are approximate.

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030

Modularized Multi-Purpose Tools
SOAPP, SYNTHA, NEPCOMP, NNEP, NEPP

Pre-Configured
Multi-Purpose Tools

SMOTE, SMITE,

SUPERSMITE, TESCON,

GENENG

Single-Purpose
Tools

Hand Calculations

Engine System
Multidisciplinary Tools

NPSS, PROOSIS, GSP

Engine System
Multidisciplinary Tools

NPSS, PROOSIS, GSP

Vehicle System
Multidisciplinary

Tools
pyCycle

Figure 1. History of gas turbine cycle analysis eras with example tools.

Up to the 1950s, cycle analysis was primarily completed by hand as access to computing resources
was extremely rare. Hand calculations were used to converge (also referred to as match) cycle models,
which was feasible because engine designs were mainly relatively simple single shaft turbojet designs.
As the engine designs became more complex (with more shafts, bypass configurations, or afterburners)
and computing availability increased, the next era of cycle analysis implemented single-purpose
cycle analysis programs. With this approach, a new cycle analysis program was developed for each
engine being studied and these tools only contained the equations required for that particular engine.
These programs as a result could not be easily modified to model other engine designs.

Given this limitation, the next two eras aimed to create more flexible cycle analysis tools. The third
era implemented pre-configured multi-purpose tools that contained a set of pre-configured generic
engine designs (architectures) that the user could select. Modeling a specific engine of that architecture
was completed by supplying appropriate inputs to define the engine. This greatly increased the
reusability of the code and enabled more rapid analysis of a wide range of engines, but it was still
challenging to model new or unconventional designs which were not one of the pre-configured
architecture options. The limitations for exploring new engine concepts spurred the fourth era in
cycle analysis where modular multi-purpose tools were built to handle any possible configuration.

Aerospace 2019, 6, 87 3 of 36

In this era, reusable modules were written for each of the major engine components (e.g., compressors,
burners, and turbines). Users could then link these modules together to form the flowpath of the
particular engine they wanted to examine. Any engine configuration could now be modeled as long as
the engine components required were part of the code. Moving to a modular approach significantly
improved the utility of these tools for developing a wide range of engine models.

Starting in the early 1990s, a fifth cycle analysis era began with the development of Numerical
Propulsion System Simulation (NPSS) [9] via a collaboration between industry and NASA.
NPSS expanded on the modular structure of the previous era and also made improvements to enable
multidisciplinary and multi-fidelity engine analysis [10,11]. This approach, commonly referred to as
zooming, expanded the focus of cycle analysis to serve as an integrator for models of individual engine
components. NPSS also incorporated emerging computer science approaches such as object-oriented
programming and interpreted programming languages to improve code organization and ease of
use [6]. These advancements have made NPSS the state-of-the-art for the past 20 years for cycle
analysis in an engine centric design process.

However, several emerging trends in aviation research are indicating that the current
engine-centric modeling paradigm will need to give way to a vehicle system focused, multidisciplinary
approach. One emerging trend is the interest in greater aeropropulsive integration. For example,
many conceptual vehicle designs, such as the STARC-ABL [12] and D8 [13], have proposed the use of
boundary layer ingestion (BLI). In these concepts, the propulsion system is placed on the vehicle so
that portions of the boundary layer are ingested by the engine. This has the potential to increase the
propulsive efficiency, reduce the airframe and nacelle drag, and decrease the wake mixing losses [14].
A second emerging trend is the push toward more electric propulsion systems concepts. For example,
the PEGASUS [15], N-3X [16], and STARC-ABL [12] all propose some form of more electric propulsion.

For both BLI and electric propulsion concepts, the system performance benefits are obtained by
taking advantage of the physical interactions between the engine and other systems on the vehicle.
In the case of BLI designs, the propulsion system and the vehicles aerodynamic design have significant
aeropropulsive interactions. For the electric propulsion, the engine is closely coupled with the electrical
and thermal management system designs. As a result of the strong interactions, the design of the gas
turbine engine can no longer be completed in isolation from these other vehicle systems. Therefore,
this paper proposes that a sixth era of cycle analysis is emerging where cycle analysis will be just one
discipline within a tightly-coupled, multidisciplinary design problem for the larger vehicle system.

Incorporating cycle analysis into larger vehicle and mission system model contexts presents
a number of new challenges. Physical interactions, such as the aeropropulsive interactions in
BLI, often require the use of computationally-intensive, higher-order aerodynamic codes because
lower-order tools do not capture all of the relevant physics. In addition, the cycle analysis and
aerodynamic codes need to be tightly coupled (i.e., two-way passing of information between the
disciplines with an iterative procedure used to achieve convergence [17]), further increasing the
computational complexity and cost. The use of higher-order codes also demands the usage of much
more detailed geometry definitions. This information is not typically known in the conceptual design
phase and therefore must be included in the design space to be explored, significantly increasing
the number of design variables. Hence, it becomes important to employ methods that can efficiently
navigate large design spaces to find optimal candidate designs.

Despite the challenges with coupling NPSS into a vehicle level design process, there have been
several notable attempts to accomplish this task. Ordaz [18] developed a multidisciplinary analysis
environment that combined NPSS with the FUN3D computational fluid dynamics (CFD) solver
solver to analyze BLI aircraft concepts including the STARC-ABL. Geiselhart et al. [19] developed
an integrated aircraft design optimization that combined NPSS with the aircraft mission analysis
tool and sizing tool FLOPS to study low-boom design for a supersonic business jet using
gradient-free optimization. Allison et al. [20] published a study that investigated the integration
of NPSS into an aircraft design optimization for a supersonic fighter jet, and, in follow-on work,

Aerospace 2019, 6, 87 4 of 36

Allison et al. [21] attempted to integrate NPSS with a high-fidelity model for nozzle installation effects.
Although these studies did succeed in using NPSS in a vehicle level context, they also identified several
significant limitations that they encountered. Geiselhart et al. specifically noted that computational
cost and numerical stability issues with the NPSS cycle analysis model were a major motivating factor
for using a gradient free optimization method. Allison et al. preferred to focus on integrated analysis
models and design of experiments based methods to navigate the design space, which limited the
number of design variables they could handle. Overall, these results exposed some weaknesses of
NPSS in the context of vehicle system design and ultimately forced these studies to apply methods
that do not scale well to problems with larger design spaces.

Although the difficulty that arises when optimizing larger design spaces is relatively new to the
cycle analysis community, other communities have extensively researched this topic and developed a
wide range of techniques. Lyu et al. [22] compared gradient-free and gradient-based methods with
results showing that gradient-free optimization algorithms were practically limited to problems fewer
than 100 design variables. In comparison, gradient-based optimization can effectively explore these
larger spaces and are most efficient when gradient information is provided by analytically computing
derivatives. Methods for computing analytic derivatives were first developed for use on aircraft
trajectory optimization problems in the 1960s and 1970s by Bryson [23], and were later adopted by the
structural and aerodynamic optimization communities [24,25]. Sobieski applied analytic derivative
methods to coupled aircraft design problems [26,27], and later work by Martins extended these
methods to coupled aerostructural design optimization with higher-order analyses [28,29].

While they were not used for optimization, analytic derivatives have also been used since the
1960s in the thermodynamic solvers that eventually became core libraries within NPSS, particularly
for computing thermodynamic derivatives such as Cp and Cv. The Chemical Equilibrium with
Applications (CEA) solver, one of the most widely used thermodynamic solvers, relies on a
combination of analytic derivatives and a highly customized Newton’s Method solver to perform
chemical equilibrium analyses on the extremely limited computational resources of the day [30].
More modern cycle analysis tools, such as NPSS [9], focused on providing highly modular software
designs that made usage of analytic derivatives much more difficult, thus the developers relied
on finite-difference approximations instead. However, OpenMDAO framework has enabled the
usage of analytic derivatives even for modular analyses [31]. In 2017, Gray et al. leveraged
OpenMDAO to demonstrate the use of analytic derivatives for the efficient optimization of chemical
equilibrium thermodynamic models, demonstrating significant computational savings compared to
finite-difference approaches [32].

Based on the extensive body of work across multiple fields demonstrating the effectiveness
of gradient-based optimization with analytic derivatives, this paper proposes that the approach
is also well suited to tackle the coupled multidisciplinary design problems that are emerging in
propulsion system design trends. Hence, the objective of this research was to develop a new
thermodynamic cycle analysis tool, called pyCycle, that provides analytic derivatives suitable for use
with gradient based optimization. Successful development of pyCycle also provides the first step
toward developing more efficient design methods for unconventional aircraft and propulsion concepts.
Several examples of early applications of pyCycle in the context of multidisciplinary vehicle system
optimization for unconventional aircraft include boundary layer ingestion research by Gray [33] and
Yildirim et al. [34] as well as coupled propulsion and thermal management system design by Jasa [35].

This paper presents a comprehensive study on the development of pyCycle, its verification against
NPSS, and sample results which demonstrate the efficiency gains offered by analytic derivatives even
for optimization of a stand-alone propulsion cycle model. As a result, different sections may be more
relevant for different readers. For readers who only seek a broad introduction to pyCycle, see Section 2
(specifically Sections 2.2 and 2.3). Section 2.1 describes of how analytic derivative techniques are
applied to cycle analysis, which will be helpful for multidisciplinary optimization (MDO) researchers
but is of limited to use to those who will not be implementing analytic derivatives themselves. Section 3

Aerospace 2019, 6, 87 5 of 36

provides a detailed description of the high bypass turbofan model used for all the verification studies
in this work, and is useful to anyone new to the cycle analysis field. Sections 4–6 contain the results of
the verification and design optimization studies, including a detailed performance analysis comparing
analytic derivatives to finite difference approximations.

2. pyCycle Overview

The Introduction proposes that a new era of cycle analysis is required to successfully develop new
aircraft concepts with unique, highly integrated propulsion systems. From the review of cycle analysis
history and emerging trends in aircraft design, several key features for cycle analysis tools in this new
era can be identified. First, the exploration of unique propulsion system designs continues the need for
a modular and flexible cycle analysis tool that can be used to model a wide variety of architectures.
Additionally, the cycle analysis code will need to be tightly integrated with other disciplinary analysis
tools to complete the design process. Given this requirement for integration with other disciplines,
a larger multidisciplinary design space will likely need to be explored. This motivates the third feature,
which is the need for efficient gradient-based optimization incorporating the use of analytic derivatives
to explore this space. The primary goal for the development of pyCycle was therefore to build a cycle
analysis tool that would be efficient to apply in an vehicle-level multidisciplinary optimization context,
while still maintaining the modularity and flexibility of existing cycle analysis tools such as NPSS.
With this focus, the development of pyCycle blended modeling approaches and methods from two
different disciplines: thermodynamic cycle analysis and multidisciplinary design and optimization
(MDO). This section describes the details of pyCycle from these two perspectives and how they were
combined to form the new analysis tool.

The overall structure of the pyCycle code is presented as an extended design structure matrix
(XDSM) diagram [36] in Figure 2. Many elements in this diagram are likely recognizable by cycle
analysts familiar with modular tools such as NPSS. There are four primary computational parts to a
pyCycle model which appear along the diagonal: Optimizer, Solver, Cycle, and Balance. These four
parts do not work in isolation, but pass data as indicated by the gray lines with the type of data passed
between the parts specified in the gray parallelograms. Finally, the white parallelograms indicate
inputs and outputs from the code.

From the thermodynamic cycle analysis perspective, the Cycle block is the heart of the code as it
contains all of the governing thermodynamic equations needed to model an engine. While this
is shown as a single block in the figure, it is actually a set of modular cycle elements such as
compressors, burners, or turbines which can be combined to model almost any arbitrary engine
design. The calculations executed in the Cycle block do not explicitly result in a valid model as there
are physical dependencies and design rules which must be satisfied. These physical dependencies
and design rules are captured in the Balance block as a set of implicit state variables and associated
nonlinear residual equations that are converged by the Solver. (In NPSS, implicit state variables are
called “independent variables” and residual equations are called “dependent equations”, but pyCycle
adopts the terminology used in the MDO field.) Lastly, there is the Optimizer, which finds the design
variable values that satisfy the constraints and minimizes the objective specified for the problem.

Developing these four blocks and combining them into a complete cycle analysis and optimization
tool involves the challenge of combining thermodynamic analysis, software engineering, numerical
methods, and optimization techniques. For pyCycle, this challenge was made easier by developing
the code on top of NASA’s OpenMDAO framework [31], using the framework as the bottom layer in
pyCycle’s software stack. OpenMDAO was selected as the basis for pyCycle for a number of reasons.
First, OpenMDAO provides the required modular, object-oriented modeling structure comprised of
explicit and implicit calculation objects (components). Components provide the foundation for creating
the thermodynamic cycle calculation and balance blocks shown in Figure 2. Second, in keeping with the
modularity theme, OpenMDAO provides a modular optimizer and nonlinear solver implementation
allowing for a variety of methods to be used in those parts of the code. Third, OpenMDAO provides

Aerospace 2019, 6, 87 6 of 36

functionality for automatically computing derivatives across large, complex models for use with
efficient gradient based optimization techniques. In combination, these three characteristics facilitated
the development of pyCycle to satisfy the primary research objective of creating a modular cycle
analysis tool suitable for integration into a multidisciplinary aircraft design optimization process.
The following sections provide relevant details on the major features of pyCycle with an emphasis on
the differences with respect to other state of the art cycle analysis tools such as NPSS.

Cycle Inputs Balance Inputs

Optimizer
Cycle Design

Variables

Balance Design

Variables

Solver State Variables

Outputs
Objectives,

Constraints
Cycle Cycle Outputs

Residual Values Balance

Figure 2. General cycle analysis tool structure.

2.1. Analysis, Optimization, and Analytic Derivatives

The first pyCycle blocks presented are those related to the Solver and Optimizer blocks shown
in Figure 2. While these blocks do not contain calculations unique to cycle analysis, they play an
important role in shaping the overall computational process for the code. Furthermore, the objective of
the pyCycle code development was to improve cycle analysis for unconventional engine architectures
by implementing advanced mathematical methods in these two blocks, specifically in regards to
calculating gradients. Therefore, the Solver and Optimizer blocks play a central role in enabling the
desired pyCycle capabilities.

The propulsion cycle design problem in Table 1 presents a formal mathematical description of
the complete optimization problem to be addressed by pyCycle. In this problem statement, the goal
is to minimize an objective function (f) by changing the design (x) and state variables (yp, yc, yd)
while considering both equality and inequality constraints (Rp, Rc, Rd, and G). The role of the
optimizers and solvers in the cycle analysis code is to identify the best solution which satisfies the
given requirements and constraints. In theory, this entire problem could be handled using only an
optimizer by giving it responsibility for minimizing the objective function as well as satisfying all the
constraints by controlling both the design and state variable values. While this approach eliminates
the need for the solver, it necessitates that the optimizer navigate a larger design space while also
satisfying a large set of equality constraints. Practically speaking, the optimizer-only approach is never
used, but it does provide a useful way to understand how the more common solver-based approach
changes the computational requirements of the problem in the context of an optimization. Using a
solver to converge the equality constraints creates a reduced-space form that presents a smaller number
of design variables and constraints to the optimizer. The task of converging the reduced space problem
is what is commonly referred to as a cycle analysis.

The cycle analysis problem, given in Table 2, finds the state variable values (y) which make the
residual equations (R) true given values for the design variables (x). The residual equations and
state variables in this reduced-space problem are comprised of the physical governing equations
(Rp), the conservation laws (Rc), and the design rules (Rd) described in Table 1. The three sets of

Aerospace 2019, 6, 87 7 of 36

implicit variables (yp, yc, yd) and associated residuals are aggregated together for convenience and
compact notation.

Table 1. General mathematical problem formulation for the optimization of a turbine engine cycle.

Variable/Function Description

minimize f objective (e.g., Thrust specific fuel consumption (TSFC))

with respect to x design variables
yp state variables for physical governing equations
yc state variables for conservation laws
yd state variables for design rules

subject to Rp(x, yp) = 0 physical governing equations (e.g., thermodynamic equilibrium)
Rc(x, yc, yd) = 0 conservation laws (e.g., conservation of energy)
Rd(x, yc, yd) = 0 design rules (e.g., thrust requirements, stall margin)
G(x, yc, yd) < 0 design constraints (e.g., temperature or rotational speed limits)

Table 2. Solver problem formulation.

Variable/Function Description

given x design variables
find y implicit state variables

such that R(x, y) = 0 residual equations

The residual equations,R(x, y) = 0, form a system of nonlinear equations which are converged
through the use of a numerical solver, typically based on Newton’s method. Newton’s method
iteratively converges to a solution by starting with an initial guess of the state variable values in the
neighborhood of the solution. From this initial guess, improved values for the state variables are
obtained through successive applications of Equation (1) where the subscripts m and m + 1 refer to
the current iteration and next iteration values for the state variables, respectively. Of note in this
equation is the need for partial derivatives of the residual values with respect to the state variables.
The computation of these partial derivatives can be accomplished by several means. NPSS uses
finite-difference approximations to compute ∂R/∂y, while uses pyCycle hand differentiated analytic
partial derivatives.

ym+1 = ym −
[

∂R
∂y

]−1
R(ym) (1)

An optimization problem can then be wrapped around the cycle analysis, creating a so-called
reduced space formulation because of the smaller set of design variables and constraints that the
optimizer is presented with. The reduced-space optimization problem is given in Table 3. This problem
minimizes the objective function (f) by altering the design variables (x) while satisfying a set of
design limits posed as inequality constraints (G). While a wide array of optimization algorithms can
be applied to solve to this problem, pyCycle development focused on enabling the use of gradient
based techniques for their significant computational efficiency. The sequential quadratic programming
algorithm implemented by the SNOPT [37] library was selected as the optimizer for the work presented
in this paper, although pyCycle will work with any gradient based algorithm.

Table 3. Reduced-space optimization problem formulation.

Variable/Function Description

minimize f objective
with respect to x design variables

subject to G(x) < 0 design limits

Aerospace 2019, 6, 87 8 of 36

If cycle analysis solutions are all that are desired, then Table 2 and Equation (1) are all that
are required. However, to wrap a gradient based optimization algorithm around a cycle analysis,
additional calculations of total derivatives (i.e., d f /dx and dG/dx) are required. While these derivatives
initially only appear to be dependent on the design variables (x), it must be recognized that altering
these values also requires a reconvergence of the implicit state variables (y) by the nonlinear solver.
Therefore, the total derivatives calculations must include the effect of changes in y as a function of
changes in x. Using d f /dx as an example, applying the chain rule results in the total derivative
definition given in Equation (2).

d f
dx

=
∂ f
∂x

+
∂ f
∂y

dy
dx

(2)

The partial derivatives terms in Equation (2) (∂ f /∂x and ∂ f /∂y) are relatively easy to compute
through a variety of techniques that will be discussed later in this section. However, the total derivative
term in Equation (2) (dy/dx) presents a much larger computational challenge. This term captures
the change in the converged state variable values with respect to changes in the design variables.
Computing this term directly requires reconverging the full system of nonlinear equations once for
each individual variable in y. Additionally, the accuracy of such an approach may be limited due to
the solver tolerances used in this reconvergence process. However, this total derivative can be more
efficiently computed using an indirect approach that requires only partial derivatives of the residual
equationsR(x, y). This approach again applies the chain rule as given in Equation (3). In this equation,
it is assumed that the total derivatives are taken around a converged point R(x, y) = 0 for any x,
thereby also specifying that dR/dx = 0.

dR
dx

=
∂R
∂x

+
∂R
∂y

dy
dx

= 0 (3)

Equation (3) can be rearranged to compute dy/dx as a function of only the partial derivatives of the
residual equations as given in Equation (4). Used together, Equations (2) and (4) form what is referred
to as the direct analytic method for computing total derivatives. The direct analytic method requires
only the use of partial derivatives and the solution to a linear system (Equation (4)), which must be
solved once for each design variable in x. Therefore, its computational cost scales linearly with the
number of design variables (and independent of the number of constraints) making it very efficient for
optimizations involving a relatively small number of design variables.

dy
dx

= −
[

∂R
∂y

]−1 ∂R
∂x

(4)

However, most multidisciplinary propulsion system design optimization problems consider a
relatively large set of design variables, with number of variables significantly exceeding the number of
objectives and constraints. In this situation, the derivative equations can be manipulated to form the
adjoint analytic method as shown in Equations (5) and (6). The adjoint method includes a linear system,
which must be solved once for each objective and constraint in the optimization problem (i.e., f and G
from Table 3). As a result, the adjoint method’s computational cost scales linearly with the number of
constraints in the optimization problem and is independent of the number of design variables making
it more computationally efficient in many cases. In practice, optimizations for large vehicle level
models that include many disciplines and higher order models almost always have many more design
variables than objectives and constraints, thus the adjoint method is more commonly used.

d f
dx

=
∂ f
∂x

+ ψT ∂R
∂x

(5)

ψ = −
[

∂R
∂y

T
]−1 [

∂ f
∂y

T
]

(6)

Aerospace 2019, 6, 87 9 of 36

Regardless of which of the two analytic techniques is applied, computing the total derivatives
first requires finding partial derivatives of the objective function, residuals and constraints with respect
to both the design and state variables. Similarly, applying Newton’s method to solve the system of
nonlinear equations requires computation of the residual equation partial derivatives with respect to
the state variables. It is therefore clear that accurately and efficiently computing these partial derivatives
throughout the system is critical to the overall success of the optimizer and solver algorithms.

In OpenMDAO and by extension pyCycle, several options are available for computing the partial
derivatives throughout a model. The first option is to use finite difference approximation. While this
option is easy to implement, the method can be computationally expensive for large numbers of design
and residual variables and suffers from numerical accuracy issues. However, it must be noted that
the finite differences in this case are taken only across the residual evaluations and hence are far more
accurate than if a monolithic finite difference was taken across the full nonlinear analysis. A second
option is to compute the partial derivatives using the complex step approximation method [38].
This method provides more accuracy than finite differencing but it is also more computationally
expensive and requires the code inherently handle complex computation—although many pure Python
analyses do inherently handle this correctly. The third option is to compute the partial derivatives
analytically via symbolic, algorithmic, or hand differentiation of the equations throughout the code.
While more challenging to implement in the code, the third option provides precise partial derivative
values that are both computationally efficient completely accurate. As a result of these benefits,
analytic computation of partial derivatives (specifically using hand differentiation) was the approach
implemented in pyCycle and represents a fundamental advancement in cycle analysis capability
contributed by this research.

Using hand differentiation for a modular cycle analysis code requires special consideration in
regards to structuring the code base. Specifically, the code for the various modular engine components
needs to be written to not only provide functional outputs, but also the partial derivatives for all the
outputs or residual values with respect to any input or implicit state variable. With each modular
element providing its own partial derivatives, the required overall partial, and ultimately the total
derivatives, across any combination of the cycle elements must then be computed. OpenMDAO, and by
extension pyCycle, facilitates this process by automatically applying the direct or adjoint analytic
methods for any given model. This automatic total derivative calculation enabled the formulation of
a modular cycle analysis code and guided the decisions about how to decompose the various cycle
analysis calculations described in the next section.

2.2. Physical Equations of Cycle Analysis

The solver, optimizer, and derivative calculations methods described in the previous section are
general mathematical approaches which can be applied to determine the solutions of a wide variety of
reduced-space optimization problems. For the development of pyCycle the reduced-space problem is
formed via the combination of the Cycle and Balance blocks, and of those two the actual governing
equations and engineering calculations are contained within the Cycle block. This section describes
how the physical equations of cycle analysis were implemented to construct the Cycle block in a
modular fashion that met the requirements for pyCycle.

Generally, the cycle analysis of a gas turbine engines seeks to compute the overall performance
characteristics by determining changes in thermodynamic properties of gases as they move through
the engine. These changes in the thermodynamic properties are imparted by the various components
of the engine such as a compressor or combustor. For modular codes such as NPSS and pyCycle,
these physical engine components are modeled as individual “elements” which can be stitched together
to form a model for a specific engine architecture. Internal to each of the cycle objects, an number
of calculations are completed which generally fall into two categories: thermodynamic properties
calculations (i.e., chemical equilibrium) and engineering calculations. In NPSS, the individual cycle
elements such as compressors or combustors are the atomic computational objects in the model—the

Aerospace 2019, 6, 87 10 of 36

lowest level objects the software recognizes—and contain both types of calculations. In contrast,
pyCycle elements are themselves composed of several nested layers of smaller computational
components that capture the different types of calculations. Although pyCycle users will still build
models by stitching together cycle element objects, the finer grained internal decomposition of the
elements is an important distinction necessitated by the need to provide analytic partial derivatives.
By sub-dividing the elements into smaller computational sub-components, hand differentiation of the
various partial derivative terms was made significantly simpler. The automatic total derivative
functionality of the OpenMDAO framework is then relied on to combine these simpler partial
derivatives together to obtain the derivatives for the overall elements and cycle model. Typical users
of pyCycle will be able to use a standard library of pre-defined elements (e.g., inlet, nozzle, compressor,
and turbine) which already have analytic derivatives implemented, but when new elements are coded
for a specific model users would need to provide derivatives for the new code.

Before providing an example of this sub-divided element structure, it is first important to describe
a critical sub-element in pyCycle which differs in implementation from NPSS: the thermodynamic
property calculation sub-element. In NPSS, the calculation of thermodynamic properties is completed
by a “Flowstation” object, with the calculation method internal to this object selected by the
user (either GasTbl, AllFuel, Janaf or CEA). While some of methods are simply table lookups,
others (specifically Janaf and CEA) perform a chemical equilibrium convergence that uses a set of
physical residual equations and a nonlinear Newton solver. These residual equations and the associated
solver are hidden within this object forming a nested solver structure. Nesting these residual equations
and the solver inside the Flowstation object is advantageous for NPSS as it produces a separate,
smaller nonlinear systems of equation which can more easily be finite-differenced and converged.
However, the nested nonlinear solver approach of NPSS poses a challenge for the computation of
analytic derivatives because it requires the nested application of the direct or adjoint derivative
calculation methods.

For pyCycle, the thermodynamic properties are computed using a minimization of Gibbs free
energy approach very similar to that of Gordon and McBride [30] and consistent with the CEA
option in NPSS. Some minor modifications were made to the numerical solution methods of this
approach to facilitate computation of analytic derivatives and are documented in prior work by the
Gray et al. [32]. In comparison to the NPSS implementation of this method, however, pyCycle uses a
flattened formulation that exposes all of the chemical equilibrium and thermodynamic residuals to
the top-level solver. This flattened approach results in a larger system of nonlinear equations for the
top-level solver but simplifies the task of computing analytic derivatives. Therefore, pyCycle models
have one to two orders of magnitude more physical residual equations in the top-level solver compared
to an equivalent NPSS model: O(104) for pyCycle compared to O(102) for NPSS. This change to the
approach for solving the chemical equilibrium residual equations represents a significant change in
model structure necessitated by applying analytic derivatives methods to cycle analysis.

To help describe the internal decomposition of pyCycle elements, an example of the sub-element
structure and calculations for a simple compressor is shown in the XDSM diagram in Figure 3. In this
figure, inputs to the calculations, either from upstream components or user specification, are given in
the white parallelograms at the top with outputs of the element shown in the white parallelograms
on the left. Overall, the calculations required to model this simple compressor are decomposed into
six sub-blocks. In this figure, the total and static thermodynamic calculations are shown in blue with
engineering calculations in red. The first sub-block, Pressure Rise, computes the compressor exit
pressure (Pt,out) based on an input pressure ratio (PR) and entrance pressure (Pt,in). The calculation
and the associate partial derivatives for this component are given in Equation (7).

Aerospace 2019, 6, 87 11 of 36

Pt,in

PR
Sin

ht,in

η

ht,in

ṁ,N

MN

ṁ

Pressure

Rise
Pt,out Pt,out Pt,out

Ideal Total

Thermodynamics
ht,ideal

Enthalpy

Rise
ht,out ht,out

Exit Flow

Total Properties

Real Total

Thermodynamics
Tt,out

Shaft Power Power

Exit Flow

Static Properties

Real Static

Thermodynamics

Figure 3. Internal structure of the pyCycle compressor element.

Pt,out = PR ∗ Pt,in

∂Pt,out

∂Pt,in
= PR

∂Pt,out

∂PR
= Pt,in

(7)

Next is a thermodynamic solution that computes the ideal thermodynamic properties at the
compressor exit (isentropic pressure rise), specifically the ideal exit enthalpy (ht,ideal). This value
is combined with the compressor entrance enthalpy (ht,in) and input efficiency (η) to compute the
real—as opposed to ideal—exit total enthalpy (ht,out) in the Enthalpy Rise sub-block. The equations
and associated partial derivatives for this calculation are given in Equation (8).

ht,out =
ht,ideal − ht,in

η
+ ht,in

∂ht,out

∂ht,ideal
=

1
η

∂ht,out

∂ht,in
= 1− 1

η

∂ht,out

∂η
=

ht,ideal − ht,in

η2

(8)

The computed exit total enthalpy and pressure are then used as inputs to a thermodynamic solver
sub-block that calculates the complete set of real total thermodynamic properties at the compressor exit.
Following the determination of the real flow properties, the Power sub-block computes the power (Ẇ)
and torque (τ) required from the shaft to drive the compressor. This sub-block takes entrance and real
exit enthalpies as inputs along with the compressor mass flow (ṁ) and shaft speed (N). Calculation
of the required power and torque along with their derivatives is completed following Equations (9)
and (10), respectively.

Aerospace 2019, 6, 87 12 of 36

Ẇ = ṁ ∗ (ht,in − ht,out)

∂Ẇ
∂ṁ

= (ht,in − ht,out)

∂Ẇ
∂ht,in

= ṁ

∂Ẇ
∂ht,out

= −ṁ

(9)

τ =
ṁ
N
∗ (ht,in − ht,out)

∂τ

∂ṁ
=

(ht,in − ht,out)

N
∂τ

∂ht,in
=

ṁ
N

∂τ

∂ht,out
=
−ṁ
N

∂τ

∂ṁ
= − (ht,in − ht,out)

N2

(10)

Lastly, the final sub-block of the compressor element computes the real static thermodynamic
properties, based on the real exit total properties and a specified exit Mach number. Together, these six
blocks of code compute effect of the thermodynamic process of a compressor and provide the partial
derivatives OpenMDAO needs to compute analytic derivatives for an optimizer using the direct or
adjoint method.

In summary, this example for a simple compressor provides an overview of how pyCycle
elements are constructed from smaller sub-blocks along with how the functional and derivative
calculations performed by each sub-block of code. Similar diagrams describing the decomposition of
other simple engine elements can be found in a paper by Hearn [39]. Although this simple compressor
demonstration required just six sub-blocks, the actual elements implemented in pyCycle are much
more complex. For example, the full compressor and turbine elements contain additional code to
account for the performance maps that provide efficiency. Other elements also include sub-blocks that
account for the impact of bleed extraction, cooling flows, and heat transfer. Details of the calculations
for every element are not necessary to understand how pyCycle is implemented, since all elements
follow the blue-print laid out in the example compressor above. Further details on each element are
available in the pyCycle source code.

2.3. Implicit Relationships with the Balance Block

While the Cycle block computes the flow properties and performance characteristics of individual
engine elements, simply coupling these elements together to make an engine model does not result
in a physically valid or desirable design. In addition to the governing equations there are additional
engine level conservation equations and design requirements that must be satisfied. The Balance
block, shown in Figure 2, handles these engine level residual equations (in NPSS these are called
“dependents”). Associated with these residual equations are a set of implicit state variables (in NPSS
these are called “independents”) whose values are found by the nonlinear solver such that the residuals
are driven to zero. In Table 1, the residual equations associated with the Balance block were labeled as
Rc andRd. The specific residual equations required for any single cycle analysis are highly dependent
on the system being modeled, the intentions of the user, and whether the model being executed in
design mode or off-design mode. Thus, while the details of the nonlinear solution process were
provided in Section 2.1, this section goes into more detail about the specific residuals that are needed
for different models.

Aerospace 2019, 6, 87 13 of 36

The physical residuals, Rc(x, y), are those required for cycle matching; they ensure that the
physical conservation laws are respected. In NPSS, these equations, and the associated state variables,
are often hidden from the user by an automatic configuration routine. In pyCycle, there is no automatic
configuration of the cycle matching residuals and the user must always configure them. Equations (11)
and (12) below give examples of engine matching residual equations typically used in a gas turbine
cycle model. First, from the conservation of energy, the net torque on any shaft (the sum of the
torques from the compressor and turbine) must be zero as defined in Equation (11). To satisfy this
equation, a state variable is typically created for the turbine pressure ratio (design mode) or the shaft
speed (off-design mode). The second example in Equation (12) comes from off-design compressor
calculations where the actual corrected mass-flow through the compressor must match the allowable
value specified in the compressor performance map based on the corrected speed and operating
characteristic (known as its R-line). In this residual equation, the corrected flow computed from the
performance map must equal the corrected flow being passed into the compressor. To satisfy this
equation, the compressor map R-line value is typically included as a state variable in the nonlinear
solver. These two examples provide an illustration of how physical conservation laws are implemented
through implicit residual relationships used to ensure conservation of mass, momentum, and energy
at the 1D thermodynamic level. Both pyCycle and NPSS implement these physical relationships
following this approach and converge them with them with a Newton solver.

Rc,τ =
n

∑
i=1

τi = 0 (11)

Rc,ṁ = ṁc,map(Nc, R)− ṁc,comp = 0 (12)

In addition to the physical conservation residuals, cycle models also commonly contain a set
of design rules as residual equations (Rd) which guide the cycle analysis. These design rules are
implemented to capture design intent and operating philosophy for the engine and are therefore
highly model specific. For example, Equation (13) might be implemented by the user to ensure that
the net thrust produced by the engine matches a specified target thrust. The state variable added to
the analysis along with this residual equation is also model dependent. In this case, one likely state
variable would be the overall engine mass flow rate as it has a direct relationship with the amount
of thrust that can be produced by a given Brayton cycle. Similarly, Equation (14) could be used to
drive the combustor exit temperature (T4) to a target value at a certain flight condition. The associated
state variable controlled by the solver for this residual again depends on the design and operating
philosophy selected, but a common selection would be the fuel-to-air ratio of the combustor.

Rd,F = Fnet − Fnet,target = 0 (13)

Rd,T = T4 − T4,target = 0 (14)

Overall, the Balance block within the code contains a vital set of residual equations for both
physical conservation laws and design rules which govern the thermodynamic cycle analysis.
These equations must be uniquely defined for each engine model depending architecture being
studied on the design principles being applied. The next section presents the development of a
specific thermodynamic cycle model, including the appropriate residual equations, which is used
throughout the remainder of this paper for verification, derivatives comparisons and evaluation of the
pyCycle in an optimization problem.

3. Example Problem

To evaluate the features of pyCycle relative to the present state of the art, a reference engine
model was constructed in pyCycle as well as NPSS. The NASA advanced technology high bypass
geared turbofan engine cycle [40], referred to as the “N+3” engine, was selected for this research

Aerospace 2019, 6, 87 14 of 36

and was modeled in both tools, with the outputs compared in detail to ensure that both compute
the same engine cycle performance. The N+3 reference cycle represents a notional high bypass ratio
geared turbofan that could be available in the 2030–2040 time frame. The cycle includes several
advanced features to improve its overall performance. These features include a low pressure ratio fan
to enable a high bypass ratio, which also requires a variable area fan nozzle to maintain the fan stability
throughout the flight envelope. Furthermore, the baseline design has an overall pressure ratio around
55, with a maximum allowable combustor exit temperature of 3400 R, and an uncooled low pressure
turbine. This advanced cycle is modeled with a fairly complex, multi-design point (MDP) process that
involves simultaneous consideration of performance at four different flight conditions. The complexity
of this model makes it well suited for use in verifying pyCycle against NPSS using comparable models
built with the two cycle modeling libraries. This section describes MDP model structure, starting with
the basic formulation used to capture performance at any single flight condition, then describes how
multiple operating points are integrated together to for the MDP analysis. This description provides
an overview with sufficient detail to understand what is being modeled and the level of detail to which
the verification between the two codes was performed.

3.1. Modeling a Single Flight Condition

As described above, cycle models in pyCycle are built up by linking a set of modular cycle
elements together to represent the full propulsion system. For the N+3 geared turbofan cycle,
twenty-five elements are connected together, as shown in Figure 4. In this figure, the blue arrows
indicate flow connections between elements and ultimately define the flow-path. Following the
arrows illustrates that the engine cycle model has two separate streams, terminating in two nozzles:
Fan Nozzle and Nozzle. The red lines indicate physical shaft connections to the three shafts
(often referred to as spools): HP Shaft, LP Shaft, and Fan Shaft. Lastly, the green lines indicate
secondary data connections between elements. These connections do not represent any physical aspect
of the engine, but rather provide necessary information for elements to perform their calculations.
For example, the Fan Nozzle and Nozzle elements need to know static pressure from the Ambient
element in order to compute the correct gross thrust. Similarly, the Performance element needs to
know the ram drag from Inlet and the gross thrust from both Fan Nozzle and Nozzle in order to
compute net thrust.

To predict the cycle performance at any single flight condition, the model represented in Figure 4
needs to be executed in two different modes, with the outputs from each combining to provide a
full description of the performance characteristics of the engine. These two modes are referred to
as “on-design” and “off-design” by the cycle analysis community. The fundamental model structure
(the elements and their connections to each other) remain identical in both modes, but the internal
calculations within each element vary slightly and consequently the conservation equations (Rc) and
design rules (Rd) also change.

In the context of using a cycle model as part of a design optimization, or even just as part of a
larger overall vehicle system model, the terms “on-design” and “off-design” are potentially confusing
and warrant further clarification. The on-design mode is computed around a reference flight condition,
usually sea-level-static (SLS) or top-of-climb (TOC), where it is desirable to specify key cycle design
parameters such as compressor pressure ratios, combustor temperatures, and shaft speeds. For the
N+3 engine, TOC (MN: 0.85, altitude: 35,000 ft) was selected as the reference on-design condition.
Given the specific set of design parameters, the on-design mode calculations will compute a set of
physical design values such as flow areas and compressor and turbine map scalars that will be constant
for the cycle at all other operating conditions. These physical constants (X̄Des) are required inputs for
the off-design calculations. The on-design mode set up for the N+3 cycle model is shown in Figure 5.
The residuals provided by the Balance block include bothRc andRd sub-sets.

Aerospace 2019, 6, 87 15 of 36

Performance

Fan Shaft

Gearbox

LP Shaft
HP Shaft

Duct 17

Duct 2

Splitter

LPC

Duct 25

HPC

HPT

LPT

Ambient Flow Start

Inlet

Nozzle

Duct 5

Fan Nozzle

Bleed 3

Duct 45

Fan

Burner

Bleed 25

Bypass Bleed

B
le

ed
s

Figure 4. Reference engine model block diagram. Each block is an element in in pyCycle, including
the low pressure compressor (LPC), high pressure compressor (HPC), high pressure turbine (HPT),
and low pressure turbine (LPT).

There is one set of conservation residuals (Rc), one for each of the three shafts, that ensures the net
torque on each shaft is zero, producing steady state operation as given in Equation (15). The associated
state variables for these residuals are the turbine pressure ratios on each shaft, PRHPT and PRLPT,
as well as the gearbox output torque to the fan shaft.

Rc →

τnet, Fan = 0

τnet, LP = 0

τnet, HP = 0

(15)

The remaining residuals from the Balance block in Figure 5 are part of the design rules for
this engine and are given in Equation (16). Equation (16) drives the cycle to match the specified
design targets for T4, Des and OPRDes. The associated degrees of freedom for these residuals are the
combustor fuel-to-air ratio (FAR) and high pressure compressor pressure ratio (PRHPC). It also includes
one residual equation per compressor and turbine that is used to enforce a technology assumption
for turbomachinery polytropic efficiency (ηpoly). This implicit relationship is needed because the
Compressor and Turbine elements take adiabatic efficiency (η) as an input, and output a computed
polytropic efficiency. The solver finds the adiabatic efficiency as a state variable such that the target
polytropic value is achieved.

Rd →

T4 = T4, Des

OPR = OPRDes

ηpoly,i = ηpoly,i,Des

(16)

Aerospace 2019, 6, 87 16 of 36

As shown in Figure 5, the on-design calculations produce outputs including thrust specific fuel
consumption (TSFC) and Fnet. While these outputs are metrics for evaluating performance at the design
condition, the on-design calculation’s most significant outputs are the physical design parameters X̄Des.
These parameters specify the engine design characteristics which are constant across all operating
conditions. The specific variables that are included in X̄Des depend on the particular engine cycle
model that is constructed. Generally, the list includes the physical flow areas throughout the engine as
well as tubomachinery map scalers for Compressor and Turbine elements.

PRFan, PRLPC

T4,Des, OPRDes,

ηpoly,i,Des

Solver

PRHPT, PRLPT,

τGearbox, FAR,

PRHPC, ηi

Fnet, TSFC,

DFan, X̄Des

Cycle
τnet,j , T4,

OPR, ηpoly,i

τnet,j = 0

T4 = T4,Des

OPR = OPRDes

ηpoly,i = ηpoly,i,Des

Balance

Figure 5. Reference engine model on-design analysis setup.

The off-design mode calculations are responsible for determining performance of the propulsion
cycle model at all flight conditions of interest. As stated above, the off-design mode shares an identical
model structure to the on-design mode calculations but has different input parameters and residual
equations. Figure 6 shows the XDSM diagram for the off-design model calculations of the N+3 cycle
model considered in this work. The set of physical residuals applied in the N+3 off-design model
are given in Equation (17). In Equation (17), the residual for τi is the same as for the on-design mode;
it enforces that there is zero net torque on the shaft to respect conservation of energy. The residual
related to the nozzle throat area, ANoz, enforces conservation of mass by ensuring that the mass-flow
through the cycle is enough such that the flow area required equals the physical area of the nozzle
throat. The state variables for these physical residuals are the shafts speeds (NFan, NHP and NLP),
and engine mass flow rate (ṁ).

Rc →
{

τnet,j = 0

ANoz = ANoz, Des
(17)

The remaining residuals are associated with design rules as given in Equation (18). The first
residual in Equation (18) regulates the fan-stall margin, which is primarily achieved by varying the
bypass ratio (BPR) as an implicit state. The net thrust residual provides a throttle setting for the engine,
and is mainly regulated by FAR. The cooling mass flow residual set, one for each cooling flow in
the engine, matches the cooling mass-flow rate (ṁcool,k), to a prescribed value. As discussed in more
detail in the next section, the cooling flow for this cycle is defined by the cooling needs at the rolling
takeoff flight condition, and at all other conditions it is given as a prescribed input. In addition to

Aerospace 2019, 6, 87 17 of 36

these residuals, the outputs from the off-design analysis of the reference engine are the net thrust and
the TSFC.

Rd →

RFan = RFan, Target

Fnet = Fnet, Target

ṁcool,err,k = 0

(18)

X̄Des

Fnet,Target, RFan,Target,

ANoz,Des

Solver

Nj , FAR,

ṁ, BPR,

ṁ∗
cool,k

Fnet, TSFC Cycle

τnet,j , Fnet,

ANoz, RFan,

ṁ∗
cool,err,k

τnet,j = 0

Fnet = Fnet,Target

ANoz = ANoz,Des

RFan = RFan,Target

ṁ∗
cool,err,k = 0

Balance

Figure 6. Reference engine model off-design analysis setup.

3.2. Multi-Design Point Modeling

The on-design and off-design analysis modes described in the previous section are traditionally
used in a sequential process to evaluate the performance of a gas turbine engine. First, the on-design
analysis is completed to develop the cycle design that satisfies the performance requirements at a
single operating condition. Once this is completed, the off-design analysis mode is used to evaluate
the performance throughout the remainder of the flight envelope to ensure operating requirements
are satisfied. If the performance characteristics determined in the off-design mode are not satisfied,
a manual iteration is then undertaken to modify design inputs and reevaluate the cycle in both on- and
off-design modes. This traditional process works well for relatively simple engine designs with a
limited set of performance requirements at off-design operating conditions.

However, as the engine concepts being evaluated become more complex with performance
requirements and constraints at multiple flight conditions, applying this traditional manual approach
becomes more difficult. In these situations, a more advanced cycle modeling technique known as
multi-design point (MDP) [41] can be used. The MDP method uses the same on-design and off-design
analyses described above, but combines them to simultaneously evaluate performance at multiple
operating conditions and automatically use that information to develop a feasible design. Essentially,
the method creates on-design and off-design instances of the model which are then coupled together
and simultaneously executed. This coupling commonly includes passing of design variables (XDES) as
well as an additional Balance block. The states and residuals associated with this Balance are selected
to ensure a design is generated that satisfies the various requirements and constraints at each critical
operating point. Again, it should be noted that the terms “on-design” and “off-design” are potentially
confusing. Recall that these terms refer to the computational mode of cycle analysis points. Despite the

Aerospace 2019, 6, 87 18 of 36

confusing terminology, in an MDP, all of the cycle analysis points can be considered design-conditions
for the engine cycle.

In the original study on the N+3 engine model, Jones used a four-point MDP model to size the
advanced high-bypass ratio turbofan [40]. The four points include top-of-climb (TOC), rolling takeoff
(RTO), sea-level static (SLS) and cruise (CRZ), and their organization into an MDP model is shown in
Figure 7. The TOC design point was instantiated as an on-design model, and was built following the
configuration in Figure 5. The other design points (SLS, RTO, and CRZ) were set up as off-design models
following the configuration in Figure 6.

PRFan

PRLPC

OPR

Vratio,CRZ,Target

T4,max, Tratio

Solver

ṁTOC

BPRTOC

T4,Des

Fnet,SLS Fnet,CRZ

Fnet,TOC

TSFCTOC

DFan

TOC X̄Des X̄Des X̄Des

Fnet,TOC

T4,TOC

Fnet,RTO

TSFCRTO

ṁcool,k RTO ṁcool,k ṁcool,k
Fnet,RTO

T4,RTO

Fnet,SLS

TSFCSLS

SLS Fnet,SLS

Fnet,CRZ

TSFCCRZ

CRZ
Fnet,CRZ

Vratio,CRZ

Vratio,CRZ = Vratio,CRZ,Target

T4,RTO = T4,max

T4,TOC/T4,RTO = Tratio

Fnet,CRZ = 0.9 ∗ Fnet,TOC

Fnet,SLS = 1.2553 ∗ Fnet,RTO

Balance

Figure 7. Reference engine model multi-design point setup.

Figure 7 shows two sources of coupling at the MDP level in addition to the design variables.
The first coupling results from the calculation of cooling flow requirements which are determined at
the RTO design point as this flight typically experiences the highest gas temperatures. The cooling
mass flow rates (ṁcool,k) are output by the RTO and create a cyclic data connection with the TOC block
that proceeds it. Second, the Balance block adds a set of additional design rule residual equations
that implicitly relate the performance of different operating conditions to each other. These design
rules set a jet velocity ratio at cruise (Vratio,CRZ), set the maximum combustor exit temperature at RTO
(T4,max) and define the relative combustor temperatures between TOC and RTO. In addition, the design
rules specify the relative net thrust produced by the engine between several different design points.
To satisfy these design rules, the solver is given control of five state variables including the TOC mass
flow rate (ṁTOC), TOC bypass ratio (BPRTOC), TOC combustor exit temperature (T4, TOC), SLS net
thrust (Fnet, SLS) and CRZ net thrust (Fnet, CRZ).

As shown in Figure 7, the MDP formulation for a cycle model is significantly more complex
than a traditional single-point design, but that complexity comes with the benefit of a significantly
more well-defined propulsion design specification. Using an MDP formulation ensures that the cycle
performance matches well with the aircraft requirements for any given combination of design variables,

Aerospace 2019, 6, 87 19 of 36

making the optimizer’s job easier. The MDP model of the N+3 reference engine is used throughout the
remainder of this paper to verify and evaluate pyCycle.

4. pyCycle Verification

The first step in evaluating the pyCycle code was to verify that the code properly performs the
thermodynamic cycle analysis calculations. For this verification, the MDP N + 3 engine model
described in the previous section was evaluated using the baseline design specified by Jones.
This verification therefore did not include the Optimizer but instead focused on ensuring the Solver,
Cycle, and Balance are implemented correctly.

The first portion of the verification study focused on examining the thermodynamic properties
computed by pyCycle throughout the N + 3 engine model. It is important to first note that the core
thermodynamic property solver of pyCycle was previously verified by Gray et al. [32] via extensive
comparisons to the CEA tool. The present study differs from that verification in that it examined
the properties determined by a fully converged engine model and therefore verifies the engineering
calculations present in each of the cycle elements and balance residual equations. Figure 8 shows the
relative difference in the thermodynamic property outputs at the exit of each component in the engine
for each of the four design points. As shown in this figure, the maximum relative difference for any
thermodynamic property was approximately 0.03% indicating excellent agreement.

In addition to examining thermodynamic properties at each flow station, the overall performance
metrics calculated by the pyCycle and NPSS models were also compared. Table 4 shows the NPSS
and pyCycle performance values along with the relative difference at each of the four design points
included in the model. Again, the relative difference for these outputs was very small with most
values less than 0.02%. The one exception was the SLS ram drag, which had a relative difference of
approximately 0.15%. This larger difference shows that there are some minor differences between
the codes when evaluating static thermodynamic properties at very low Mach number flows (in this
case, Mach 0.001 from the SLS point). While larger than the other differences reported in Figure 8
and Table 4, this difference was ultimately determined to be acceptable given the low Mach number
flight condition.

Overall, the thermodynamic and performance comparisons described in this section found relative
differences between pyCycle and NPSS outputs to be below 0.03% for most outputs. This level of
difference provides strong evidence to verify that pyCycle components and overall engine models
properly model thermodynamic cycles. Additional efforts may be made in the future to further reduce
this difference, particularly for low Mach number flow conditions. However, there is a practical
limit to the level of difference achievable as the presence of solvers with convergence tolerances in
each code naturally introduces error into cycle model outputs. Given these results and limitations,
the pyCycle code was deemed sufficiently verified against the current state of the art code NPSS
to proceed with evaluating the analytic derivative calculations and the use of pyCycle for design
optimization. A complete output from this verification study is provided in Appendix A.

Aerospace 2019, 6, 87 20 of 36

0.00%

0.05%

ṁ

0.00%

0.05%

P
t

0.00%

0.05%

T
t

0.00%

0.05%

h
t

0.00%

0.05%

S

0.00%

0.05%

P
s

0.00%

0.05%

T
s

0.00%

0.05%

A

F
lo

w
S

ta
rt

In
le

t

F
a
n

S
p

li
tt

er
1

S
p

li
tt

er
2

D
u

ct
2

L
P

C

B
le

ed
2
5

D
u

ct
2
5

H
P

C

B
le

ed
3

B
u

rn
er

H
P

T

D
u

ct
4
5

L
P

T

D
u

ct
5

C
o
re

N
o
zz

le

B
y
p

a
ss

B
le

ed

D
u

ct
1
7

B
y
p

a
ss

N
o
zz

le

0.00%

0.05%

M
N

TOC RTO SLS CRZ

Figure 8. Relative difference between pyCycle and NPSS thermodynamic properties for the MDP N + 3
reference engine model.

Table 4. Relative difference between pyCycle and NPSS performance properties for the MDP N + 3
reference engine model.

Point Parameter NPSS pyCycle Rel. Diff.

TSFC, lbm/hr/lbf 0.43856 0.43860 0.00868%
Net Thrust, lbf 6125.95 6126.66 0.01171%

TOC Ram Drag, lbf 19,865.04 19,866.48 0.00726%
Gross Thrust, lbf 25,990.99 25,993.15 0.00831%
Bypass Ratio 23.74639 23.74246 0.01656%

TSFC, lbm/hr/lbf 0.27364 0.27368 0.01303%
Net Thrust, lbf 22,800.00 22,800.00 0.00001%

RTO Ram Drag, lbf 17,047.28 17,047.53 0.00148%
Gross Thrust, lbf 39,847.28 39,847.53 0.00063%
Bypass Ratio 25.58064 25.57669 0.01546%

TSFC, lbm/hr/lbf 0.16632 0.16635 0.01910%
Net Thrust, lbf 28,620.84 28,620.84 0.00000%

SLS Ram Drag, lbf 61.67 61.77 0.14949%
Gross Thrust, lbf 28,682.52 28,682.61 0.00032%
Bypass Ratio 27.34323 27.33845 0.01745%

TSFC, lbm/hr/lbf 0.44075 0.44079 0.00883%
Net Thrust, lbf 5513.35 5514.00 0.01171%

CRZ Ram Drag, lbf 19,425.68 19,427.05 0.00703%
Gross Thrust, lbf 24,939.03 24,941.05 0.00807%
Bypass Ratio 24.34212 24.33803 0.01681%

Aerospace 2019, 6, 87 21 of 36

5. pyCycle and NPSS Derivative Comparison

The previous section provided the results of a detailed study to verify that pyCycle was capable
of producing results in agreement with the NPSS analysis tool. While this verification step was
important to the development of pyCycle, the primary motivation for creating this code was to
support gradient-based optimization of a thermodynamic cycle model in the context of a larger vehicle
system design. In this context, the accurate computation of total derivatives across an engine model is
required to provide the gradient information needed to direct the optimization algorithm. This section
examines the total derivative calculation, described by Equations (2) and (4), required for this type
of optimization for the N + 3 Reference Engine. This examination was completed by implementing
three different derivative calculation approaches, which were applied to both pyCycle and NPSS,
respectively, and comparing the resulting computed values.

The first approach considered in this evaluation was to compute the total derivatives required
for optimization using the analytic derivatives defined in pyCycle. These derivatives were computed
by first hand differentiating the thermodynamic equations required for each of the code elements
(described in Sections 2.2 and 2.3) to get the partial derivatives. The total derivatives were then
computed using OpenMDAO’s automatic implementation of the direct and adjoint analytic derivative
equations. The hand differentiated partial derivatives used in this process were thoroughly checked
and verified for each element using finite difference or complex step approaches. Therefore, for the
results presented in this section, the analytic derivatives were considered to be the accurate total
derivatives to reference from.

The second approach considered for computing total derivatives in this study applied a monolithic
technique that would be typically applied in determining total derivatives with existing cycle codes
such as NPSS. In this approach, the entire cycle analysis code is treated as single, black box object
without any knowledge of the internal calculations. The Solver, Cycle and Balance objects shown in
Figure 2 are hidden inside this box with only the inputs and outputs available. With this setup, the total
derivatives can be calculated through finite difference approximation by systematically varying the
input variables and recording the changes to the output values.

This total derivative calculation process is straightforward and is easy to apply to existing cycle
analysis codes such as NPSS. However, computing derivatives with this process presents a number
of opportunities for the introduction of error into the derivative calculation and is computationally
intensive. First, the monolithic approach treats the code inside the black box as an explicit calculation
with outputs directly dependent on the inputs. However, the internal calculations for cycle analysis
include converging a set of nonlinear residual equations within a defined tolerance. This numerical
convergence process therefore produces output values that are not exact (due to the tolerance on
the residual equation convergence) and instead include some level of error (ε). These errors in the
functional evaluation alter the derivative approximation, as shown in Equation (19). This error can
often be minimized by tightening the solver tolerance inside the monolithic code with the downside of
increasing computational time required to converge the model. However, the error introduced by the
presence of the internal solver can never be fully eliminated and its impact on the derivative values
can be difficult to quantify.

f ′(x) =
(f (x + h) + ε1)− (f (x) + ε2)

h
(19)

The other source of error for the monolithic derivative calculation approach is the need to take
a finite step size in the computation process. For nonlinear equations, smaller step sizes should
theoretically lead to more accurate derivative approximations. However, there is a practical lower
limit for the step size as subtractive cancellation will occur as result of numerical precision limits [38].
Computing derivatives with small step sizes is further complicated by the presence of internal solvers
in the monolithic approach. If the step size is too small, the change in input might not be sufficient
to increase the residual values above the specified tolerance. As a result, the step will produce no

Aerospace 2019, 6, 87 22 of 36

change in the output values as the numerical solver does not have to reconverge to produce “valid”
output. In this case, the derivatives computed by the finite differences will be zero. These issues with
the monolithic approach around NPSS models with internal solvers are further described in the work
of Hendricks [4].

The last approach considered in this study for computing total derivatives applied a semi-analytic
method. This approach can be considered an intermediate approach between the monolithic and
analytic approaches described above. In this approach, the derivatives are computed using the
direct—Equations (2) and (4)—or adjoint—Equations (5) and (6)—analytic methods. However,
the partial derivatives needed to apply the analytic methods were computed using finite differences
rather than hand differentiation. While this approach still uses the finite difference method,
the calculation process is significantly different than the monolithic approach because it does not
require the internal code solver to reconverge as part of finite differences. Instead of reconverging the
solver, the process executes a single pass through the model to compute the partial derivatives of the
outputs and residual equations (i.e., dependents in NPSS) as a function of both the inputs and implicit
state variables (i.e., independents in NPSS). The approach thereby increases the total number of finite
difference calculations which must be completed but eliminates the need for the internal solver during
these calculations and dramatically reduces the cost of each finite difference computation. As this
approach does eliminate the need to reconverge the residual equations within the finite difference
calculation, it eliminates the solver tolerance issues described for the monolithic approach. Regardless,
finite difference approximations are still present and therefore the semi-analytic method still suffers
from the limitations associated with subtractive cancellation with small step sizes.

The three methods described above were implemented in this study for the N + 3 reference
engine to examine the total derivative values they compute and their impact on gradient based
optimization. The analytic approach was implemented using pyCycle, with the monolithic and
semi-analytic approaches implemented using NPSS. Figure 9 shows the total derivatives of net thrust
at two design points (TOC and CRZ) with respect to the top-of-climb OPR and rolling takeoff T4.
The derivatives for the thrust at the other two operating points (SLS and RTO) are not shown as they
are fixed inputs to the model. Furthermore, the total derivatives for TSFC at each of the four design
points with respect to the same inputs are shown in Figure 10. In these figures, the plots depict the error
between the derivative values computed by the monolithic approach and semi-analytic approaches
relative to the fully analytic approach. For the monolithic approach, three different internal solver
tolerances were evaluated and are represented by the orange, green and red lines. For each of these
monolithic approaches and the semi-analytic approach (shown in blue), a range of relative step sizes
was also evaluated to show the effect of this value on the computed derivatives.

Examination of the total derivative errors for the monolithic and semi-analytic methods in both
these figures reveals several important insights. First and most generally, the figures show that the
accuracy of the total derivatives computed with these approaches vary substantially depending on the
derivative being computed, the relative step size, and the internal solver tolerance. This variability
makes it difficult to select values for step size and tolerance for total derivative calculation as the
best choice is not known a priori. For the sake of simplicity, a single step size is often used for
all inputs, but these results show that this can lead to large errors in some derivatives even if
others are approximated accurately. Second, for the semi-analytic approach, the general trends
show that smaller step sizes typically result in more accurate total derivatives. At the smallest step
size, the errors for the total derivatives were found to be on the order of 1%. This result is consistent
with the definition of the derivative which states that derivative gets more accurate as the step size
approaches zero. Furthermore, the results show that the step sizes taken in this study, while being
small, do not approach the practical limit resulting from subtractive cancellation. Lastly, the total
derivative plots show significant variation and limitations for using the monolithic approach with
finite difference approximation. For the largest internal solver tolerance of 10−4, the accuracy of
the derivative decrease as the step size decreases, reaching 100% error at step sizes below 10−4.

Aerospace 2019, 6, 87 23 of 36

This level of error occurs as a result of the specified step size not being large enough to cause the
solver to become unconverged. As a result, the functional value is the same with and without the step
(i.e., f (x + h) = f (x)) producing a total derivative of zero and 100% error. A similar outcome is also
visible for the intermediate monolithic tolerance at tolerance and step sizes of 10−6. While 100% error
is observed at this combination, at larger step sizes for the same tolerance, there is again significant
variation in the accuracy of the total derivative computed. The error in these derivative computations
is typically between 1% and 10% with the value depending on both the step size and total derivative
being computed. Slightly better total derivative accuracy can generally be achieved using monolithic
approach with a 10−8 solver tolerance. However, this approach typically still had errors on the order of
1%, indicating a practical limit for the accuracy that can be achieved by finite differencing monolithic
codes even with tightly converged internal solvers.

0.01%

0.10%

1.00%

10.00%

100.00%

F
n
e
t,

T
O

C

OPRTOC T4,RTO

10−6 10−5 10−4 10−3 10−2

Relative Step Size

0.01%

0.10%

1.00%

10.00%

100.00%

F
n
e
t,

C
R

Z

10−6 10−5 10−4 10−3 10−2

Relative Step Size

Semi-Analytic

Monlithic, Solver Tol. = 10-4

Monlithic, Solver Tol. = 10-6

Monlithic, Solver Tol. = 10-8

Figure 9. Net thrust total derivative error for semi-analytic and monolithic approaches.

In addition to accurately computing total derivatives, the analytic method implemented in
pyCycle provides a significant improvement in the computational speed for obtaining these values.
To evaluate the computational performance, total derivatives were computed with pyCycle and
several different combinations of step sizes and solver tolerances for the monolithic and semi-analytic
approaches implemented with NPSS. The total derivatives evaluated were those for net thrust,
TSFC and fan diameter with respect to PRFan,PRLPC, OPR, T4,RTO, Tratio, and Vratio,CRZ. Table 5 lists
the time required to compute these derivatives with each of the different methods. As shown in the
table, computing the total derivatives with pyCycle is extremely efficient and can be done in just under
2 s. By comparison, the fastest semi-analytic approach takes over 20 min while the best monolithic
approach takes over 30 min. This disparity shows the significant computational benefits that can be
achieved through the use of analytic derivatives over traditional approaches for computing derivatives
for existing codes such as NPSS.

Aerospace 2019, 6, 87 24 of 36

0.01%

0.10%

1.00%

10.00%

100.00%

T
S
F
C

T
O

C
OPRTOC T4,RTO

0.01%

0.10%

1.00%

10.00%

100.00%

T
S
F
C

R
T

O

0.01%

0.10%

1.00%

10.00%

100.00%

T
S
F
C

S
L

S

10−6 10−5 10−4 10−3 10−2

Relative Step Size

0.01%

0.10%

1.00%

10.00%

100.00%

T
S
F
C

C
R

Z

10−6 10−5 10−4 10−3 10−2

Relative Step Size

Semi-Analytic

Monlithic, Solver Tol. = 10-4

Monlithic, Solver Tol. = 10-6

Monlithic, Solver Tol. = 10-8

Figure 10. TSFC total derivative error for semi-analytic and monolithic approaches.

Table 5. Total derivative calculation times.

Method Time, Seconds

pyCycle Analytic 1.995
NPSS Monolithic (Step = 10−2, Tol = 10−4) 1863.86
NPSS Monolithic (Step = 10−4, Tol = 10−6) 1870.90

NPSS Semi-Analytic (Step = 10−4) 1269.89
NPSS Semi-Analytic (Step = 10−6) 1225.90

In summary, this section shows the accuracy and computational efficiency of several different
approaches for computing total derivatives across thermodynamic cycle models. The fully analytic
approach was implemented by pyCycle while the semi-analytic and monolithic approaches were
implemented with NPSS. The total derivatives for net thrust and TSFC computed by these three
methods were evaluated for the N + 3 model with errors computed relative to the analytic approach.
The semi-analytic and monolithic approaches both produced inaccurate total derivatives, with the
errors found to be a function of the step size, solver tolerance and the derivative being evaluated.

Aerospace 2019, 6, 87 25 of 36

Furthermore, the monolithic and semi-analytic approaches required several orders of magnitude more
time for calculation to generate these inaccurate derivative values. With these differences in accuracy
and computational cost, the question remains: How do the different approaches for computing
derivatives impact the gradient-based optimization of a thermodynamic cycle? This question is
examined using the N + 3 reference engine in the next section.

6. pyCycle and NPSS Optimization Comparison

pyCycle was developed with analytic derivatives to support the use of gradient-based
optimization on problems using larger vehicle system models that included thermodynamic cycle
analysis. To evaluate this capability relative to the current state of the art, an optimization study was
completed for using the MDP N + 3 reference engine described in the previous sections. The original
report by Jones [40] describing this engine showed a trade space around the selected baseline design
in terms of OPRTOC and T4,RTO. This trade space figure showed that the baseline design selected was
not optimal in terms of TSFC, with the optimal design having a lower T4,RTO and higher OPRTOC.
Furthermore, this trade study considered only two design variables while holding a number of other
design inputs fixed. While more design variables could theoretically have been considered in this
previous study, practical limits of manually exploring a larger design space made the problem difficult.
The application of gradient-based optimization methods however can enable the exploration of a
larger design space.

The formal optimization problem statement for exploring a larger N + 3 reference engine design
space is given in Table 6. The objective of the study was to identify designs that minimize the cruise
TSFC by changing six design variables. These variables included the OPRTOC and T4,RTO from the
original trade study as well as the pressure ratios of the other compressor components (PRFan,TOC and
PRLPC,TOC). The design variables also included the throttle ratio between the top-of-climb point and
rolling takeoff and the nozzle velocity ratio at cruise. Table 6 defines these two parameters and includes
lower and upper bounds for each of the design variables. In addition, two constraints were included
which limited the fan diameter to 100 inches and maintained a minimum net thrust at top-of-climb of
5800 lbf.

Table 6. Optimization problem statement.

Variable/Function Description

minimize TSFCCRZ CRZ TSFC, lbm/s/lbf

with respect to 1.2 < PRFan,TOC < 1.4 TOC fan pressure ratio
2.5 < PRLPC,TOC < 4.0 TOC LPC pressure ratio
40 < OPRTOC < 70 TOC overall pressure ratio
3000 < T4,RTO < 3600 RTO combustor exit temperature, R
0.5 < Tratio < 0.95 Throttle ratio (T4,TOC

T4,RTO
)

1.35 < Vratio,CRZ < 1.45 CRZ jet velocity ratio (Vjet,coreCv,core
Vjet,bypassCv,bypass

)

subject to DFan < 100 Fan diameter, in
Fnet,TOC > 5800.0 Top-of-climb thrust, lbf

Given this optimization problem, five different optimization studies were completed. These studies
implemented the three different derivative calculation approaches described and evaluated in the
previous section. The first study evaluated the use of analytic derivatives as implemented in pyCycle.
The next two studies implemented the monolithic approach with different values for the finite difference
relative step size and internal solver tolerance. The last two studies applied the semi-analytic approach,
again with different values for the finite difference relative step size and internal solver tolerance.
The top portion of Table 7 provides details for the step sizes and tolerances selected for each of
these studies. While other combinations of these parameters could have been selected, the values

Aerospace 2019, 6, 87 26 of 36

chosen were considered to be reasonable based on the derivative comparison and representative
of the typical implementation of these approaches. To ensure a fair evaluation of the different
methods, each optimization study was started from the same initial design, which was the baseline
design documented in the bottom half of Table 6. With this problem setup specified, the SNOPT
algorithm [37] was used drive the optimization.

Table 7. Optimization results for the N + 3 reference engine.

Parameter Baseline pyCycle Analytic NPSS Monolithic NPSS Semi-Analytic

Relative Step Size - - 10−2 10−4 10−4 10−6

Solver Tolerance - 10−6 10−4 10−6 10−4 10−6

Major Iterations - 8 12 10 7 7
Total Time, sec - 2334.26 34,459.95 53,609.77 16125.09 30,767.89

Objective Time, sec - 2289.03 5397.51 7956.92 1434.73 2730.60
Sensitivity Time, sec - 44.79 29,061.89 45,652.28 14,690.11 28,036.97

PRFan 1.3000 1.3519 1.3526 1.3518 1.3519 1.3519
PRLPC 3.0000 3.0590 2.5 3.0646 3.0532 3.0534

OPRTOC 55.0 70.0 70.0 70.0 70.0 70.0
T4,RTO, R 3400.00 3115.76 3074.84 3118.06 3115.77 3115.55

Tratio 0.9265 0.9500 0.9500 0.9500 0.9500 0.9500
Vratio,CRZ 1.40 1.35 1.35 1.35 1.35 1.35

DFan, in 100.1907 99.9984 100.0000 100.0000 100.0000 100.0000
TSFCCRZ, lbm/hr/lbf 0.44079 0.434154 0.434088 0.434104 0.434104 0.434104

The results of these five optimization studies are also shown in Table 7. The lower two sections of
the table provide the identified optimal values of the design variables as well as the constraint and
objective values. This information is also shown as a parallel coordinate plot in Figure 11. In this plot,
each of the axes shows a different parameter with the lines representing each of the optimization study
outputs. The first six axes show the optimal design variable values with the seventh column showing
the fan diameter constraint and the last column showing the objective function value. The top-of-climb
net thrust constraint is not include in this figure or table as the constraint was not found to be
limiting in any of the optimization studies. The results in the figure make it clear that most of the
optimization studies found almost the same solution as the lines fall nearly on top of each other.
The only exception was the NPSS monolithic approach with step size of 10−2 and a solver tolerance
of 10−4. This optimization study found a similar objective value, but achieved this objective at a
lower low pressure compressor pressure ratio (PRLPC) and slightly lower T4,RTO. Further investigation
found that the objective function is relatively insensitive to these two design variables making the
design space relatively flat with several local optima along the fan diameter constraint. This topology
combined with the less accurate derivatives produced by using larger step sizes and internal solver
tolerances resulted in this case finding a slightly different solution. In addition to showing the various
optimization results, the dashed line in the figure shows the baseline design. Comparing the optimized
designs with the baseline confirms the observations from the original trade study that a higher OPRTOC

and lower T4,RTO improve the TSFC. The results also show that the baseline design could be improved
by increasing the fan pressure ratio and LPC pressure ratio while also decreasing the jet velocity ratio.
With these changes by the optimization process, an approximately 1% improvement in TSFC can be
achieved compared to the baseline.

Aerospace 2019, 6, 87 27 of 36

PRFan

1.2

1.24

1.28

1.32

1.36

1.4

PRLPC

2.5

2.8

3.1

3.4

3.7

4.0

OPRTOC

40.0

46.0

52.0

58.0

64.0

70.0

T4,RTO

3000.0

3120.0

3240.0

3360.0

3480.0

3600.0

Tratio

0.5

0.59

0.68

0.77

0.86

0.95

Vratio,CRZ

1.35

1.37

1.39

1.41

1.43

1.45

DFan TSFCCRZ

95.0

97.0

99.0

101.0

103.0

105.0

Baseline Design

pyCycle Analytic (Tol = 10-6)

NPSS Monolithic (Step = 10-2, Tol = 10-4)

NPSS Monolithic (Step = 10-4, Tol = 10-6)

NPSS Semi-Analytic (Step = 10-4, Tol = 10-4)

NPSS Semi-Analytic (Step = 10-6, Tol = 10-6)

0.4

0.42

0.44

0.46

0.48

0.5

Figure 11. Optimal design variables, constraints, and objective values. (Note that the pyCycle analytic,
NPSS monolithic (Step = 10−4, Tol = 10−6), and both NPSS semi-analytic optimizations produced
nearly identical results and are coincident.

While the optimization studies produced similar results in terms of design variable, constraint,
and objective values, the derivative computation approaches produced vastly different results in
terms of the optimization method performance. Figure 12 shows three timing metrics for each of the
optimization studies completed. The first metric is the total wall time required for the optimization
algorithm to find the final solution. The other two metrics are the portions of that wall time that were
used to compute the objective function as well as the derivatives throughout the optimization. In each
of these metrics, the monolithic approach for computing derivatives with NPSS resulted in the longest
computational time. The majority of the computational time with this approach was in the calculation
of the derivatives as the internal solver had to be fully converged during the finite difference calculation
process. The results also show the impact of tightening the solver tolerance as the longest computation
times were for the monolithic case with the 10−6 solver tolerance. Overall, this optimization run
took almost 15 h to complete. In comparison, implementing the semi-analytic approach with NPSS
decreased the optimization time for each of these metrics. The total execution time was approximately
cut in half for the 10−4 tolerance and by about a third for the 10−6 tolerance relative to the monolithic
approach. This improvement in the overall execution time came from both the objective calculations
and the sensitivity calculations. However, even with this approach, the majority of the computational
time was spent determining the derivatives in support of the gradient based optimization. Both the
monolithic and semi-analytic derivative calculation approaches implemented with NPSS, however,
were outperformed by the analytic approach implemented in pyCycle. The total execution time with
this approach was under 1 h making it seveen times faster than the best semi-analytic approach
and about 15 times better than the best monolithic approach. This improvement was primarily due
to a drastic reduction in the computation time required for the derivatives which was noted in the
previous section. In total, the derivative computation time for the pyCycle optimization with analytic
derivatives was around 1 min for the entire optimization compared to several hours for the other
approaches. The majority of the overall time was therefore spent computing the objective value,
with this time being approximately the same as the semi-analytic implementations (which had about

Aerospace 2019, 6, 87 28 of 36

the same number of optimizer iterations) and faster than the monolithic approaches (which took more
optimizer iterations).

Total Time Objective Time Derivative Time
0

2

4

6

8

10

12

14

T
im

e,
h
r

pyCycle Analytic (Tol = 10-6)

NPSS Monolithic (Step = 10-2, Tol = 10-4)

NPSS Monolithic (Step = 10-4, Tol = 10-6)

NPSS Semi-Analytic (Step = 10-4, Tol = 10-4)

NPSS Semi-Analytic (Step = 10-6, Tol = 10-6)

Figure 12. Optimization times.

The optimization results presented in this section clearly demonstrate the power of the analytic
derivative approach implemented in pyCycle compared to more traditional derivative estimation
techniques. For the selected N + 3 example engine, the use of analytic, monolithic, and semi-analytic
derivatives generally produced similar overall optimum solutions. However, pyCycle’s analytic
approach effectively eliminated the time consuming derivative calculation process making it superior in
terms of computational efficiency. While this computational efficiency was valuable for thermodynamic
cycle optimizations such as the one presented in this section, the approach will be more powerful
when pyCycle is coupled with other disciplines to perform integrated vehicle system design using
optimization studies with many more design variables.

7. Conclusions

In an effort to improve the overall performance of aircraft, aviation researchers are exploring
a wide variety of new, unconventional vehicle conceptual designs. Many of these concepts break
the traditional mold of a tube fuselage with wings as the concepts aim to be more fuel efficient and
fly unconventional missions. To achieve these objectives, these concepts commonly include tightly
integrated systems where interactions between various vehicle components are used to achieve the
target performance benefits. Evaluating these concepts is becoming more of a challenge, however,
as traditional disciplinary analysis tools, which were meant to be run in isolation, now must be
combined to capture these interactions and compute the potential benefit. Running existing tools
in this integrated environment is feasible but less than ideal as methods such as gradient-based
optimization are often required to efficiently explore the large design spaces for these vehicles and
identify optimal designs.

To facilitate analysis of these new concepts, tools such as the OpenMDAO framework are
providing a means for creating integrated analysis environments as well as building optimization
friendly tools by supplying a set of foundational derivative calculation methods. In this project,
these foundational features in OpenMDAO were used as the basis to build a new thermodynamic
cycle analysis tool to enable efficient optimization of propulsion systems for these integrated vehicle
concepts. The resulting tool, pyCycle, was developed with a modular structure such as past cycle
codes to enable the analysis of a wide range of engine concepts. The tool contains the same physical

Aerospace 2019, 6, 87 29 of 36

equations as other cycle analysis tools such as NPSS and the thermodynamic cycle outputs from
pyCycle were verified against NPSS for a complex turbofan engine model.

While pyCycle contains identical thermodynamic models, the code is unique in that it implements
analytic derivative calculations to provide both partial derivatives for a Newton solver as well as total
derivatives for gradient-based optimization. The derivatives computed by pyCycle were evaluated in
comparison to those produced by two state-of-the-art finite difference approaches implemented with
NPSS. This comparison highlighted the inaccuracy of the derivatives computed using finite difference
methods with NPSS. Furthermore, the comparison demonstrated a three order of magnitude reduction
in computational time which can be achieved by analytically computing the derivatives as is done in
pyCycle. The improved accuracy and reduced computational cost clearly demonstrate the inherent
value of using analytic derivatives when applying optimization to cycle analysis models.

As a complete demonstration of the improved performance, this paper compares the results
of a design optimization of the thermodynamic cycle for an advanced high-bypass turbofan engine
performed using pyCycle with analytic derivatives and NPSS with two different techniques for
finite-difference derivative approximations. A detailed step-size analysis ensured reasonably accurate
finite-difference approximations so that the various derivative computation methods did not have
a significant impact on the optimal designs found by each optimization. The different derivative
computation methods did result in larger differences in the computational efficiency of the various
methods. The finite difference approaches with NPSS took 7–15 times longer compared to using
pyCycle with analytic derivatives. While the fully analytic methods performed the best by a wide
margin, these results also showed that improved performance can be achieved with NPSS models via
the semi-analytic derivative approach. The semi-analytic approach, which uses the direct or adjoint
formulations with finite difference computed partial derivatives, is still significantly slower than
analytic derivatives but offers a better option for integration of NPSS into vehicle level models.

The next steps for the continued research and further development of pyCycle of will focus on two
areas. The first area will focus on the application of the code to the analysis of a wider variety of engine
architectures. This will include a number of traditional gas turbine architectures, but will primarily
focus on more unconventional engine concepts with new technologies such as recuperation, which can
improve overall efficiency but present the additional challenge of expanding the design space. Second,
pyCycle will be used to create models of propulsion systems integrated into larger multidisciplinary
analyses of vehicle concepts. These analyses will examine aircraft concepts such as including boundary
layer ingestion as well as hybrid gas–electric or turboelectric concepts. Furthermore, pyCycle is being
integrated into a multidisciplinary optimization environment to explore emerging vehicle designs for
urban air mobility.

The results presented in this paper emphasize the need to create disciplinary analysis tools that
analytically compute derivatives to support multidisciplinary optimization. For codes that do not
require the same level of modularity as a cycle analysis tool, re-implementation is not necessary.
Those codes can simply be differentiated as is, either by hand differentiation of via algorithmic
differentiation. However, for tools such as pyCycle that fundamentally require modularity, adding
analytic derivatives requires a much larger effort that involves potentially re-implementing the code.
OpenMDAO facilitates that re-implementation by providing the automatic derivative capability,
as well as a library of available compatible numerical solvers and optimizers, needed to create high
performance analysis tools.

Author Contributions: Conceptualization, Methodology, Software, and Writing, E.S.H. and J.S.G.; and Validation,
Formal Analysis, and Visualization, E.S.H.

Funding: The work presented in this paper was supported by NASA’s Transformational Tools and Technology
Project. This research received no external funding.

Acknowledgments: The authors would like to thank Kenneth Moore, Tristan Hearn, Jeffrey Chin,
Jeffyres Chapman, and Thomas Lavelle for their contributions to the development of pyCycle. The authors

Aerospace 2019, 6, 87 30 of 36

would also like to thank the members of the OpenMDAO development team for their support throughout the
development of pyCycle.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A Area
BPR Bypass ratio
D Diameter
F Thrust
FAR Fuel-to-air ratio
h Specific enthalpy
ṁ Mass flow rate
MN Mach number
N Shaft speed
OPR Overall pressure ratio
P Pressure
PR Pressure ratio
R Residual
R R-line
S Entropy
T Temperature
TSFC Thrust specific fuel consumption
V Velocity
Ẇ Power
X̄ Design variable vector
η Efficiency
τ Torque
Subscripts
()4 Combustor exit
()c Corrected property
()comp Component computed value
()CRZ Cruise flight condition
()Des Design input
()ideal Ideal property
()i Turbomachinery index
()in Entrance condition
()j Shaft index
()k Cooling flow index
()m Iteration counter
()map Map computed value
()max Maximum value
()n Net
()Noz Nozzle throat property
()out Exit condition
()poly Polytropic property
()ratio Ratio quantity
()RTO Rolling takeoff flight condition
()s Static property
()SLS Sea-level static flight condition
()t Total property
()target Target value
()TOC Top-of-climb flight condition

Aerospace 2019, 6, 87 31 of 36

Appendix A

The tables below contain the text output produced by the pyCycle model of the N+3 reference
engine for the verification study described in Section 4. The output provided is for each of the four
design points considered in the study: top of climb (TOC), rolling take off (RTO), sea level static (SLS)
and cruise (CRZ).

--
POINT: TOC
--
PERFORMANCE CHARACTERISTICS
Mach Alt W Fn Fg Fram OPR TSFC BPR
0.80000 35000.0 820.921 6126.7 25993.2 19866.5 55.000 0.43860 23.742
--
FLOW STATION PROPERTIES
Component Pt Tt ht S W MN V A
Start 5.273 444.40 -23.98 1.6645 820.921 0.8000 778.62
Inlet 5.262 444.40 -23.98 1.6647 820.921 0.6250 622.23 7174.41
Fan 6.841 480.16 -15.41 1.6652 820.921 0.4500 474.00 7162.42
Splitter1 6.841 480.16 -15.41 1.6652 33.179 0.4500 474.00 289.48
Splitter2 6.841 480.16 -15.41 1.6652 787.742 0.4500 474.00 6872.94
Duct2 6.772 480.16 -15.41 1.6659 33.179 0.4500 474.00 292.40
LPC 20.317 678.87 32.35 1.6738 33.179 0.4500 563.04 116.02
Duct25 20.012 678.87 32.35 1.6749 33.179 0.4500 563.04 117.78
HPC 282.224 1530.58 247.22 1.6972 32.515 0.3000 560.58 17.55
Bld3 282.224 1530.58 247.22 1.6972 28.159 0.3000 560.58 15.20
Burner 270.935 3150.00 240.84 1.9383 28.906 0.1000 262.33 68.69
HPT 64.795 2232.96 22.04 1.9281 33.261 0.3000 666.22 95.98
Duct45 64.471 2232.96 22.04 1.9284 33.261 0.4500 991.45 68.49
LPT 5.889 1299.52 -232.27 1.9405 33.925 0.3500 600.59 706.48
Duct5 5.830 1299.52 -232.27 1.9412 33.925 0.2500 431.07 965.30
CoreNozz 5.830 1299.52 -232.27 1.9412 33.925 0.9082 1476.26 402.12
BypBld 6.841 480.16 -15.41 1.6652 787.742 0.4500 474.00 6872.94
Duct17 6.738 480.16 -15.41 1.6663 787.742 0.4500 474.00 6977.61
BypNozz 6.738 480.16 -15.41 1.6663 787.742 1.0000 980.79 4816.55
--
COMPRESSOR PROPERTIES
Component Wc PR eff effPoly Nc pwr Rline NcMap s_WcDes s_PRdes s_effDes s_NcDes
Fan 2122.18 1.3000 0.96886 0.97000 2360.0 -9952.1 2.0000 1.0000 0.7753 0.7692 1.0362 2359.98
LPC 69.27 3.0000 0.88945 0.90500 7038.3 -2242.3 2.2000 1.1000 0.3065 4.3745 1.0195 6398.46
HPC 27.87 14.1026 0.84751 0.89043 18242.9 -9985.7 2.0000 1.0000 0.1353 0.5956 0.9947 18242.94
--

BURNER PROPERTIES
Component dPqP TtOut Wfuel FAR
Burner 0.0400 3150.00 0.7464 0.02651
--
TURBINE PROPERTIES
Component Wp PR eff effPoly Np pwr NpMap s_WpDes s_PRdes s_effDes s_NpDes
HPT 5.988 4.1814 0.92259 0.91000 371.9 10335.7 100.000 0.1986 0.7953 0.9891 3.7187
LPT 24.379 10.9472 0.94007 0.92000 143.3 12317.5 100.000 0.1626 1.5303 1.0278 1.4331
--
NOZZLE PROPERTIES
Component PR Cv Ath MNth MNout V Fg
CoreNozz 1.6860 0.9999 402.12 0.9082 0.9082 1476.3 1556.4
BypNozz 1.9485 0.9975 4816.55 1.0000 1.0000 980.8 24436.7
--
DUCT PROPERTIES
Component dPqP MN A
Duct2 0.0100 0.4500 292.40
Duct25 0.0150 0.4500 117.78
Duct45 0.0050 0.4500 68.49
Duct5 0.0100 0.2500 965.30
Duct17 0.0150 0.4500 6977.61
--
SHAFT PROPERTIES
Component Nmech trqin trqout pwrin pwrout
HP_Shaft 20871.0 2600.9 -2512.9 10335.7 -9985.7
LP_Shaft 6772.0 9553.0 -9457.5 12317.5 -12194.3
Fan_Shaft 2184.5 23927.4 -23927.4 9952.1 -9952.1
--
BLEED PROPERTIES
Bleed Wb/Win Pfrac Workfrac W Tt ht Pt
SBV 0.0000 1.0000 1.0000 0.0000 678.87 32.351 20.317
LPT_inlet 0.0000 0.1465 0.5000 0.0000 1115.34 139.786 58.426
LPT_exit 0.0200 0.1465 0.5000 0.6636 1115.34 139.786 58.426
HPT_inlet 0.0636 1.0000 1.0000 2.0690 1530.58 247.221 282.224

Aerospace 2019, 6, 87 32 of 36

HPT_exit 0.0703 1.0000 1.0000 2.2869 1530.58 247.221 282.224
Cust -0.0000 0.1465 0.3500 -0.0000 986.50 107.555 58.426
BypBld 0.0000 1.0000 1.0000 0.0000 480.16 -15.415 6.841
--

--
POINT: RTO
--
PERFORMANCE CHARACTERISTICS
Mach Alt W Fn Fg Fram OPR TSFC BPR
0.25000 0.0 1916.017 22800.0 39847.5 17047.5 42.649 0.27368 25.577
--
FLOW STATION PROPERTIES
Component Pt Tt ht S W MN V A
Start 15.349 552.49 1.93 1.6435 1916.017 0.2500 286.26
Inlet 15.303 552.49 1.93 1.6437 1916.017 0.5241 588.02 7174.41
Fan 18.604 585.23 9.80 1.6441 1916.017 0.4202 489.67 7162.42
Splitter1 18.604 585.23 9.80 1.6441 72.094 0.3848 449.62 289.48
Splitter2 18.604 585.23 9.80 1.6441 1843.923 0.4217 491.40 6872.94
Duct2 18.468 585.23 9.80 1.6446 72.094 0.3835 448.19 292.40
LPC 49.269 789.67 59.20 1.6497 72.094 0.4313 582.22 116.02
Duct25 48.590 789.67 59.20 1.6507 72.094 0.4306 581.34 117.78
HPC 638.957 1721.15 298.29 1.6726 70.652 0.3071 606.30 17.55
Bld3 638.957 1721.15 298.29 1.6726 61.187 0.3071 606.30 15.20
Burner 613.399 3400.00 290.07 1.9085 62.920 0.1002 272.25 68.69
HPT 145.838 2427.70 51.98 1.8986 72.385 0.3036 701.10 95.98
Duct45 145.091 2427.70 51.98 1.8990 72.385 0.4563 1045.28 68.49
LPT 17.761 1520.77 -200.46 1.9083 73.827 0.2666 494.49 706.48
Duct5 17.658 1520.77 -200.46 1.9087 73.827 0.1925 357.93 965.30
CoreNozz 17.658 1520.77 -200.46 1.9087 73.827 0.5303 967.92 402.12
BypBld 18.604 585.23 9.80 1.6441 1843.923 0.4217 491.40 6872.94
Duct17 18.359 585.23 9.80 1.6450 1843.923 0.4207 490.29 6977.61
BypNozz 18.359 585.23 9.80 1.6450 1843.923 0.5730 658.18 5585.88
--
COMPRESSOR PROPERTIES
Component Wc PR eff effPoly Nc pwr Rline NcMap s_WcDes s_PRdes s_effDes s_NcDes
Fan 1899.07 1.2157 0.96738 0.96828 2066.4 -21322.5 1.7500 0.8756 0.7753 0.7692 1.0362 2359.98
LPC 60.94 2.6678 0.91933 0.92954 6224.1 -5039.0 2.0052 0.9728 0.3065 4.3745 1.0195 6398.46
HPC 26.90 13.1500 0.84840 0.88957 18063.6 -24143.5 2.0590 0.9902 0.1353 0.5956 0.9947 18242.94
--
BURNER PROPERTIES
Component dPqP TtOut Wfuel FAR
Burner 0.0400 3400.00 1.7333 0.02833
--
TURBINE PROPERTIES
Component Wp PR eff effPoly Np pwr NpMap s_WpDes s_PRdes s_effDes s_NpDes
HPT 5.981 4.2060 0.92327 0.91099 382.2 24493.5 102.791 0.1986 0.7953 0.9891 3.7187
LPT 24.581 8.1691 0.94280 0.92679 134.2 26627.8 93.632 0.1626 1.5303 1.0278 1.4331
--
NOZZLE PROPERTIES
Component PR Cv Ath MNth MNout V Fg
CoreNozz 1.2016 0.9999 402.12 0.5303 0.5303 967.9 2220.8
BypNozz 1.2492 0.9975 5585.88 0.5730 0.5730 658.2 37626.8
--
DUCT PROPERTIES
Component dPqP MN A
Duct2 0.0073 0.3835 292.40
Duct25 0.0138 0.4306 117.78
Duct45 0.0051 0.4563 68.49
Duct5 0.0058 0.1925 965.30
Duct17 0.0132 0.4207 6977.61
--
SHAFT PROPERTIES
Component Nmech trqin trqout pwrin pwrout
HP_Shaft 22288.5 5771.7 -5689.2 24493.5 -24143.5
LP_Shaft 6611.5 21153.0 -20941.4 26627.8 -26361.5
Fan_Shaft 2132.7 52509.6 -52509.6 21322.5 -21322.5
--
BLEED PROPERTIES
Bleed Wb/Win Pfrac Workfrac W Tt ht Pt
SBV 0.0000 1.0000 1.0000 0.0000 789.67 59.200 49.269
LPT_inlet 0.0000 0.1465 0.5000 0.0000 1268.38 178.743 135.079
LPT_exit 0.0200 0.1465 0.5000 1.4419 1268.38 178.743 135.079
HPT_inlet 0.0636 1.0000 1.0000 4.4958 1721.15 298.287 638.957
HPT_exit 0.0703 1.0000 1.0000 4.9692 1721.15 298.287 638.957
Cust -0.0000 0.1465 0.3500 -0.0000 1127.61 142.880 135.079
BypBld 0.0000 1.0000 1.0000 0.0000 585.23 9.799 18.604
--

--

Aerospace 2019, 6, 87 33 of 36

POINT: SLS
--
PERFORMANCE CHARACTERISTICS
Mach Alt W Fn Fg Fram OPR TSFC BPR
0.00100 0.0 1735.528 28620.8 28682.6 61.8 36.435 0.16635 27.338
--
FLOW STATION PROPERTIES
Component Pt Tt ht S W MN V A
Start 14.696 545.67 0.30 1.6435 1735.528 0.0010 1.15
Inlet 14.622 545.67 0.30 1.6438 1735.528 0.4819 539.52 7174.41
Fan 17.150 572.11 6.64 1.6442 1735.528 0.4053 467.54 7162.42
Splitter1 17.150 572.11 6.64 1.6442 61.243 0.3446 399.28 289.48
Splitter2 17.150 572.11 6.64 1.6442 1674.285 0.4080 470.54 6872.94
Duct2 17.050 572.11 6.64 1.6446 61.243 0.3429 397.39 292.40
LPC 42.472 756.61 51.17 1.6495 61.243 0.4120 545.40 116.02
Duct25 41.938 756.61 51.17 1.6504 61.243 0.4107 543.78 117.78
HPC 522.990 1628.86 273.43 1.6715 60.018 0.3099 596.01 17.55
Bld3 522.990 1628.86 273.43 1.6715 51.978 0.3099 596.01 15.20
Burner 502.070 3173.61 266.64 1.8974 53.300 0.0999 262.98 68.69
HPT 118.380 2251.13 43.81 1.8884 61.340 0.3045 678.89 95.98
Duct45 117.770 2251.13 43.81 1.8887 61.340 0.4580 1012.65 68.49
LPT 16.779 1448.63 -175.76 1.8974 62.565 0.2306 418.82 706.48
Duct5 16.706 1448.63 -175.76 1.8977 62.565 0.1670 304.03 965.30
CoreNozz 16.706 1448.63 -175.76 1.8977 62.565 0.4409 792.02 402.12
BypBld 17.150 572.11 6.64 1.6442 1674.285 0.4080 470.54 6872.94
Duct17 16.939 572.11 6.64 1.6451 1674.285 0.4066 469.01 6977.61
BypNozz 16.939 572.11 6.64 1.6451 1674.285 0.4551 522.89 6386.04
--
COMPRESSOR PROPERTIES
Component Wc PR eff effPoly Nc pwr Rline NcMap s_WcDes s_PRdes s_effDes s_NcDes
Fan 1789.08 1.1729 0.96154 0.96240 1906.0 -15587.6 1.7500 0.8076 0.7753 0.7692 1.0362 2359.98
LPC 55.44 2.4910 0.91827 0.92796 5770.5 -3857.7 1.8652 0.9019 0.3065 4.3745 1.0195 6398.46
HPC 25.92 12.4705 0.85123 0.89124 17884.9 -19066.2 2.0286 0.9804 0.1353 0.5956 0.9947 18242.94
--
BURNER PROPERTIES
Component dPqP TtOut Wfuel FAR
Burner 0.0400 3173.61 1.3225 0.02544
--
TURBINE PROPERTIES
Component Wp PR eff effPoly Np pwr NpMap s_WpDes s_PRdes s_effDes s_NpDes
HPT 5.981 4.2412 0.92341 0.91080 383.4 19416.2 103.112 0.1986 0.7953 0.9891 3.7187
LPT 24.712 7.0189 0.94168 0.92649 127.7 19641.7 89.131 0.1626 1.5303 1.0278 1.4331
--
NOZZLE PROPERTIES
Component PR Cv Ath MNth MNout V Fg
CoreNozz 1.1368 0.9999 402.12 0.4409 0.4409 792.0 1540.0
BypNozz 1.1526 0.9975 6386.04 0.4551 0.4551 522.9 27142.6
--
DUCT PROPERTIES
Component dPqP MN A
Duct2 0.0059 0.3429 292.40
Duct25 0.0126 0.4107 117.78
Duct45 0.0052 0.4580 68.49
Duct5 0.0043 0.1670 965.30
Duct17 0.0123 0.4066 6977.61
--
SHAFT PROPERTIES
Component Nmech trqin trqout pwrin pwrout
HP_Shaft 21601.1 4720.9 -4635.8 19416.2 -19066.2
LP_Shaft 6060.5 17021.8 -16851.6 19641.7 -19445.3
Fan_Shaft 1955.0 41876.6 -41876.6 15587.6 -15587.6
--
BLEED PROPERTIES
Bleed Wb/Win Pfrac Workfrac W Tt ht Pt
SBV 0.0000 1.0000 1.0000 0.0000 756.61 51.166 42.472
LPT_inlet 0.0000 0.1465 0.5000 0.0000 1204.13 162.296 112.412
LPT_exit 0.0200 0.1465 0.5000 1.2249 1204.13 162.296 112.412
HPT_inlet 0.0636 1.0000 1.0000 3.8191 1628.86 273.427 522.990
HPT_exit 0.0703 1.0000 1.0000 4.2212 1628.86 273.427 522.990
Cust -0.0000 0.1465 0.3500 -0.0000 1072.28 128.957 112.412
BypBld 0.0000 1.0000 1.0000 0.0000 572.11 6.645 17.150
--

--
POINT: CRZ
--
PERFORMANCE CHARACTERISTICS
Mach Alt W Fn Fg Fram OPR TSFC BPR
0.80000 35000.0 802.762 5514.0 24941.1 19427.1 51.471 0.44079 24.338
--

Aerospace 2019, 6, 87 34 of 36

FLOW STATION PROPERTIES
Component Pt Tt ht S W MN V A
Start 5.273 444.40 -23.98 1.6645 802.762 0.8000 778.62
Inlet 5.262 444.40 -23.98 1.6647 802.762 0.6014 600.32 7174.41
Fan 6.716 477.56 -16.04 1.6652 802.762 0.4461 468.76 7162.42
Splitter1 6.716 477.56 -16.04 1.6652 31.682 0.4326 455.15 289.48
Splitter2 6.716 477.56 -16.04 1.6652 771.080 0.4467 469.34 6872.94
Duct2 6.654 477.56 -16.04 1.6658 31.682 0.4322 454.72 292.40
LPC 19.930 671.82 30.65 1.6726 31.682 0.4317 538.20 116.02
Duct25 19.655 671.82 30.65 1.6736 31.682 0.4311 537.40 117.78
HPC 264.636 1494.29 237.62 1.6952 31.048 0.3019 557.64 17.55
Bld3 264.636 1494.29 237.62 1.6952 26.889 0.3019 557.64 15.20
Burner 254.051 3045.16 231.80 1.9307 27.564 0.0998 257.90 68.69
HPT 60.582 2152.71 20.13 1.9210 31.724 0.3001 655.21 95.98
Duct45 60.279 2152.71 20.13 1.9213 31.724 0.4502 975.11 68.49
LPT 5.574 1253.18 -222.90 1.9340 32.357 0.3453 582.67 706.48
Duct5 5.520 1253.18 -222.90 1.9346 32.357 0.2468 418.44 965.30
CoreNozz 5.520 1253.18 -222.90 1.9346 32.357 0.8556 1376.23 402.12
BypBld 6.716 477.56 -16.04 1.6652 771.080 0.4467 469.34 6872.94
Duct17 6.617 477.56 -16.04 1.6662 771.080 0.4465 469.21 6977.61
BypNozz 6.617 477.56 -16.04 1.6662 771.080 1.0000 978.13 4787.97
--
COMPRESSOR PROPERTIES
Component Wc PR eff effPoly Nc pwr Rline NcMap s_WcDes s_PRdes s_effDes s_NcDes
Fan 2075.24 1.2763 0.96917 0.97022 2288.8 -9023.5 1.9397 0.9699 0.7753 0.7692 1.0362 2359.98
LPC 67.14 2.9951 0.90350 0.91707 6844.7 -2092.8 2.1075 1.0697 0.3065 4.3745 1.0195 6398.46
HPC 26.96 13.4644 0.84982 0.89161 18077.6 -9184.6 1.9746 0.9909 0.1353 0.5956 0.9947 18242.94
--
BURNER PROPERTIES
Component dPqP TtOut Wfuel FAR
Burner 0.0400 3045.16 0.6751 0.02511
--
TURBINE PROPERTIES
Component Wp PR eff effPoly Np pwr NpMap s_WpDes s_PRdes s_effDes s_NpDes
HPT 5.987 4.1935 0.92265 0.90992 372.8 9534.6 100.260 0.1986 0.7953 0.9891 3.7187
LPT 24.418 10.8135 0.93769 0.91682 141.6 11228.6 98.777 0.1626 1.5303 1.0278 1.4331
--
NOZZLE PROPERTIES
Component PR Cv Ath MNth MNout V Fg
CoreNozz 1.5963 0.9999 402.12 0.8556 0.8556 1376.2 1383.9
BypNozz 1.9135 0.9975 4787.97 1.0000 1.0000 978.1 23557.1
--
DUCT PROPERTIES
Component dPqP MN A
Duct2 0.0092 0.4322 292.40
Duct25 0.0138 0.4311 117.78
Duct45 0.0050 0.4502 68.49
Duct5 0.0097 0.2468 965.30
Duct17 0.0148 0.4465 6977.61
--
SHAFT PROPERTIES
Component Nmech trqin trqout pwrin pwrout
HP_Shaft 20574.1 2434.0 -2344.6 9534.6 -9184.6
LP_Shaft 6567.9 8979.1 -8889.3 11228.6 -11116.3
Fan_Shaft 2118.7 22369.1 -22369.1 9023.5 -9023.5
--
BLEED PROPERTIES
Bleed Wb/Win Pfrac Workfrac W Tt ht Pt
SBV 0.0000 1.0000 1.0000 0.0000 671.82 30.649 19.930
LPT_inlet 0.0000 0.1465 0.5000 0.0000 1092.89 134.132 55.544
LPT_exit 0.0200 0.1465 0.5000 0.6336 1092.89 134.132 55.544
HPT_inlet 0.0636 1.0000 1.0000 1.9757 1494.29 237.616 264.636
HPT_exit 0.0703 1.0000 1.0000 2.1837 1494.29 237.616 264.636
Cust -0.0000 0.1465 0.3500 -0.0000 968.49 103.087 55.544
BypBld 0.0000 1.0000 1.0000 0.0000 477.56 -16.038 6.716
--

References

1. Saravanamuttoo, H.; Rogers, G.; Cohen, H. Gas Turbine Theory; Pearson Prentice Hall: Harlow, UK, 2001;
Chapter 1.

2. Mattingly, J.D.; Heiser, W.H.; Daley, D.H. Aircraft Engine Design; AIAA Education Series; AIAA: Washington,
DC, USA, 1987; Chapter 1.

3. Walsh, P.P.; Fletcher, P. Gas Turbine Performance; Blackwell Science and ASME: Fairfield, NJ, USA, 2004;
Chapter 6.

Aerospace 2019, 6, 87 35 of 36

4. Hendricks, E.S. A Multi-Level Multi-Design Point Approach for Gas Turbine Cycle and Turbine Conceptual
Design. Ph.D. Thesis, Georgia Institute of Technology, School of Aerospace Engineering, Atlanta, GA,
USA, 2017.

5. Oates, G.C. Ideal Cycle Analysis. In The Aerothermodynamics of Aircraft Gas Turbine Engines; Oates, G.C., Ed.;
AFAPL-TR-78-52; AIAA Education Series; AIAA: Washington, DC, USA, 1985; Chapter 5.

6. Curlett, B.P.; Felder, J.L. Object-Oriented Approach for Gas Turbine Engine Simulation; NASA TM-106970;
NASA: Cleveland, OH, USA, 1995.

7. Fishbach, L. Computer Simulation of Engine Systems; NASA TM-79290; NASA: Cleveland, OH, USA, 1980.
8. Klann, J.L.; Snyder, C.A. NEPP Programmers Manual: Volume 1; NASA TM-106575-VOL-1; NASA: Cleveland,

OH, USA, 1994.
9. Claus, R.W.; Evans, A.; Lylte, J.; Nichols, L. Numerical Propulsion System Simulation. Comput. Syst. Eng.

1991, 2, 357–364. [CrossRef]
10. Lytle, J.K. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles;

NASA TM-1999-209194; NASA: Cleveland, OH, USA, 1999.
11. Plybon, R.C.; VanDeWall, A.; Sampath, R.; Balasubramaniam, M.; Mallina, R.; Irani, R. High Fidelity System

Simulation of Multiple Components in Support of the UEET Program; NASA CR-2006-214230; NASA: Cleveland,
OH, USA, 2006.

12. Welstead, J.R.; Felder, J.L. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport
with Fuselage Boundary Layer Ingestion. In Proceedings of the 54th AIAA Aerospace Sciences Meeting,
San Diego, CA, USA, 4–8 January 2016.

13. Drela, M. Development of the D8 Transport Configuration. In Proceedings of the 29th AIAA Applied
Aerodynamics Conference, Honolulu, HI, USA, 27–30 June 2011.

14. Hall, D.K.; Huang, A.C.; Uranga, A.; Greitzer, E.M.; Drela, M.; Sato, S. Boundary Layer Ingestion Propulsion
Benefit for Transport Aircraft. J. Propuls. Power 2017, 33, 1118–1129. [CrossRef]

15. Antcliff, K.R.; Capristan, F.M. Conceptual Design of the Parallel Electric-Gas Architecture with Synergistic
Utilization Scheme (PEGASUS) Concept. In Proceedings of the 18th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Denver, CO, USA, 5–9 June 2017.

16. Felder, J.L.; Kim, H.D.; Brown, G.V. Turboelectric Distributed Propulsion Engine Cycle Analysis for
Hybrid-Wing-Body Aircraft. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the
New Horizons Forum and Aerospace Exposition, Orland, FL, USA, 5–8 January 2009.

17. Hendricks, E.S. A Review of Boundary Layer Ingestion Modeling Approaches for Use in Conceptual Design; NASA
TM-2018-219926; NASA: Cleveland, OH, USA, July 2018.

18. Ordaz, I. Aero-Propulsive Analysis and Design Framework. In Propulsion-Airframe Integration Technical
Interchange Meeting; Long-Davis, M.J., Ed., NASA CP-2018-219955; NASA: Cleveland, OH, USA, May 2018;
pp. 113–154.

19. Geiselhart, K.; Ozoroski, L.P.; Fenbert, J.W.; Shields, E.W.; Li, W. Integration of Multifidelity Multidisciplinary
Computer Codes for Design and Analysis of Supersonic Aircraft. In Proceedings of the 49th AIAA Aerospace
Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA,
4–7 January 2011.

20. Allison, D.; Morris, C.; Schetz, J.; Kapania, R.; Sultan, C.; Deaton, J.; Grandhi, R. A Multidisciplinary Design
Optimization Framework for Design Studies of an Efficient Supersonic Air Vehicle. In Proceedings of the
12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Indianapolis, IN, USA, 17–19 September 2012.

21. Allison, D.L.; Alyanak, E.; Bhagat, N. High Fidelity, Nonlinear, Integrated Nozzle Installation Effects for
Numerical Propulsion System Simulation. In Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 5–9 January 2015.

22. Lyu, Z.; Xu, Z.; Martins, J.R.R.A. Benchmarking Optimization Algorithms for Wing Aerodynamic Design
Optimization. In Proceedings of the 8th International Conference on Computational Fluid Dynamics
(ICCFD8), Chengdu, China, 14–18 July 2014.

23. Bryson, A.E.; Ho, Y.C. Applied Optimal Control: Optimization, Estimation, and Control; Taylor & Francis Group:
New York, NY, USA, 1975.

24. Arora, J.; Haug, E.J. Methods of Design Sensitivity Analysis in Structural Optimization. AIAA J. 1979,
17, 970–974. [CrossRef]

http://dx.doi.org/10.1016/0956-0521(91)90003-N
http://dx.doi.org/10.2514/1.B36321
http://dx.doi.org/10.2514/3.61260

Aerospace 2019, 6, 87 36 of 36

25. Jameson, A. Aerodynamic Design via Control Theory. J. Sci. Comput. 1988, 3, 233–260. [CrossRef]
26. Sobieszczanski-Sobieski, J. Sensitivity of Complex, Internally Coupled Systems. AIAA J. 1990, 28, 153–160.

[CrossRef]
27. Sobieszczanski-Sobieski, J. Sensitivity Analysis and Multidisciplinary Optimization for Aircraft Design:

Recent Advances and Results. J. Aircr. 1990, 27, 993–1001. [CrossRef]
28. Martins, J.R.R.A.; Alonso, J.J.; Reuther, J.J. High-Fidelity Aerostructural Design Optimization of a Supersonic

Business Jet. J. Aircr. 2004, 41, 523–530. [CrossRef]
29. Martins, J.R.R.A.; Alonso, J.J.; Reuther, J.J. A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity

Aero-Structural Design. Optim. Eng. 2005, 6, 33–62.:OPTE.0000048536.47956.62. [CrossRef]
30. Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions,

Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations; NASA RP-1311;
NASA: Cleveland, OH, USA, 1994.

31. Gray, J.S.; Hwang, J.T.; Martins, J.R.R.A.; Moore, K.T.; Naylor, B.A. OpenMDAO: An Open-Source Framework
for Multidisciplinary Design, Analysis, and Optimization. Struct. Multidiscip. Optim. 2019, 59, 1075–1104,
doi:10.1007/s00158-019-02211-z. [CrossRef]

32. Gray, J.S.; Chin, J.; Hearn, T.; Hendricks, E.; Lavelle, T.; Martins, J.R.R.A. Chemical Equilibrium Analysis with
Adjoint Derivatives for Propulsion Cycle Analysis. J. Propuls. Power 2017, 33, 1041–1052. [CrossRef]

33. Gray, J.S. Design Optimization of a Boundary Layer Ingestion Propulsor Using a Coupled Aeropropulsive
Model. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2018.

34. Yildirim, A.; Gray, J.S.; Mader, C.A.; Martins, J. Aeropropulsive Design Optimization of a Boundary Layer
Ingestion System. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019.

35. Jasa, J.P.; Brelje, B.J.; Mader, C.A.; Martins, J.R.R.A. Coupled Design of a Supersonic Engine and Thermal
System. In Proceedings of the 13th World Congress of Structural and Multidisciplinary Optimization, Beijing,
China, 20–24 May 2019.

36. Lambe, A.B.; Martins, J.R.R.A. Extensions to the Design Structure Matrix for the Description of
Multidisciplinary Design, Analysis, and Optimization Processes. Struct. Multidiscip. Optim. 2012, 46, 273–284.
[CrossRef]

37. Gill, P.E.; Murray, W.; Saunders, M.A. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization.
SIAM J. Optim. 2002, 12, 976–1006. [CrossRef]

38. Martins, J.R.; Sturdza, P.; Alonso, J.J. The Complex-Step Derivative Approximation. ACM Trans. Math.
Softw. (TOMS) 2003, 29, 245–262. [CrossRef]

39. Hearn, D.T.; Hendricks, E.; Chin, J.; Gray, J.; Moore, D.K.T. Optimization of Turbine Engine Cycle Analysis
with Analytic Derivatives. In Proceedings of the 17th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, Washington, DC, USA, 13–17 June 2016.

40. Jones, S.M.; Haller, W.J.; Tong, M.T. An N+3 Technology Level Reference Propulsion System; NASA
TM-2017-219501; NASA: Cleveland, OH, USA, May 2017.

41. Schutte, J.S. Simultaneous Multi-Design Point Approach to Gas Turbine On-Design Cycle Analysis for
Aircraft Engines. Ph.D. Thesis, Georgia Institute of Technology, School of Aerospace Engineering, Atlanta,
GA, USA, 2009.

Code Availability: The pyCycle source code and the example models produced in this research are available on
GitHub at https://github.com/OpenMDAO/pycycle. The NPSS models used for validation and comparison
are also included in this repository. However, to run these NPSS models it will be necessary to obtain a copy of
NPSS from the NPSS Consortium via Southwest Research Institute (https://www.swri.org/consortia/numerical-
propulsion-system-simulation-npss).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF01061285
http://dx.doi.org/10.2514/3.10366
http://dx.doi.org/10.2514/3.45973
http://dx.doi.org/10.2514/1.11478
http://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
https://doi.org/10.1007/s00158-019-02211-z
http://dx.doi.org/10.1007/s00158-019-02211-z
http://dx.doi.org/10.2514/1.B36215
http://dx.doi.org/10.1007/s00158-012-0763-y
http://dx.doi.org/10.1137/S1052623499350013
http://dx.doi.org/10.1145/838250.838251
https://github.com/OpenMDAO/pycycle
https://www.swri.org/consortia/numerical-propulsion-system-simulation-npss
https://www.swri.org/consortia/numerical-propulsion-system-simulation-npss
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	pyCycle Overview
	Analysis, Optimization, and Analytic Derivatives
	Physical Equations of Cycle Analysis
	Implicit Relationships with the Balance Block

	Example Problem
	Modeling a Single Flight Condition
	Multi-Design Point Modeling

	pyCycle Verification
	pyCycle and NPSS Derivative Comparison
	pyCycle and NPSS Optimization Comparison
	Conclusions
	
	References

