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Abstract: The miniaturization of electronics, sensors, and actuators has enabled the growing
use of nanosatellites for earth observation, astrophysics, and even interplanetary missions. This
rise of nanosatellites has led to the development of an inventory of modular, interchangeable
commercially-off-the-shelf (COTS) components by a multitude of commercial vendors. As a result,
the capability of combining subsystems in a compact platform has considerably advanced in the last
decade. However, to ascertain these spacecraft’s maximum capabilities in terms of mass, volume, and
power, there is an important need to optimize their design. Current spacecraft design methods need
engineering experience and judgements made by of a team of experts, which can be labor intensive
and might lead to a sub-optimal design. In this work we present a compelling alternative approach
using machine learning to identify near-optimal solutions to extend the capabilities of a design team.
The approach enables automated design of a spacecraft that requires developing a virtual warehouse
of components and specifying quantitative goals to produce a candidate design. The near-optimal
solutions found through this approach would be a credible starting point for the design team that
will need further study to determine their implementation feasibility.
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1. Introduction

The development of commercially-off-the-shelf (COTS) components has led to the capability
of developing compact spacecraft platforms by combining subsystems from the readily available
COTS inventory. For these COTS assembled spacecrafts, the availability of rideshare opportunities
on small spacecraft launchers and the prospect of being launched as a secondary payload on larger
launch vehicles has led to the rapid advancement of COTS components and expansion of the small
spacecraft market. As such, the buses for these small spacecrafts are designed as modular platforms
and the components designed to be as diverse and capable as possible, which can be assembled with
a payload in a short amount of time, ready to fly [1]. One such platform is the CubeSat platform, which
weighs only a few kilograms and is based on a form factor of a 10 × 10 × 10 cm3. CubeSats can be
composed of a single cube (a “1U” CubeSat) or several cubes combined, forming, for instance, 3U or
6U units [2]. Although the COTS components are readily available, designing these spacecrafts is
a long, expensive endeavor, where a team of experts work together to design the system for a specific
mission using their engineering judgement. An alternative design approach is required that shortens
and simplifies the spacecraft design process. In this paper, we propose a tool for automated design of
a spacecraft using machine learning algorithms that utilize modular, interchangeable components from
a COTS inventory to develop a spacecraft design. In our approach, the spacecraft design is presented in
the form of a gene that selects subsystem components from an inventory, and a numerical goal function
is specified along with constraints, based on which the spacecraft design is evaluated. An evolutionary
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algorithm (EA) is used to generate a population of candidate solutions, which undergo evolutionary
operations such as selection, crossover, and mutation, and the fittest individuals are carried to the next
generation, while the unfit individuals are culled off. This method of evolution is performed over
hundreds of generations until the fittest individual in the population meets a desired performance
metric [3]. This approach can be very useful to a design team to make informed system design decisions
by finding a set of near-optimal solutions that represent the trade-offs among conflicting objectives,
such as mass, cost, and performance.

Automated design of engineering systems is not new. When compared to human created
designs, computationally derived evolutionary designs have shown competitive advantages in terms
of robustness, performance, and creativity. Design optimization through evolutionary computation
has been studied for decades. Work has been done to design several satellite subsystems. One
such example is an X-band antenna for NASA’s Space Technology 5 (ST5) spacecraft, which is in
fact the first computer-evolved hardware in space [4]. Other work includes design optimization
of a power subsystem [5], low-thrust orbit transfer [6], spacecraft structure [7], and a corner
retroreflector for satellites [8], which has shown potential improvements over traditional methods.
An evolutionary approach has also been applied to design satellite constellations for continuous
regional coverage [9], nontraditional constellations such as heterogeneous and rideshare constellations
using COTS components to increase resiliency and responsiveness [10], reconfigurable satellite
constellations [11], regional navigation satellite system constellations [12], pattern forming tasks using
robot teams [13] and even teams of excavating robots for lunar base preparation [14], which have
produced human-competitive designs. This process has also been successfully applied to the design
of mobile robots [15] and water desalination systems [16]. Automated design is in sharp contrast to
current spacecraft design methods. Current design methods use engineering experience and judgement
of a team of experts to identify candidate designs. This process requires significant expertise and
experience and is long and expensive in terms of time and labor. The lack of a systematic approach to
fully evaluate the whole design space might lead to a sub-optimal solution or worse an intractable
solution. Such an approach can also miss innovative designs not thought of by the human design team.
Evolutionary design techniques however benefit from the exponential rise in computational speed and
can overcome human team limitations, including number of experts available, time available to perform
a design task, and time available to meet together and work continuously. A machine-automated
approach can augment a human design team by being able to review a larger candidate of designs
than would otherwise be possible and thus find better designs.

Our approach to the spacecraft design problem is modelled after the knapsack problem (KP).
Optimization of the knapsack problem is considered an NP (non-deterministic polynomial-time) hard
problem. NP is the set of decision problems in computational complexity theory that are solvable
by a non-deterministic Turing machine in polynomial time. NP hard are the problems that are at
least as hard as the hardest problems in NP and they are not necessarily decision problems [17].
In the knapsack problem, the goal is filling a knapsack with as many items so that the value of
the items is maximized without exceeding the capacity of the knapsack. For a spacecraft, thanks to
high launch costs, mass and volume are still a premium. In our spacecraft design problem, the focus
is to effectively package components from a COTS inventory within a specified mass and volume
constraint satisfying the standard CubeSat form factor. In our approach, the design of the spacecraft is
specified by a gene that determines what components are to be packaged inside the spacecraft. This
method of describing the design with genes keeps the process simple and produces results fast using
desktop computers. In the following sections, we provide a brief description of the knapsack problem
and the multidimensional multiple-choice knapsack problem which is the basis for our CubeSat design
problem through trade space selection. Next, we present the optimization problem to design a 3U
nadir-pointing, earth-observing CubeSat in low Earth orbit (LEO) followed by the models used for
simulation. This is followed by the results and conclusions.
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2. Knapsack Problem

The knapsack problem is analogous to the packing of items into a knapsack, where items
are selected from an available set such that the total value of the selected items is maximized while
simultaneously not exceeding the knapsack’s capacity [18]. It is a highly popular problem in the research
field of constrained and combinatorial optimization. The most common problem being solved is
the 0-1 knapsack problem, which restricts the number of copies, xi, of each kind of object, oi, to zero or
one. Given a set of n objects O = (o1, o2, . . . , on), each with a weight, wi, and a value, vi, along with
a maximum weight capacity, W, of the knapsack, the objective is to find a subset, S ⊆ O, in such a way
that the weight sum over the objects in S does not exceed the knapsack capacity and yields a maximum
value. The problem is mathematically expressed as Equation (1).

KP =


max

n∑
i=1

xivi

subject to
n∑

i=1
xiwi ≤W

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}

(1)

Here, xi represents the number of instances of item i to include in the knapsack. Informally,
the problem is to maximize the sum of the values of the items in the knapsack so that the sum of
the weights is less than or equal to the knapsack’s capacity. The problem is a reduction of real-world
resource allocation problems with constraints. The 0–1 KP is weakly NP-hard, which means it can
be solved exactly by utilizing pseudo-polynomial time algorithms based on dynamic programming.
There are also other algorithms that can solve it a very short amount of time such as greedy algorithms
and core branch and bound algorithms. However, the difficulty of the problem increases as the number
of variables and correlation between them is increased.

3. Knapsack Problem in System Design

The knapsack problem is also relevant for designing systems consisting of multiple subsystems
such that its performance is maximized satisfying multiple resource constraints. Considering a system
to be composed of n subsystems with each subsystem, i, ∀i ∈ {1, . . . , n}, consisting of li options, as
shown in Figure 1, each option of the subsystem has a particular value and it requires m resources.
The objective is to pick exactly one option from each subsystem for the maximum total value of
the collected items, subject to m resource constraints of the knapsack (system).
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Figure 1. Description of a system composed of multiple subsystems and multiple options for
each subsystem.

This is a variant of the classical 0-1 knapsack problem and is termed the multidimensional
multiple-choice knapsack problem (MMKP) [19]. In mathematical notation, let vi j and ri j =
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(
ri j1, ri j2, . . . , ri jm

)
be the value and resource vector of the object oi j, i.e., j − th option of the j − th

subsystem. In addition, assume that R = (R1, R2, . . . , Rm) is the resource bound to the knapsack
(system). Now, the problem is mathematically expressed as Equation (2).

MMKP =



max
n∑

i=1

li∑
j=1

xi jvi j

subject to
n∑

i=1

li∑
j=1

xi jri jk ≤ Rk ∀k ∈ {1, . . . , m}

xi j ∈ {0, 1}∑li
j=1 xi j = 1 ∀i ∈ {1, . . . , n}

(2)

The number of possible designs, D, is the product of the number of options of all n subsystems;
D =

∏n
i=1 li, which grows exponentially as the number of subsystems, n, and number of options, li,

increases as shown in Figure 2a. One way to solve this problem is to use a brute force method by
trying all D possible designs, which is highly inefficient. Other methods include greedy algorithms
and dynamic programming [18]. Several heuristic algorithms have also been proposed for MMKP. One
such algorithm is based on the Lagrange multiplier method [20]. Other methods include HEU [21],
the modified guided local search [22], the modified reactive local search [23], the convex hull-based
method [24], and the column generation method [25]. Several exact algorithms have also been proposed
such as the branch-and-bound method with linear programming [21] and the EMKP algorithm [26].
Although these algorithms are able to obtain fairly good solutions for small search spaces, they become
ineffective due to the curse of dimensionality when approaching practical scenarios, where the number
of subsystems and the number of options for each subsystem grows significantly.

Aerospace 2020, 7, x FOR PEER REVIEW 4 of 19 

 

One such algorithm is based on the Lagrange multiplier method [20]. Other methods include HEU 
[21], the modified guided local search [22], the modified reactive local search [23], the convex hull-
based method [24], and the column generation method [25]. Several exact algorithms have also been 
proposed such as the branch-and-bound method with linear programming [21] and the EMKP 
algorithm [26]. Although these algorithms are able to obtain fairly good solutions for small search 
spaces, they become ineffective due to the curse of dimensionality when approaching practical 
scenarios, where the number of subsystems and the number of options for each subsystem grows 
significantly. 

 
Figure 1. Description of a system composed of multiple subsystems and multiple options for each 
subsystem. 

However, EA provides a way to solve the knapsack problem in linear time. Evolutionary 
algorithms gain their inspiration from the natural process of evolution and emulate evolution by 
applying recombination (crossover), mutation, and natural selection on a population [27]. Highly fit 
individuals from the population are sampled, recombined, and resampled to form offspring of 
potentially higher fitness. As the evolutionary algorithm progresses through generations, fitter 
building blocks proliferate and unfit building blocks are culled from the population. In a way, by 
working with these particular schemata the complexity of the problem is reduced. Instead of building 
a high-performance individual by trying every conceivable combination, better and better 
individuals are constructed from the best partial solutions of past sampling. 

  
(a) (b) 

Figure 2. (a) Possible design combinations for varying number of components and options; (b) 
evolutionary algorithm structure [27]. 
Figure 2. (a) Possible design combinations for varying number of components and options; (b)
evolutionary algorithm structure [27].

However, EA provides a way to solve the knapsack problem in linear time. Evolutionary
algorithms gain their inspiration from the natural process of evolution and emulate evolution by
applying recombination (crossover), mutation, and natural selection on a population [27]. Highly
fit individuals from the population are sampled, recombined, and resampled to form offspring of
potentially higher fitness. As the evolutionary algorithm progresses through generations, fitter
building blocks proliferate and unfit building blocks are culled from the population. In a way, by
working with these particular schemata the complexity of the problem is reduced. Instead of building
a high-performance individual by trying every conceivable combination, better and better individuals
are constructed from the best partial solutions of past sampling.
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Evolutionary algorithms (EAs) are a stochastic optimization method that provides an approach
to learning by mimicking the metaphor of natural biological evolution or Darwinian evolution. By
applying the principle of survival of the fittest, EAs progressively produce a better solution over
generations by operating on a population of potential solutions. By mimicking the process of natural
evolution, EAs perform evolutionary operations borrowed from natural genetics such as selection,
crossover, and mutation. Theoretically, this method of evolving a population of individuals would
progressively generate individuals that are better suited to their environment, just as in natural
adaptation [28,29]. Figure 2b shows the structure of a simple evolutionary algorithm (EA). When
successful, this approach will produce near-optimal solutions. These solutions when compared to
solutions obtained through point design by a team of experts potentially presents major improvements.
However, these solutions should be used as a starting point by the design team and would need further
study to determine their implementation feasibility.

4. CubeSat Design

Current CubeSat design methods require a team of experts, who use their engineering expertise
and decision to develop a spacecraft design from available COTS components. Such an approach may
not result in an optimal design in terms of mass, volume, and power capabilities and can also miss
innovative designs not thought of by the human design team. As such, the CubeSat design problem is
modeled as a multidimensional multiple-choice knapsack problem. The goal is to effectively package
subsystems from an inventory of COTS components within a specified mass and volume constraint
such that the spacecraft can meet the defined mission goals.

As a test example, the objective is to design a 3U nadir-pointing, earth-observing CubeSat in LEO.
The CubeSat is composed of many components that can be broken down into six major subsystems:
(a) structure, (b) command and data handling (on-board computer), (c) communication (transceiver
and antenna), (d) power (solar panels, battery pack, and power management board), (e) attitude
determination and control unit (reaction wheels, magnetorquers, sun sensor, accelerometer, star tracker,
magnetometer), and (f) payload (camera and lens) [1]. At first, an inventory of all the components is
created from major CubeSat vendors (GomSpace, ISIS, Nanoracks, EnduroSat, DHV, NanoAvionics,
Maryland Aerospace, Blue Canyon, Clydespace, Pumpkin, Space Micro, Rincon Research) which is
used as a database for the Knapsack Problem. To solve the MMKP, an EA is used where a candidate
population is evolved for hundreds of generations using evolutionary operators like selection, crossover,
and mutation. Each individual in the population is defined by a gene, G, which specifies what and
how many components are to be packaged inside the spacecraft. This keeps the gene and design
process simple and produces results fast using desktop computers. There are also other approaches
to automated design, and these include the use of variable length generative coding schemes [28]
that generate a constructive program to design the gene. Other bio-inspired approaches model
morphogenesis [30].

An example gene structure is shown in Table 1. It consists of two parts: the first part is
the subsystem specifier {sID, cID, aID, tID, bID, pID, adID, spID, caID} that selects components from
the available database, and the second part selects the number of batteries {nb} and the number and
location of solar panels: body panels {b1, b2, b3, b4}, side deployed panels {ds1, ds2, ds3, ds4}, and top
deployed panels {dt1, dt2, dt3, dt4}. Figure 3 shows an example of a phenotype of the CubeSat rendered
in MATLAB VRML. A script for automated assembly of all the components inside the structure is
written such that each component is modeled as a cube with its maximum dimensions, and a spacing
of 5 mm between components is provided for the wiring space requirement.
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Table 1. Genotype of the CubeSat showing the structure of the gene: subsystem specifier; and specifier for number of batteries, and number and location of solar panels.

Structure OBC Antenna Transceiver Battery PMB ADCS Solar Panel Camera

sID cID aID tID bID pID adID spID caID

Integers
[

1 li
]
: li → no. of options available

No. of
Batteries No. of Body Panels No. of Deployed Panels (Side) No. of Deployed Panels (Top)

nb b1 b2 b3 b4 ds1 ds2 ds3 ds4 dt1 dt2 dt3 dt4

Integers [1 10] Integers [0 1] Integers [0 3]
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The design objective is to maximize the total downloadable ground area coverage and minimize
the total mass and total cost of the satellite. For a selected camera from the inventory, the spatial
resolution, r, is calculated as Equation (3).

r =
ap
f

(3)

where a is the altitude of the satellite, f is the focal length of the lense, and p is the pixel pitch of
the image sensor as shown in Figure 4. Considering the sensor having pH × pV number of pixels,
the total ground area covered per image is given by r2pHpV and the total size of each image is bpHpV,
where b is the size of each pixel. If D is the total downloadable data, then the total downloadable
ground area coverage, ACD, is expressed as Equation (4).

ACD =
D

bpHpV
r2pHpV =

Dr2

b
(4)

Aerospace 2020, 7, x FOR PEER REVIEW 7 of 19 

 

 

Figure 4. Schematic of spatial resolution of a camera for each pixel. 

To complete the knapsack problem, several constraints are added in terms of mass, volume, 
power and other properties such as the state of charge (SOC) of the battery subsystem, the pointing 
accuracy of the ADCS subsystem, the frequency and storage capacity of the on-board computer 
(OBC), and the bandwidth of the antenna and transceiver. The first constraint is such that the total 
mass of the CubeSat is less than the maximum allowable mass of a 3U CubeSat (4 kg). For volume 
constraint, three constraints are added such that after all the components are stacked inside the 
structure the dimensions along x, y, and z direction (𝑙௫, 𝑙௬, 𝑙௭) are within the 3U CubeSat standard (10 
× 10 × 34 cm) [31]. For power, two constraints are added: the first is that the average solar power 
generated per orbit, 𝑃௔௩௚, should be greater than the total power requirement of the CubeSat, 𝑃், 
(which is determined from each component selected), and the second is that the state of charge of the 
battery subsystem should not drop below a minimum value (user-defined). Other constraints are also 
added: ADCS—pointing accuracy is within a user-defined value, OBC—clock frequency, 𝑓ை஻஼ and 
storage capacity are within some user-defined values, transceiver and antenna—bandwidth of 
antenna selected matches that of transceiver. The complete MMKP CubeSat design problem is then 
mathematically expressed as Equation (6). min𝒢 𝑓ሺ𝒢ሻ = −𝐴𝐶஽𝑚்𝑐்

s. t.
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧𝑔ଵሺ𝒢ሻ ≡ 𝑚் − 4 ≤ 0 kg𝑔ଶሺ𝒢ሻ ≡ 𝑙௫ − 105 ≤ 0 mm𝑔ଷሺ𝒢ሻ ≡ 𝑙௬ − 105 ≤ 0 mm𝑔ସሺ𝒢ሻ ≡ 𝑙௭ − 340 ≤ 0 mm𝑔ହሺ𝒢ሻ ≡ 𝑃௔௩௚ ≥ 𝑃் ≡ 𝑃் − 𝑃௔௩௚ ≤ 0 W𝑔଺ሺ𝒢ሻ ≡ 𝑆𝑂𝐶 ≥ 0.2 ≡ 0.2 − 𝑆𝑂𝐶 ≤ 0𝑔଻ሺ𝒢ሻ ≡ 𝑃𝑜𝑖𝑛𝑡𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 1° ≤ 0𝑔଼ሺ𝒢ሻ ≡ 𝑓ை஻஼ ≥ 730 ≡ 730 − 𝑓ை஻஼ ≤ 0 MHz𝑔ଽሺ𝒢ሻ ≡ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥ 1.25 ≡ 1.25 − 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≤ 0 Gb𝑔ଵ଴ሺ𝒢ሻ ≡ 𝑓௧௥௔௡௦ሺ௅ሻ + 𝐵𝑊2 ≤ 𝑓௔௡௧ ≤ 𝑓௧௥௔௡௦ሺ௎ሻ − 𝐵𝑊2

 (6) 

Now, to calculate the total downloadable data, 𝐷, average solar power generated, 𝑃௔௩௚, state of 
charge of the batteries, 𝑆𝑂𝐶, and pointing accuracy of the ADCS system, a simulation environment 
is created that models orbit dynamics, attitude dynamics, solar power generation, battery state of 
charge, and communication disciplines as shown in Figure 5. Every individual of the population is 
an input to the COTS database that produces the CubeSat design. The design is then an input to the 
simulation environment, and then the outputs of the simulation environment along with mass, 
volume, power, and other properties of the design are used to determine the fitness (combination of 
objective function and the constraints). Details of the modeled disciplines are provided below. 

Figure 4. Schematic of spatial resolution of a camera for each pixel.

The mass and cost of each component is added to determine the total mass, mT, and total cost, cT,
of the CubeSat, and thus, the objective function for the MMKP is expressed as Equation (5).

min
−ACD

mTcT
(5)

To complete the knapsack problem, several constraints are added in terms of mass, volume,
power and other properties such as the state of charge (SOC) of the battery subsystem, the pointing
accuracy of the ADCS subsystem, the frequency and storage capacity of the on-board computer
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(OBC), and the bandwidth of the antenna and transceiver. The first constraint is such that the total
mass of the CubeSat is less than the maximum allowable mass of a 3U CubeSat (4 kg). For volume
constraint, three constraints are added such that after all the components are stacked inside the structure
the dimensions along x, y, and z direction (lx, ly, lz) are within the 3U CubeSat standard (10 × 10 ×
34 cm) [31]. For power, two constraints are added: the first is that the average solar power generated
per orbit, Pavg, should be greater than the total power requirement of the CubeSat, PT, (which is
determined from each component selected), and the second is that the state of charge of the battery
subsystem should not drop below a minimum value (user-defined). Other constraints are also added:
ADCS—pointing accuracy is within a user-defined value, OBC—clock frequency, fOBC and storage
capacity are within some user-defined values, transceiver and antenna—bandwidth of antenna selected
matches that of transceiver. The complete MMKP CubeSat design problem is then mathematically
expressed as Equation (6).

min
G

f (G) = −ACD
mTcT

s.t.



g1(G) ≡ mT − 4 ≤ 0 kg
g2(G) ≡ lx − 105 ≤ 0 mm
g3(G) ≡ ly − 105 ≤ 0 mm
g4(G) ≡ lz − 340 ≤ 0 mm
g5(G) ≡ Pavg ≥ PT ≡ PT − Pavg ≤ 0 W
g6(G) ≡ SOC ≥ 0.2 ≡ 0.2− SOC ≤ 0
g7(G) ≡ Pointing Accuracy− 1◦ ≤ 0
g8(G) ≡ fOBC ≥ 730 ≡ 730− fOBC ≤ 0 MHz
g9(G) ≡ Storage Capacity ≥ 1.25 ≡ 1.25− Storage Capacity ≤ 0 Gb

g10(G) ≡ f (L)trans +
BW

2 ≤ fant ≤ f (U)
trans −

BW
2

(6)

Now, to calculate the total downloadable data, D, average solar power generated, Pavg, state of
charge of the batteries, SOC, and pointing accuracy of the ADCS system, a simulation environment is
created that models orbit dynamics, attitude dynamics, solar power generation, battery state of charge,
and communication disciplines as shown in Figure 5. Every individual of the population is an input to
the COTS database that produces the CubeSat design. The design is then an input to the simulation
environment, and then the outputs of the simulation environment along with mass, volume, power,
and other properties of the design are used to determine the fitness (combination of objective function
and the constraints). Details of the modeled disciplines are provided below.Aerospace 2020, 7, x FOR PEER REVIEW 8 of 19 
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4.1. Orbit Dynamics

The orbit-dynamics discipline computes the Earth-to-body position vector of the satellite in
the Earth-centered-inertial (ECI) frame. In the orbit equation, the J2, J3, and J4 coefficients capture
the fact that the Earth is not a perfectly spherical and homogeneous mass and is expressed by
Equation (7).

..
→
r = −

µ
r3
→
r − 3µJ2R2

e
2r5

[(
1− 5r2

z
r2

)
→
r + 2rzẑ

]
−

5µJ3R3
e

2r7

[(
3rz −

7r3
z

r2

)
→
r +

(
3rz −

3r2

5rz

)
rzr̂

]
+

15µJ4R4
e

8r7

[(
1− 14r2

z
r2 +

21r4
z

r4

)
→
r +

(
4− 28r2

z
3r2

)
rzẑ

] (7)

where
→
r is the position vector of the satellite in the ECI frame, µ is Earth’s gravitational parameter,

Re is Earth’s radius and J2, J3, and J4 are orbit perturbation coefficients. The J2, J3, and J4 terms must
be considered because their effect is to rotate the orbit plane, which affects the power generation and
communication discipline.

4.2. Attitude Dynamics

Since the CubeSat is an earth observing satellite, it must always maintain a nadir-pointing
orientation. The attitude dynamics is simulated based on the reaction wheels/magnetorquers available
in the selected ADCS system from the COTS inventory according to Equation (8).

Js

.
→
ωs = −

→
ωs ×

(
Js
→
ωs + JRW

→
ωRW

)
+ τRW + τm + τd (8)

where Js is the moment of inertia matrix of the satellite,
→
ωs is the angular velocity vector of the satellite,

JRW is the moment of inertia matrix of the reaction wheel system,
→
ωRW is the angular velocity vector of

the reaction wheel system, τRW is the torque applied by the reaction wheels system, τm is the torque
applied by the magnetorquers, and τd is the external disturbance torques, which is a sum of the gravity
gradient, aerodynamic, and solar radiation pressure disturbances. The simulation of the attitude
dynamics based on the selected ADCS system provides the pointing accuracy of the satellite, which is
used for the optimization problem.

4.3. Solar Power Generation

For solar power, first the sun-to-satellite line-of-sight, LOSs, is calculated which is essentially
a multiplier for the solar panel exposed area to calculate the solar power generated. The LOSs is 0 if
the satellite is in the eclipse and 1 otherwise, however, to implement the umbra and penumbra effects,
the discontinuous function is smoothed by using a cubic function [32], as shown in Equation (9).

LOSs =


1 ,

→
r b/e·r̂s/e ≥ 0

1 , ds > Re

3η2
− 2η3 , αRe < ds < Re

0 , ds < αRe

 ,
→
r b/e·r̂s/e < 0

(9)

where ds and η are given by Equation (10).

ds = ‖
→
r b/e × r̂s/e‖2 and η =

ds − αRe

Re − αRe
(10)

The vectors
→
r b/e and r̂s/e are shown in Figure 6. The value of α represents how far this smoothing

effect extends into the Earth’s shadow, typically α = 0.9. Next, with the position of the sun known
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with respect to the satellite, the exposed solar panel area is required to calculate the total solar power
generated. The exposed solar panel area is done in two steps. First for each panel having an area Ap

and unit normal vector n̂p and the body-to-sun unit vector r̂s/b, the projected area of each panel on
a plane perpendicular to r̂s/b is given by Equation (11) and shown in Figure 7a.

Aproj =

r̂s/b·n̂pAp , r̂s/b·n̂p > 0

0 , r̂s/b·n̂p ≤ 0
(11)
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Next, if the satellite consists of deployable solar panels, the effects of shadows projected by one
panel onto another must be considered. For two panels

{
panel 1, panel 2

}
with areas

{
Ap1, Ap2

}
and

unit normal vectors
{
n̂p1, n̂p2

}
, and body-to-sun unit vector r̂s/b, the shadow cast by panel 2 on panel 1

is calculated by two successive projections and an intersection operator as shown in Figure 7b. The first
projection is of panel 1 on a plane perpendicular to r̂s/b given by A′ = r̂s/b·n̂p2Ap1, and the second
projection is of panel 2 on a plane perpendicular to r̂s/b given by A′′ = r̂s/b·n̂p1Ap2. Finally, the projected
shadow cast by panel 2 on panel 1 on a plane perpendicular to r̂s/b is the intersection of areas A′ and
A′′ , as shown by Equation (12).

Ashad = Ap1 ∩ A′′ (12)
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Thus, the total exposed solar panel area is expressed as Equation (13).

Aexp =
n∑

i=1

A(i)proj −

k∑
j=1

Ashad( j)

 (13)

where n is the total number of solar panels, and j = {1, . . . , k} are the neighboring panels for panel i.
Finally, the solar power generated is calculated as Equation (14).

Psolar = S0εcellAexp (14)

where S0 is the solar constant, and εcell is the efficiency of the photovoltaic solar cells on each solar
panel. Figure 8 shows the simulation results of the solar panel exposed area model for a CubeSat
with two panels: one body panel and one deployed panel, as shown in Figure 8a. The simulation
is performed in MATLAB, and the rendering of the CubeSat model shown in Figure 8a is done in
MATLAB VRML. The body-to-sun unit vector r̂s/b is represented in a spherical coordinate system
with respect to the body frame, and as such, the results are presented against azimuth and elevation
angles of the sun. Figure 8b shows the exposed area of panel 1 ignoring shadows cast by panel 2,
while Figure 8c shows the projected shadow cast by panel 2 on panel 1, and finally, Figure 8d shows
the total exposed area of panel 1. Our method is able to calculate the total exposed solar panel area for
the above CubeSat with two panels, which is used for more complicated designs evolved through
the optimization process.
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4.4. Battery State of Charge

The state of charge of the battery system is determined by the Ordinary Differential Equation
(ODE) (Equation (15)) [32].

.
SOC =

Pbat
VbatQ

(15)

where Q = nbq is the nominal discharge capacity of the battery system with nb being the number of
batteries and q being the discharge capacity of each battery. The dependence of the battery voltage is
on the SOC and also on the temperature, which is exponential, as shown by Equation (16).

Vbat(SOC) =
(
3 +

eSOC
− 1

e− 1

)(
2− eλ

T−T0
T0

)
(16)

where T0 is the reference temperature, and λ is the temperature decay coefficient. At any given time,
the battery power is the sum of the loads, given by Equation (17).

Pbat = Psol − Padcs − Pcomm − P0 (17)

where Psol is the power generated by the solar panels, Padcs is the power consumed by the ADCS system,
Pcomm is the communication power, and P0 is the power consumed during the nominal operation of
the CubeSat and the payload (camera).

4.5. Communication

For communication, first the ground station-to-satellite line-of-sight, LOSc, is computed based on
the dot product between the Earth-to-ground station unit vector and the ground station-to-body vector
in the inertial frame, as shown in Figure 9. The discontinuous function is smoothed using a cubic
function. Next, the resulting data download rate, Br, is calculated using Equation (18) [32,33].

Br =
c2GrηpPcommLlGt

16π2 f 2kTs(SNR)S2 LOSc (18)

where c is the speed of light, k is the Boltzmann constant, f is the transmission frequency, Ts is the system
noise temperature, Gr is the receiver (ground station) gain, SNR is the maximum acceptable signal to
noise ratio, ηp is the communication efficiency, Ll is the line loss factor, Pcomm is the communication
power, Gt is the transmitter (satellite) gain, and S is the distance from the satellite to the ground station.
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4.6. Optimization

Now to solve the described CubeSat design problem implemented as a multidimensional
multiple-choice knapsack problem, an evolutionary algorithm is used. The constraints described in
Equation (6) divide the search space into two regions—feasible and infeasible regions. The constraints
are handled using the penalty function approach. For each solution G(i), i being the index of the gene,
the constraint violation for the inequality constraints G j

(
G
(i)

)
≤ 0 are calculated as in Equation (19).

ω j
(
G
(i)

)
=


∣∣∣∣G j

(
G
(i)

)∣∣∣∣, i f G j
(
G
(i)

)
> 0

0 otherwise
(19)

Thereafter, all constraint violations are added together to get the overall constraint violation as in
Equation (20). There are 10 constraints in the optimization problem and constraint 10 is decomposed
into 2 inequality constraints.

Ω
(
G
(i)

)
=

11∑
j=1

ω j
(
G
(i)

)
(20)

This constraint violation is then multiplied with a penalty parameter, P, and then the product is
added to each of the objective function as in Equation (21).

F

(
G
(i)

)
= f

(
G
(i)

)
+PΩ

(
G
(i)

)
(21)

The fitness function, F , takes into account the constraint violations. For a feasible solution
the corresponding Ω term is zero and F becomes equal to the original objective function f . However,
for an infeasible solution, F > f , thereby adding a penalty corresponding to the total constraint
violation. Once the fitness function is derived, the steps for an EA are used to optimize the problem.
Initially, a random parent population, P0, is created of size NP. Each individual of the parent population
comprises of the design variables represented by the gene, G, chosen by a discrete uniform distribution

G j = U
(
G
(U)
j ,G(L)

j

)
, where G j is the j-th design variable and G(U)

j and G(L)
j are the upper and lower

bounds of the design variables. For each individual, the value of the fitness function F (G) is evaluated
using the simulation environment as shown in Figure 6. Next, the usual tournament selection, crossover,
and mutation operators are used to create an offspring population, Q0, of size NQ [34]. For crossover,
a blend crossover (BLX-α) operator is used [35]. During mutation, we use a non-uniform mutation
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operator. The mutation operator is constructed such that the probability of creating a solution closer to
the parent is more than the probability of creating one away from it [36]. By comparing the current
population with previously found best solutions, elitism is introduced into the algorithm. For the tth

generation, first a combined population Rt = Pt + Qt is formed. The population Rt is of size N + NQ.
Since all previous and current population members are included in Rt, elitism is automatically ensured.
Next, the fitness of each individual in Rt is calculated according to the fitness function F (G). Based on
the value of the fitness function, the population is sorted in ascending order and the best N individuals
are selected for the next generation. The new population, Pt+1, of size N is again used for selection,
crossover, and mutation to create a new population, Qt+1, of size NQ. The process is repeated until
the desired results are obtained, or the max number of generations are achieved.

5. Results

For the test case the orbit of the satellite is simulated for an altitude of 400 km, inclination of 90◦,
eccentricity of 0 (circular orbit), RAAN of 90◦, argument of perigee of 0◦, and mean anomaly of 0◦.
The values of the constants used in the simulation are shown in Table 2. The optimization problem is
simulated for 10 orbits in MATLAB, and the results are presented in Figures 10 and 11.

Table 2. Constants used in simulation.

Constant Symbol Value

Earth’s gravitational parameter µ 398,600.44 km3
·s−2

Earth’s radius Re 6378.137 km
Orbit perturbation coefficients J2 1.08264 × 10−3

J3 −2.51 × 10−6

J4 −1.60 × 10−6

Solar constant S0 1367 W/m2

Reference temperature T0 293 K
Temperature decay coefficient λ ln(1/(1.1)5)

Speed of light c 2.99792458 × 108 m/s
Boltzmann constant k 1.380648 × 10−23 m2kg/(s2K)

System noise temperature Ts 500 K
Receiver gain Gr 12 dB

Signal-to-noise ratio SNR 5.0 dB
Communication efficiency ηp 0.2

Line loss factor Ll −2.0 dB
Penalty parameter P 100

PSO tuning parameters ω 1.1
β 1.49
γ 1.49

Annealing parameter κ 5
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Figure 11. Evolution of the constraints g2 to g10 for the CubeSat design MMKP.

Figure 10a shows the evolution of the fitness function F (G) over 250 generations with 100
populations in each generation. Figure 10b shows the evolution of the total downloadable ground area



Aerospace 2020, 7, 142 16 of 21

coverage, ACD, Figure 10c shows that of the total mass, mT, and Figure 10d shows that of the total cost,
cT, of the CubeSat over 250 generations. The shaded region of each of the plots show the 95% confidence
interval over 20 runs. The results of the plots show that the fitness function decreased with generations
converging to a constant fitness, while the total downloadable ground area coverage increased, and
the total mass and total cost decreased with generations as implemented in the optimization problem.

Figure 11 shows the evolution of the constraints g2 to g10. The constraint g1 is already presented in
Figure 10c, which shows that the total mass is below the 4 kg allotted mass of a 3U CubeSat. Figure 11a,b
shows the evolution of the dimension of the assembled CubeSat components along z, x, and y directions,
showing it is within the 340 mm and 105 mm limit (shown by the dashed lines). Figure 11c shows
the evolution of the average solar power generated per orbit, Pavg, and the total power requirement of
the CubeSat, PT, satisfying the requirement Pavg ≥ PT. Figure 11d shows the evolution of the state
of charge, SOC, of the battery system with the dashed line showing the minimum requirement of
0.2. Figure 11e shows the evolution of the pointing accuracy of the ADCS system, which satisfies
the constraint Pointing Accuracy ≤ 1◦. Figure 11f,g shows the evolution of the clock frequency and
storage capacity of the on-board computer, which are greater than the specified values of 730 MHz
and 1.25 Gb, respectively (shown by the dashed lines). Figure 11h shows the evolution of the antenna
frequency ( fant) along with the upper ( f (U)

trans) and lower ( f (L)trans) limit of the frequency of the transceiver,
showing the antenna frequency is within the limit of the bandwidth of the transceiver. It is clearly
evident that all the constraints have been satisfied when the optimization process was terminated, and
as such, the final solutions found are in the feasible region of the design space.

Figure 12 shows the rendering of the evolution of the best design over generations 1, 12, 15, 20,
30, 80, 100, and 150. It can be seen that the number of solar panels and their positions changed over
generations, and at the same time, the internal components vertically stacked inside the structure
also changed. Figures 13 and 14 show the variation of the design variables (represented by the gene
in Figure 3) of the best individual over generations. The color of the design variables represents
the component selected from the inventory in Figure 13 and the number of batteries and solar panels
in Figure 14. It can be seen that the combination of the subsystems and the number of batteries and
solar panels changed until generation 150, and then an optimal combination was found.
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Figure 12. Rendering of the evolution of the design of the CubeSat done in MATLAB VRML. Each
figure shows the best design among the population in each generation: (a) generation 1; (b) generation
12; (c) generation 15; (d) generation 20; (e) generation 30; (f) generation 80; (g) generation 100; (h)
generation 150.
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Figure 13. Variation of the design variables in the subsystem specifier over generations where the color
denotes the component selected from the inventory.
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Finally, we present a comparative analysis between three stochastic algorithms, evolutionary
algorithm (EA), particle swarm optimization (PSO) [37], and simulated annealing (SA) [38], in terms of
performance on the CubeSat design MMKP problem. The theory behind the application of the EA to
our design problem has already been discussed in the preceding sections. We now provide a brief
explanation on how PSO and SA are implemented.

5.1. Particle Swarm Optimization

Particle swarm optimization is a stochastic optimization method that is inspired from the social
behavior of fish schooling or birds flocking. Just like EA, PSO is also initialized with a population
(swarm) of individuals (particles). However, unlike EA, PSO does not use evolutionary operations
to search for optima; instead, each particle is guided through the search space in every iteration
by updating their positions and velocities using better positions found by other particles. In our
CubeSat design problem, the fitness is defined by Equation (21) as F

(
G
(i)

)
, where G(i) is the position

of each particle, and the velocity of each particle is denoted byV(i). The algorithm is initialized by
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generating N particles with their positions and velocities initialized randomly. Next, at every iteration,
t, the velocity and position of each particle are updated by Equations (22) and (23), respectively.

V
(i)
t+1 = ωV

(i)
t+1 + βr1

(
p(i)t −G

(i)
t

)
+ γr2

(
p(g)

t −G
(i)
t

)
(22)

G
(i)
t+1 = G

(i)
t +V

(i)
t+1 (23)

where ω, β, and γ are the tuning parameters, r1 and r2 are random numbers generated between 0 and

1, p(i)t is the best remembered individual particle position, and p(g)
t is the best remembered swarm

position. This process of updating the position and velocity of each particle continues until the desired
fitness is achieved or maximum number of iterations reached.

5.2. Simulated Annealing

Simulated annealing is another stochastic optimization method that is inspired from annealing
in metallurgy. The algorithm starts with a random trial solution, G, whose fitness is determined by
F (G), defined by Equation (21), and a large initial temperature, T0. At each iteration, t, the algorithm
randomly generates a new solution, Gt+1, and its corresponding fitness, F (Gt+1), is calculated. If
the new solution is better than the current solution, it is automatically selected as the next solution.
However, if the new solution is worse, the algorithm accepts it as the next solution based on a probability
of acceptance function defined by Equation (24).

P(Gt+1) =
1

1 + exp
(

∆
max(T)

) (24)

where ∆ = F (Gt+1) −F (Gt) and T is the current temperature, which is systematically lowered by
the algorithm at each iteration according to Equation (25).

T =
T0

ln(κ)
(25)

where κ is the annealing parameter. Since the values of ∆ and T are positive, larger ∆ and a lower
temperature leads to a smaller acceptance probability. The algorithm stores the best solution found so
far and proceeds until the desired fitness is achieved or maximum number of iterations reached.

Figure 15a shows the evolution of the mean and standard deviation of fitness function over
generations for all the 3 algorithms simulated and averaged over 20 times. The constant parameters
used for PSO and SA are presented in Table 2. It can be clearly seen that the optimal solution
found using simulated annealing lies in the infeasible region as the fitness function is positive. Both
the evolutionary algorithm and particle swarm optimization were able to find a feasible solution, but
the performance of the EA is better than PSO, as shown in Figure 15b, making it the better choice for
this problem. Our observations show PSO stagnates prematurely, while EAs are more effective in
continuing to innovate over generations.
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Figure 15. (a) Comparison of performance of evolutionary algorithm (EA) against particle swarm
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6. Conclusions

This paper provides an analysis of the use of evolutionary algorithms to design complex systems
that consist of multiple subsystems. It utilizes an inventory of components that are made available
for each subsystem. The mathematical formulation for designing such a system is presented as
a multidimensional multiple-choice knapsack problem (MMKP). The number of possible designs
for a MMKP problem increases exponentially as the number of subsystems and number of options
available for each subsystem increases. As such, the use of stochastic methods such as evolutionary
algorithms (EAs) that mimic the metaphor of natural biological evolution provides a way to solve
the problem in linear time complexity. A CubeSat design problem is presented as an example and
an evolutionary algorithm is successfully applied in finding near-optimal designs. The approach has
the potential for producing designs that maximize a mission-specific cost function while minimizing
cost and mass. Traditionally, mission concepts are created by a team of engineers by conducting trade
studies for mass, cost, volume, performance, and risk. Our approach of automated design using
evolutionary algorithms for trade space selection speeds up the design process. Moreover, it provides
us with a better basis for detailed system architecture, and hence, better design decisions can be made
with confidence. This method generates a set of near-optimal designs, which provides multiple designs
to start with and potentially presents vast improvements over a solution obtained through engineering
judgement and point design alone. Our EA approach also shows improvement over other stochastic
optimization methods including particle swarm optimization (PSO) and simulated annealing (SA).
Although our approach shows a credible pathway to identify and evaluate many more candidate
designs, these optimized designs will need further study to determine their implementation feasibility.
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