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Abstract: Aircraft are multidisciplinary systems that are challenging to design due to interactions
between the subsystems. The relevant disciplines, such as aerodynamic, thermal, and propulsion
systems, must be considered simultaneously using a path-dependent formulation to assess aircraft
performance accurately. In this paper, we construct a coupled aero-thermal-propulsive-mission
multidisciplinary model to optimize supersonic aircraft considering their path-dependent
performance. This large-scale optimization problem captures non-intuitive design trades that single
disciplinary models and path-independent methods cannot resolve. We present optimal flight
profiles for a supersonic aircraft with and without thermal constraints. We find that the optimal flight
trajectory depends on thermal system performance, showing the need to optimize considering the
path-dependent multidisciplinary interactions.

Keywords: multidisciplinary design optimization; trajectory optimization; aircraft design; thermal
systems design

1. Introduction

Aerospace systems are path-dependent, and this feature must be considered to accurately assess
system performance. We use the term path-dependent here to refer to any system where the
time history of system state affects performance. Critical path dependencies include short-term
effects, such as aircraft component temperatures, and long-term effects, such as the structural fatigue
accumulated in the airframe from previous missions. For instance, if engineers ignored the aircraft’s
time-dependent thermal history when designing the thermal management subsystems, they would
inaccurately estimate the aircraft’s capabilities. Making steady-state assumptions at individual
operating points ignores thermal transients that might be performance-limiting, leading to non-optimal
design. Optimizing the design and trajectory of an aircraft considering path-dependent effects results
in better overall performance than optimizing the trajectory of a fixed-design aircraft due to the
coupling between aircraft design and mission performance. For instance, modeling both the design
and trajectory simultaneously accurately resolves the interdisciplinary trade-offs between the thermal
constraints and heat generation, which leads to better aircraft performance.

The earliest published study on path-dependent optimization of aircraft was performed by
Kaiser [1] in 1944, though solving path-dependent optimization problems became much more
widespread through the use of computers. Kaiser hand-solved the minimum time-to-climb problem
using an analytic expression for the energy-state tradeoffs for piston-powered aircraft [1]. Specifically,
he plotted velocity-altitude contours and found the optimum climb profile graphically, where optimal
climb speeds can be found by drawing straight-line segments orthogonally to the contour lines [1].
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In the 1950s and 60s, researchers computed optimal trajectories for many air and space
applications, especially high-speed military vehicles, including rockets, supersonic aircraft,
and planetary vehicles [2–5]. Some of these papers solved for the optimal trajectories using
gradient-based algorithms [4,5], which were some of the first works to incorporate numerical
optimization into the study of path-dependent problems. In all of these papers, the vehicle designs
were fixed and only the trajectories were being optimized.

A seminal paper by Bryson and Denham [6] detailed the steepest ascent method for
solving optimum programming problems using the adjoint method. In the 1970s and 1980s,
path-dependent optimization evolved through the inclusion of path constraints, uncertainty
quantification, and advanced controller theory, as detailed by Bryson in a review article [7]. Most of
this work focused on gradient-based coupled structural and control optimization to improve vehicle
dynamic response to disturbances [8–11]. Although these studies were limited in the number of
disciplines they considered, they serve as the basis for multidisciplinary optimization of coupled
system in a path-dependent manner.

Contemporary work has both expanded the number of disciplines considered and increased the
fidelity of the physical analysis methods. Multiple publications from the Air Force Research Laboratory
(AFRL) detail their path-dependent MDO capabilities, which include propulsion, thermal management,
electrical systems, stability, aerodynamics, economics, and overall utility [12–17]. Some terms that
these works introduce are multi-parameter performance, which enables broader analysis of aircraft
performance [14], and effectiveness-based design, which determines mission effectiveness objectives
through physics-based analysis rather than proxies like aircraft weight or fuel burn, as detailed
by Clark Jr et al. [17]. AFRL researchers developed these methodologies to more accurately
assess the complete performance of the aircraft by having holistic vehicle-level metrics instead of
single-discipline objectives.

Some of the most relevant preceding work to this paper comes from AFRL concerning
optimization of the thermal management system (TMS) in a path-dependent context [18–23].
The present work differs because the mission profile is represented by continuous design variables,
which allows for entirely flexible flight profiles that are not represented by pre-defined segments.
Examining the AFRL work in detail, Alyanak and Allison [19] design a fuel thermal management
system (FTMS) and show that thermal transients affect optimal system architecture and aircraft
performance. They modeled mission segments using prescribed fuel fractions, used fixed thermal
loads in each segment, and sized the FTMS using analytic expressions for temperature states with
assumed efficiencies. They show that the studied aircraft’s weight increases by 282% when considering
the flight heat loads and thermal constraints. Although they admit that the result is unrealistic due
to the simplicity of the thermal system architecture, it does show the impact that thermal constraints
have on aircraft sizing [19].

Recently, NASA has been performing mission-based MDO as part of its Transformational
Tools and Technologies project at its Glenn and Langley Research Centers. Falck et al. [24] and
Hendricks et al. [25] implemented a collocation-based approach for solving multidisciplinary trajectory
problems that efficiently solves both the time integration and optimization problem simultaneously.
Schnulo et al. [26] used that same approach to optimize the X-57 electric aircraft flight demonstrator
across a full mission with multiple flight segments. Falck and Gray [27] continued by developing
the mission optimization tool, Dymos, and investigating its use and scalability for MDO problems.
Hendricks et al. [28] demonstrated the tool’s capabilities by optimizing the aerostructural, propulsive,
and electric performance of a tiltwing urban air mobility vehicle.

This work presented in this paper is inspired by Falck et al. [24] and Hendricks et al. [25],
who coupled mission optimization with propulsion analysis and thermal constraints. Their work
showed that by using a higher-order collocation method with gradient-based optimization and analytic
derivatives, fully coupled mission problems are tractable. Falck et al. [24] specifically examined
how path-dependent thermal constraints affect the optimal mission profile of an electric aircraft,
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an application case that necessitates the use of fully coupled mission and design optimization.
Although individual disciplinary analyses could be performed to evaluate the aircraft performance,
a fully coupled model more accurately resolves the interdisciplinary trade-offs between the thermal
constraints and heat generation.

At the same time that AFRL and NASA were expanding their mission optimization capabilities,
the MDO Lab at the University of Michigan was approaching similar problems from multiple different
angles [29–33]. Liem et al. [29,34,35] sought to maximize aircraft performance by considering multiple
representative missions with different payloads and ranges. Kao et al. [30,31] developed a modular
adjoint-based approach to optimize the mission profile for a commercial airliner for multiple missions
simultaneously. They used surrogate models for aerodynamic and propulsion data to make the mission
optimization tractable.

Brelje and Martins [36] developed an aircraft conceptual design tool, OpenConcept. This tool
models many subsystems within the aircraft, including the propulsion, electrical, and thermal systems,
and can be used to optimize the states of the aircraft across its mission [36,37]. Simultaneously,
Chauhan and Martins [38] developed a method to optimize electric vertical takeoff and landing aircraft
trajectories and presented multiple optimal trajectories for a tandem tiltwing aircraft. Jasa et al. [39]
performed mission optimization of a morphing wing commercial airliner. They then applied
that mission optimization method to a supersonic interceptor and added thermal constraints [40].
Most recently, Hwang et al. [33] performed fully coupled allocation-mission-design of a commercial
airliner. Their work included Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics
(CFD) in the loop, 128 missions, and a ticket-selling economics model to maximize the profit for a
given airline considering a new aircraft design.

This paper moves towards considering more physical disciplines simultaneously with trajectory
optimization methods to design aircraft more efficiently. Beyond the work dedicated to solving
path-dependent problems, methods developed for large-scale design optimization are used in
this paper. Developments from the MDO community provide the foundation for some of these
methods, including the ADjoint approach [41–44], different MDO strategies [45,46], and MAUD [47].
By combining approaches from the fields of trajectory optimization and large-scale MDO, we can solve
complex path-dependent problems.

In this paper, we construct and assemble a multidisciplinary model that can analyze and
optimize the performance of an aircraft across a full mission. We then optimize a large-scale
aero-thermal-propulsion-mission problem for a representative supersonic aircraft and show that
the optimal flight trajectory is tightly coupled to the thermal system performance. By capturing
these multidisciplinary trades within the large-scale optimization problem, we show that both flight
trajectory and aircraft design must be considered simultaneously to maximize vehicle performance.
This differs from previous path-dependent mission research because the flight profile parameterization
allows flexible optimal solutions that cannot be obtained using pre-defined mission segments,
which leads to higher aircraft performance.

We study a combination of disciplines using aerodynamic data constructed from CFD evaluations,
propulsion performance from one-dimensional cycle analysis tools, and thermal system models.
These models are combined within NASA’s OpenMDAO framework and we use gradient-based
optimization with efficiently computed derivatives to enable these large-scale design studies. The
techniques presented in this paper are useful for MDO practitioners who want to efficiently optimize
large-scale multidisciplinary systems.

This paper is organized as follows. In Section 2, we discuss the disciplinary models used.
We explain the optimization methodology and problem formulation in Section 3. We then present and
discuss the optimization results in Section 4.
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2. Disciplinary Models

In this section, we describe the individual flight dynamics, aerodynamic, propulsion, and thermal
models used in this work. In combination, they comprise the multidisciplinary model we used
for optimization.

2.1. Flight Dynamics

To discuss how path-dependent problems can be solved, we need to develop the equations that
dictate the time-varying properties of the system. These ordinary differential equations (ODEs) are used
to model the behavior of any subsystem across time. For physical objects moving through space, the most
common ODEs are the equations of motion. Depending on the application, relevant terms within these
ODEs can include effects from gravity, engine thrust, wing lift and drag, and electromagnetic forces.
To obtain the thermal states of the aircraft, we need ODEs that track component temperature, coolant flow
and temperature, and air flow through heat exchangers. We need an ODE for any time-varying state that
we are interested in monitoring throughout the optimization process. In this chapter, we focus on the
equations of motion that dictate how aircraft move through space.

The unsteady aircraft equations of motion for 2D planar flight are

mV̇ = T cos α − D − W sin γ, (1)

mVγ̇ = L + T sin α − W cos γ, (2)

ḣ = V sin γ, (3)

ẋ = V cos γ, (4)

where L, D, T, and W are the forces of lift, drag, thrust, and weight respectively, m is the mass of the
aircraft, V is the aircraft velocity, γ is the flight-path angle, h is the altitude, x is the horizontal distance,
and α is the angle of attack. Figure 1 shows how these forces are oriented relative to an aircraft in flight.

Figure 1. Free-body diagram for the forces acting on an aircraft used in the equations of motions.

2.2. Aerodynamic Modeling

The Efficient Supersonic Air Vehicle (ESAV) aircraft provides a common research model for an
advanced military fighter aircraft configuration, and has been studied before using MDO with a variety
of disciplines, including aerodynamics, structures, stability, mission, noise, and emissions [48–51].
To obtain the aerodynamic properties of the aircraft, we constructed a mesh for RANS CFD of the
aircraft, which we evaluated at a range of different flight condition to generate an aerodynamic
surrogate model. In this work, the shape of the aircraft was held fixed, so we do not need to perform
physics-based analysis in the loop to update the aerodynamic properties as the aircraft design changes.
This greatly reduces the computational cost of running the optimization.

We began with a surface definition of the aircraft as provided by Lockheed Martin. We plugged the
engine inlet and nozzle and removed control surface gaps to simplify the model. These simplifications
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are possible in this context because we are only considering the aerodynamic properties of the
vehicle at different flight conditions without assessing the effects of control surfaces or coupled
aeropropulsive effects.

The RANS solver used in this work is ADflow [52], a structured finite-volume CFD code with
overset capabilities using an implicit hole cutting scheme [53]. The geometry was meshed using on
overset mesh made up of 10 blocks and a total of 2,185,600 cells. We converge the flow solution using
the approximate Newton–Krylov solution algorithm [54]. We use the Spalart–Allmaras turbulence
model and the fluxes are discretized with central-differencing. Two nominal flow solutions for the
aircraft, one at Mach = 0.8 and the other at Mach = 1.5, are shown in Figure 2.

(a) (b)
Figure 2. Two flow solutions of the ESAV geometry at nominal flight conditions. The colormap shows
the CP, or coefficient of pressure, a dimensionless number describing the relative pressures in the flow
field. (a) Flow solution at α = 2 and Mach = 0.8; (b) Flow solution at α = 2 and Mach = 1.5.

Although we could use this CFD model directly in the optimization problem and perform an
analysis at each point needed in the mission simulation, we can instead construct a surrogate model
based on many training points using data from the CFD analyses (run offline). We uniformly query
the three-dimensional Mach-α-altitude space to populate the surrogate training points, and obtain
CL and CD as outputs from the CFD analysis. We use 13 points in the Mach direction, from 0.2 to 1.8,
clustered around the transonic region, 7 points from −8 to 8 degrees α, and 3 points in the altitude
space between 0 and 20,000 m for a total of 273 CFD evaluations.

We use this data to construct a surrogate model using Surrogate Modeling Toolkit (SMT) (https://
github.com/SMTorg/smt) [55], which provides a variety of methods to represent data sets. We chose to
use the RMTS method [56] because of its inexpensive training and evaluation costs for low-dimensional
input spaces and because it provides gradients of the outputs with respect to the inputs efficiently.
Figure 3 shows an angle of attack and Mach sweep of the aerodynamic model at an elevation of
30,000 feet.
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Figure 3. Drag polar and aerodynamic properties for the ESAV aircraft obtained from the CFD-trained
surrogate model at an elevation of 30,000 feet with a Mach sweep from 0 to 1.8, and an α sweep from
−8◦to 8◦.

2.3. Propulsion Systems

For modeling the propulsion systems in the ESAV aircraft, we constructed a generic supersonic
engine model in pyCycle (https://github.com/openmdao/pycycle) [57]. pyCycle is a tool that was

https://github.com/SMTorg/smt
https://github.com/SMTorg/smt
https://github.com/openmdao/pycycle
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developed by NASA to facilitate the exploration of unique propulsion system designs within a
multidisciplinary vehicle context. Specifically, pyCycle solves the 1D thermodynamic equations for
conservation of mass, momentum, and energy needed to model an engine. pyCycle models the same
physics as the industry standard tool, Numerical Propulsion System Simulation (NPSS), but provides
analytic derivatives, is open-source, and has been verified against NPSS in a series of papers [57,58].
pyCycle is written in OpenMDAO, which helps support modular model construction and integration
into larger MDO problems. Our engine model was based on an existing NPSS model of the GE F110
engine obtained from NASA. We adapted the NPSS model for use in pyCycle by translating its
architecture and element maps. The engine design parameters are shown in Table 1.

Table 1. Design parameters for the supersonic engine model.

Parameter Value Units

Design altitude 35,000 ft
Design Mach number 0.8
Design T4 3200 ◦ R
Design thrust 15,000 lbf
Extraction ratio 1.05
Fan pressure ratio 3.3
HPC pressure ratio 9.7

We need to give the engine model a good set of initial guesses for its state values because its
internal Newton-based solvers are extremely sensitive to the solver starting point. If we simply ran
the engine model without feeding it reasonable initial guesses, it would diverge on the first iteration.
We could hardcode guesses into the model, but that would not account for the differences in converged
states of the engine at different flight conditions, let alone if we change the engine design. To remedy
this, we developed a process to generate surrogate-enhanced guess tables that can provide good initial
guesses to the engine model that are independent of the model’s previous state. The process is outlined
below for a given engine design:

1. Run the engine at the fixed design point and an off-design point
2. Save the resulting states and performance data
3. Train the surrogate model using the saved states data
4. Repeat steps 1–3 for all points in the flight envelope by varying the off-design analysis point

flight conditions

After going through this process across the range of conditions in the flight envelope, we now
have a surrogate model that we can query to give good initial guesses to the engine model. We sweep
the flight condition space in three dimensions: Mach, altitude, and combustor exit temperature. Even if
we change the static design of the engine, this enhanced guess table gives reasonably good initial
guesses, allowing us to also optimize the engine. Figure 4 shows the training points and thrust outputs
for the engine model at full throttle. The engine model flight envelope shown in Figure 4 is not limited
by the aerodynamic loads. Instead, the flight envelope is constrained by the flight dynamics model in
the full optimization problem, which has limits on the speed and altitude allowed during the mission.

In addition to providing good initial guesses for the engine model, the surrogate model also
provides performance information for the engine based on the flight condition and throttle. This allows
us to query the surrogate model instead of the actual engine model when performing mission analysis
and optimization with a fixed engine design. Because the surrogate model and the actual engine model
have the same inputs and outputs, we can choose to use either method within a given model with
ease. For this work, because we are holding the engine design fixed and are focused on the mission
and thermal systems design, we use the surrogate model within the mission optimization. If we were
to vary the engine design, we would need to regenerate the propulsion surrogate model or call the
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engine model directly, which would increase the computational cost of the optimization. Each call the
to the engine analysis takes approximately five seconds on a 2.8 GHz quad-core desktop, which means
that generating the full engine surrogate model requires approximately two hours.

Figure 4. The surrogate training points and thrust outputs for the mixed-flow turbofan engine model.

2.4. Thermal Systems

Using a modular thermal systems framework will allow designers to quickly prototype new
architectures without needing to solve for all the ODEs of interest. In general, designers do not
know a priori what the best architecture will be for a given aircraft application because thermal loads
comes from many sources at different temperatures within an aircraft. The order of the coolant
tanks, heat exchangers, sources, and sinks directly affects the thermal system, its efficacy, and weight.
Also, using a different architecture is a discrete design choice, so it is challenging to examine this
using gradient-based optimization. The thermal system designer must use their expertise to select
architectures to study.

To model the modular thermal system, we use OpenConcept (https://github.com/mdolab/
openconcept/), an aircraft conceptual design and optimization toolkit that is built using OpenMDAO
and includes simple, conceptual-level models of systems components [36]. OpenConcept can model
conventional and electric propulsion components and recent development has extended OpenConcept’s
capabilities to include thermal management systems [37]. In this work, we use the heat exchanger,
transient reservoir, mixer, splitter, and thermal lifting system groups from OpenConcept. The physics
and implementation of these components have been detailed by Brelje et al. [37]. We construct a
modular thermal system here based on a simple architecture for the ESAV aircraft, shown in Figure 5.
It is a dual-tank FTMS where the fuel is heated by an on-board aircraft component before either being
used in the engine burner or recirculated back into the feed tank. During recirculation, the fuel goes
through a ducted heat exchanger whose cold side interfaces with ducted airflow. Here, we assume that
there is an inlet-duct-nozzle separate from the full engine so we do not need to model the entire engine
to examine this thermal system. The dual tank system allows the main fuel tank to not be affected by
the thermal dissipation and recirculation as the recirculating fuel only enters the feed tank.

There are many parameters that must be set within the model. The relevant values used in these
studies are provided in Table 2. For the heat exchangers, we assume aluminum fins and casings and
obtain fin and channel dimensions from a representative aircraft air-liquid heat exchanger. The coolant
used throughout this thermal work and in the engine burner is Jet-A fuel [59]. We assume standard
atmospheric air enters the inlet and flows through the bypass duct.

https://github.com/mdolab/openconcept/
https://github.com/mdolab/openconcept/
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Figure 5. Dual tank modular FTMS used for part of this work.

Table 2. Specifications and parameter values for the dual tank thermal system.

Parameter Value Units Comments

Initial tank temperatures 300 K
Initial feed tank fuel mass 1000 kg
ṁtransfer 3. kg/s
ṁrecirculated 1. kg/s

Specific heat of component 921 J/kg/K aluminum
Specific heat of fuel 2010 J/kg/K Jet-A
Fuel density 800. kg/m3 Jet-A
Fuel thermal conductivity 0.110 W/m/K Jet-A
Fuel viscosity 0.000704 kg/m/s Jet-A

Component mass 12 kg small avionics package
Channel width 1.0 mm
Channel height 20. mm
Channel length 0.2 mm

Case thickness 2.0 mm
Fin thickness 0.102 mm
Plate thickness 0.2 mm
Material thermal conductivity 190 W/m/K aluminum
Material density 2700 kg/m3 aluminum
Number of fins long, cold side 3 –
Number of channels wide, cold side 200 –
Number of hot/cold stacks 15 –
Channel height, cold side 14 mm
Channel width, cold side 1.35 mm
Fin length, cold side 6 mm
Specific heat, cold side 1005 J/kg/K air
Thermal conductivity, cold side 0.02596 W/m/K air
Viscosity, cold side 0.00001789 kg/m/s air

Channel height, hot side 1 mm
Channel width, hot side 1 mm
Fin length, hot side 6 mm
Specific heat, hot side 2010 J/kg/K Jet-A
Thermal conductivity, hot side 0.11 J/kg/K Jet-A
Duct inlet area 0.0645 m2

Nozzle throat area 0.0194 m2

In Figure 5, the inlet, duct, and nozzle are modeled using pyCycle and the rest of the thermal
elements are modeled using OpenConcept. The elements in this thermal system are able to interface
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directly because both pyCycle and OpenConcept are implemented in OpenMDAO. In general,
the computational cost of the OpenConcept elements is much smaller than that of the pyCycle
elements. The coolant loop only deals with liquid fuel, whereas the duct passageway concerns
potentially supersonic air with full chemical equilibrium analysis. We could simplify the inlet, duct,
and nozzle elements, but by not doing so we are able to use the pyCycle elements off-the-shelf.
This also allows the thermal system to interface directly with the engine model in future work.

This thermal model has a large number of possible inputs and settings that will affect the cooling
performance of the FTMS. The tank temperatures, fuel mass, heat-producing component temperatures,
thermal limits, fuel flow rates through the loop and feed pipes, must all be considered when evaluating
the system effectiveness. Given a real aircraft, we could set up the thermal system to match that
configuration and then provide thermal data and inputs for different flight conditions. However,
to keep this work available in the public domain, we use nominal values based on thermal loads that a
current-gen supersonic jet might see.

Many factors influence the heat transfer through the bypass duct for a fixed flight condition,
including inlet and nozzle duct areas, the temperature of the coolant entering the heat exchanger,
and the heat exchanger physical dimensions. The flow path areas affect how air is compressed
through the bypass duct, which in turn affects the flow temperature. Higher fuel temperatures
increase the amount of heat dissipated through the heat exchanger. The number of cross-flow channels,
the fin thickness, height, and width, on both the hot and cold sides of the heat exchanger affects the
heat dissipation ability. However, for the studies presented in this paper, we hold the physical heat
exchanger design parameters fixed. Given that the physical design parameters are fixed, heat exchanger
performance depends on the fuel and air flow rates, which are dictated by the optimizer and the
aircraft speed, respectively.

2.5. Multidisciplinary Model Setup

We combine the individual disciplinary models into a fully coupled multidisciplinary model as
shown by Figure 6. The coupling between the flight dynamics, aerodynamics, and propulsion analysis
blocks is resolved through a Newton solver.

Optimizer
v̇ , γ̇, γ,CDbrake,mass,

altitude, range, velocity

ṁrecirculated, ṁtransfer,

feed and main tank properties,

component temperature

defect and

path constraints
Flight dynamics altitude, velocity α altitude, T4

Atmospherics Mach, density Mach, density Mach, density

lift, drag Aerodynamics

fuel burn and

path constraints
thrust Propulsion ṁburn

temperature and

defect constraints
Thermal

Figure 6. XDSM diagram [60] of the fully-coupled problem, including the optimizer, design variables,
and constraints.

The flight dynamics, tank temperature and masses, and electrical component temperatures
are integrated using the Legendre–Gauss–Radau implicit collocation scheme at the optimizer level.
Collocation schemes ensure that the optimized result produces a physically accurate time history
through constraints on values called defects. The difference between the slope of the interpolative
collocation function and the physics-based rate for the state of interest is called a defect and must be
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constrained to equal 0 at the optimal design point. These defect constraints are added to the top-level
optimization problem.

Implicit collocation schemes are well-suited for gradient-based optimization for two main
reasons [27]. First, they pose optimal control problems in a way that the number of calculations
performed each iteration is constant. This is important so the optimization problem size does not
change during the course of solving the optimization problem. Secondly, these collocation schemes
produce sparse Jacobian structures, which means that large-scale problems can be solved efficiently by
reducing computational cost. OpenMDAO is designed to take advantage of this sparsity, especially
when computing the total derivatives of the problem.

3. Optimization Methodology and Formulation

3.1. Optimization Framework: OpenMDAO

Throughout this work, we use OpenMDAO (https://github.com/openmdao/openmdao) [61]
as the underlying optimization framework. OpenMDAO was developed at NASA Glenn and uses
the MAUD theory to allow for modular construction and execution of complicated models [47].
OpenMDAO has been used to optimize a huge variety of problems, including thermodynamic engine
cycles [57,58,62,63] and MDO of aircraft considering mission performance [28,39,40,64].

Many features of OpenMDAO directly enabled the research presented in this paper.
Model construction was greatly simplified by the ability to connect analysis blocks easily from different
tools. Tools for model layout visualization and debugging that come packaged with OpenMDAO
decreased the time to set up and verify the problem. Solver convergence information and model
debugging tools helped us determine what to fix when the model did not converge successfully.
Additionally, multiple open-source tools have been written using OpenMDAO and were directly used
in this work, including Dymos (https://github.com/openmdao/dymos) [27] for mission optimization
and pyCycle (https://github.com/openmdao/pycycle) [57] for engine design. These tools and
features make OpenMDAO a useful and necessary tool for setting up, analyzing, and optimizing
multidisciplinary systems efficiently within this paper.

Within this work, we use pyOptSparse [65] and SNOPT [66]. pyOptSparse (https://github.com/
mdolab/pyoptsparse) is an open-source Python framework that provides a common interface for
many gradient-based and gradient-free optimization methods. SNOPT is a sequential quadratic
programming approach that efficiently solves large sparse nonlinear constrained optimization
problems [66]. OpenMDAO has native support for pyOptSparse and any of its wrapped
optimization methods.

3.2. Mission Integration Tool: Dymos

In this paper, we use Dymos (https://github.com/openmdao/dymos) to solve the
path-dependent MDO problems. Dymos [27] is an open-source tool built upon OpenMDAO.
It provides an interface for integration of ODEs with MDO in mind.

Dymos’ implementation is based in part on NASA’s OTIS optimal control software [67]. Dymos
contains both high-order pseudospectral collocation methods and Runge–Kutta schemes and provides
convenient user-facing methods to solve optimal control and design problems. Dymos has been used
to optimize aircraft trajectories in parallel [68], aircraft trajectories with propulsion in the loop [25],
and next generation aircraft concepts [24,28,69].

Dymos breaks a trajectory into one or more phases, and then each of those phases into segments.
These segments are modeled as a polynomial and values of the states and controls are considered at
nodes across these segments. Boundary or path constraints can be used on any output from the model,
regardless if it is a state or not. In this work, we use multiple phases for the ascent, cruise, and descent
portions of the mission and link the time, states, and controls to ensure continuity.

https://github.com/openmdao/openmdao
https://github.com/openmdao/dymos
https://github.com/openmdao/pycycle
https://github.com/mdolab/pyoptsparse
https://github.com/mdolab/pyoptsparse
https://github.com/openmdao/dymos
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4. Optimization Problem Results

4.1. Thermally-Constrained Mission Optimization

With a better understanding of the fully coupled model and its design space, we introduce the
optimization problem formulation in this subsection. Table 3 has the complete optimization problem
formulation for a reconnaissance mission. Here, we are minimizing the fuel burn for a supersonic
mission where the cruise Mach number and altitude are prescribed and the ascent and descent profiles
are optimized. Two optimization cases are presented: one without and one with thermal constraints
and thermal design variables.

Table 3. Optimization problem formulations for the fully-coupled supersonic reconnaissance mission.

Category Name
Quantity

Lower Upper UnitsNo Thermal Thermal
Constraints Constraints

Objective fuel burn 1 1 – – kg

Variables γ̇ 12 12 −0.1 0.1 radians/s
v̇ 12 12 −5 5 m/s2

CDbrake 6 6 0 0.05
ṁrecirculated 0 18 0 10 kg/s
ṁtransfer 0 18 0 10 kg/s
mass 83 83 15,000 30,000 kg
altitude 83 83 0 16 km
range 83 83 0 – km
velocity 83 83 0 1000 m/s
γ 82 82 −0.5 0.5 radians
feed mass 83 83 10 – kg
main mass 83 83 10 – kg
feed T 83 83 100 1000 K
main T 83 83 100 1000 K
component T 83 83 100 1000 K
mpumped 83 83 – – kg
Total 944 980

Constraints final altitude 1 1 100 100 m
final Mach 1 1 0. 0.5
Mach cruise path constraints 36 36 1.4 1.4
altitude cruise path constraints 36 36 13 13 km
α path constraints 84 84 −15 15 degrees
T4 path constraints 84 84 2000 3200 degrees R
CDbrake 24 24 0 –
ṁrecirculated path constraints 0 84 0.01 – kg/s
feed mass path constraints 0 84 500 – kg
ṁtransfer path constraints 0 84 0 – kg/s
Tout path constraints 0 84 – 100 degrees C
Component T path constraints 0 84 – 80 degrees C
main T path constraints 0 84 300 300 K
range defects 70 70 0 0 km
altitude defects 70 70 0 0 km
velocity defects 70 70 0 0 m/s
γ defects 70 70 0 0 radians
mass defects 70 70 0 0 kg
feed mass defects 70 70 0 0 kg
feed T defects 70 70 0 0 K
main T defects 70 70 0 0 K
component T defects 70 70 0 0 K
m pumped defects 70 70 0 0 kg
main mass defects 70 70 0 0 kg
phase continuity constraints 121 121 0 0
linkage constraints 24 24 0 0
Total 1181 1685
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The first case, labeled as “No thermal constraints” in the table, finds the optimal mission without
considering the performance of the thermal system, though the thermal states are tracked. The second
case, labeled as “Thermal constraints” in the table, includes thermal constraints and thermal design
variables. Here, the temperature of the cooled avionics component and the fuel temperature are limited
to prevent electronics degradation and fuel overheat, respectively. We would expect the optimizer to
increase the fuel flow through the thermal system to better cool the component, or take a different
flight path to access air at a lower temperature for the ducted heat exchanger in this problem.

The thermal load coming from the avionics component is set at 20 kW for the ascent and descent
phases, and 30 kW for the cruise phase to simulate increased thermal load due to the use of a
reconnaissance sensor. The ascent, cruise, and descent time durations are set to 200, 1000, and 200 s,
respectively. For the case without thermal constraints, the recirculatory flow rate is ṁrecirculated =

1.0 kg/s and the main-to-feed tank transfer rate is ṁtransfer = 1.0 kg/s and both are fixed across the
mission. The initial feed tank fuel mass is 1000 kg and the initial temperatures for the main tank,
feed tank, and component are all 300 K in both cases.

As highlighted in Table 3, these optimization problems are relatively large, as the thermal case
has 980 design variables and 1602 functions of interest. These optimization studies are partially
enabled by OpenMDAO’s sparse coloring algorithms [70]. For the thermal case, coloring reduces the
number of independent sensitivity analysis calls from 980 to 258, resulting in a 73.7% improvement in
computational cost. This helps to decrease the time between optimization cases and design iterations
to increase the rate that the large design space can be explored by experts.

Figure 7 shows the optimal results of these two cases. Without thermal constraints, the full mission
fuel burn is 2323.7 kg, whereas the aircraft burns 2880.9 kg of fuel for the thermally-constrained mission.
Examining the case without thermal constraints first, the optimal altitude profile has a straightforward
ascent profile where the aircraft accelerates for a short time before climbing the cruise altitude and then
accelerating further to the prescribed cruise Mach number. The component temperature increases and
reaches steady-state in the ascent phase before increasing when the sensor thermal load is introduced
for the cruise phase. The thermal constraint, shown by a gray line on the component temperature axes
in Figure 7, is violated for the entire cruise phase and is only satisfied shortly after the descent phase
begins. Because the descent time duration is fixed at 200 s, the aircraft briefly increases altitude while
losing speed before continuing its descent.

For the thermally-constrained case, the optimal ascent profile is markedly different than for the
unconstrained case. The aircraft focuses on gaining speed instead of altitude to force more air through
the ducted heat exchanger, which increases the amount of thermal energy that can be dissipated. This
requires the engine to be at full throttle through the ascent at a lower altitude, which is responsible
for the increase in fuel burn compared to the thermally-unconstrained case. The increased fuel flow
also increases the amount of thermal energy dissipated through the heat exchanger. After reaching
Mach 1.5, the aircraft climbs to the cruise altitude and in the process slows to the prescribed cruise
Mach number of 1.4. This allows the component and feed tank temperatures to be lower than in the
unconstrained case. Although tailoring the flight path helps the thermal system, there are no feasible
solutions to this thermally-constrained problem unless the optimizer can also control the recirculated
fuel flow rate. The C1-discontinuous component temperature trends are caused by prescribed changes
in the thermal load corresponding to increased electronic usage during the cruise phase.

During the ascent phase, the optimizer also increases ṁrecirculated to increase the fuel flow rate
through the component and ducted heat exchangers to dissipate more thermal energy. This, coupled
with the lower feed tank temperature due to the ascent profile, helps keep the component temperature
below its upper limit. In the problem presented here, there are multiple feasible answers because the
thermal constraints can be met through multiple fuel flow histories. Although we are not capturing the
added energy cost of pumping fuel as coolant in the thermal system, introducing that coupling would
affect the optimal ṁrecirculated profile and reduce the number of feasible solutions. This optimization
problem is dependent on having a good initial starting condition due to the collocation scheme.
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Figure 7. Without thermal constraints on the system, the optimal mission takes a more direct ascent
profile. In the thermally-constrained case, the optimizer chooses to more quickly increase speed to force
more air through the ducted heat exchanger to dissipate more heat in the ascent phase. The thermal
constraint for the avionic component temperature is shown in light gray.

4.2. Cruise-Mission Endurance Optimization

Lastly, we examine the optimal flight profiles when the optimizer has more freedom to tailor the
mission. Here we track the thermal system states but do not constrain the optimization problem based
on these states. Instead, we focus on the optimal flight path given the additional freedom in speed and
altitude profiles as a measure of endurance mission performance.

Without prescribing the Mach number and altitude profiles for the cruise phase, we would expect
a lower fuel burn. Figure 8 shows the thermally-unconstrained case from before and the optimal result
from a more flexible problem formulation with the cruise requirements removed. The x-axis is time,
not range, so the total distance traveled in the two missions is not necessarily equal. The ascent, cruise,
and descent phases again have fixed durations of 200, 1000, and 200 s, respectively.

With the additional flexibility, the optimizer rounds out the altitude profile and takes a more
conservative flight path. Without the prescribed cruise Mach number, the more flexible mission cruises
in the transonic regime, which is more fuel efficient. This more efficient profile results in a fuel burn of
1617.6 kg, compared to the 2323.7 kg for the constrained cruise case. By formulating the problem such
that the aircraft flies for the same duration as the previous problem, we see how the optimizer changes
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the flight profile to maximize endurance by lowering fuel burn. We are not constraining the thermal
system here, so the optimized flight profiles do not depend on thermal dissipation performance.
Instead, we focus on the degrees of freedom available in this optimization problem and the additional
performance afforded in relaxing constraints.

0.0

6.5

13.0
Altitude, km

0.00

0.75

1.50
Mach Unconstrained cruise

Constrained cruise

300

340

380
Component T, K

0 200 400 600 800 1000 1200 1400
Time, secs

280

300
Feed tank T, K

Figure 8. Without the Mach and altitude constraints on the cruise phase, the optimizer takes a more
conservative ascent profile and cruise at a lower Mach number. The x-axis here is time, so the two
aircraft do not fly the same total distance due to their different flight speeds.

5. Conclusions

Large-scale path-dependent optimization problems are challenging to solve due to their high
dimensional design space. In this paper, we present methods to reduce the computational cost of
solving these multidisciplinary problems. We do this by constructing a general methodology that can
track path-dependent states from multiple disciplines through a flight trajectory.

We demonstrate this methodology’s capability by constructing a coupled
aero-thermal-propulsive-mission multidisciplinary model to optimize a supersonic aircraft
considering its path-dependent performance with thermal constraints. The optimization problems
include on the order of 1000 design variables and 1000 constraints. We present results for the optimal
flight trajectory considering thermal constraints and discuss the non-intuitive optimal design trends.
We also present optimal flight trajectories with fewer path constraints to show the flexibility of the
methodology. This paper is useful for researchers considering any combination of path-dependent
optimization and large-scale MDO problems.

The path-dependent optimization process detailed in this paper can be used to assess and design
other aircraft and missions. Other missions of interest might arise in urban air mobility, supersonic
combat, radar area coverage, or firefighting missions. Achieving optimal performance for each of these
missions requires designers to consider specific path-dependent states during the design optimization
process. These new aircraft configurations might have non-intuitive coupling between subsystems
that can be efficiently evaluated using the methods presented in this paper.
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