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Abstract: A comparative sensitivity study for the flutter instability of aircraft wings in subsonic
flow is presented, using analytical models and numerical tools with different multidisciplinary
approaches. The analyses build on previous elegant works and encompass parametric variations of
aero-structural properties, quantifying their effect on the aeroelastic stability boundary. Differences in
the multifidelity results are critically assessed from both theoretical and computational perspectives,
in view of possible practical applications within airplane preliminary design and optimisation.
A robust hybrid strategy is then recommended, wherein the flutter boundary is obtained using
a higher-fidelity approach while the flutter sensitivity is computed adopting a lower-fidelity approach.
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1. Introduction

Within aircraft multidisciplinary design and optimisation (MDO) [1,2], efficient methods and
robust tools are highly sought after as effective reduced-order models (ROMs) [3–5] for fast parametric
aeroelastic analyses [6–8], especially for sensitivity and uncertainty evaluation purposes at the
preliminary design stage [9–11]. Simplified semi-analytical formulations for the bending–torsion
instabilities of flexible wings have been available for a long time but have inherent limitations [12–14],
whereas complex fluid-structure interaction (FSI) [15] procedures based on the finite element method
(FEM) [16] and computational fluid dynamics (CFD) [17] have recently been used to improve accuracy
and generality, but remain computationally expensive and require special care [18,19] with significant
effort to pre- and post-process the numerical simulations.

Continuing previous studies on multilevel techniques for practical aeronautical applications [20,21],
this conceptual work investigates a robust hybrid strategy where the flutter boundary is accurately
obtained using a higher-fidelity approach while the flutter sensitivity is efficiently computed by
adopting a (tuned) lower-fidelity approach as an effective ROM. A comparative sensitivity study is
hence presented for the aeroelastic stability boundary of a uniform cantilever wing in subsonic flow
as the standard benchmark [22]. The Typical Section idealisation [23,24] is employed as the analytical
lower-fidelity model, whereas the numerical higher-fidelity model couples a beam-based FEM with
panel-based CFD. Considering Loring’s wing [25] with a NACA0002 airfoil [26], the flutter analyses
build on earlier publications [27,28] and encompass parametric variations of wing properties, such as
its structural inertia, stiffness and aspect ratio. The effects of the latter on the aeroelastic instability are
quantified and differences between lower-fidelity and higher-fidelity results are critically assessed from
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both theoretical and computational perspectives, in order to study the necessary trade-off between
complexity and costs of model fidelity for intensive industrial MDO activities [29].

2. Problem Formulation

Uniform cantilever wings have long been used as the standard benchmark for fundamental
studies on aeroelastic analyses and parametric sensitivities for the bending–torsion instabilities of
flexible wings, both numerically and experimentally [12,22]. They feature constant material properties
(i.e., structural density ρm, Young’s elastic modulus E and shear modulus G), chord c, mass m and
moment of inertia µ per unit length at the inertial axis xCG (i.e., the line of sectional centres of gravity);
bending stiffness EI and torsion stiffness GJ at the elastic axis xEA ≡ 0 (i.e., the line of sectional shear
centers) along the semi-span l; structural damping is typically small and conservatively neglected [30].

With θ(y, t) and h(y, t) the pitch and plunge motion of the flexural axis at the time t,
respectively, the wing vertical displacement w(x, y, t) is given as w = h + xθ directly, x and y being
the chordwise and spanwise directions. Assuming an Euler–Bernoulli beam model [31], the linear
system of coupled partial differential equations (PDEs) for the dynamic aeroelastic response of wing
bending and torsion undergoing small deformations reads:

m
(
ḧ− xCG θ̈

)
+ EIh

′′′′
= ∆L, µθ̈ −mxCG

(
ḧ− xCG θ̈

)
− GJh

′′
= ∆M, (1)

with ∆L(y, t) and ∆M(y, t) being the sectional lift and pitching moment, respectively; the governing
equations are then completed by both geometrical and natural boundary conditions, namely:

θ (0, t) = GJθ
′
(l, t) = 0, h (0, t) = h

′
(0, t) = EIh

′′
(l, t) = EIh

′′′
(l, t) = 0. (2)

As for the case of Loring’s wing, the problem formulation assumes an isotropic material without
loss of generality; an anisotropic material (e.g., for the case of composite wings [32]) would feature
elastic coupling between bending and torsion (due to different mechanical characteristics in respective
directions [12]) but would not introduce conceptual changes to the overall methodology and main
conclusion of this work.

2.1. Uncoupled Natural Vibration Modes

Assuming h ≈ φhχh and θ ≈ φθχθ , where χ(ω, t) are the generalised coordinates of the uncoupled
vibration mode shapes φ(y) with natural frequencies ω, the latter for the cantilever wing’s bending
and torsion dynamics can independently be obtained by solving the relative homogeneous PDEs via
separation of variables with the respective boundary conditions, namely [12]:

ωh =
(γ

l

)2
√

EI
m

, ωθ =
ν

l

√
GJ
µ

, cosh γ cos γ + 1 = 0, cos ν = 0, (3)
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l

)
− cos

(
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l

)
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) [
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(
γ

y
l

)
− sin

(
γ

y
l

)]
, φθ = sin

(
ν

y
l

)
, (4)

which form a complete set of modal bases for the generalised solution of the aeroelastic equations;
yet, note that these uncoupled bending and torsion modes are inherently orthogonal within their own
bases but not to one another.

2.2. Unsteady Aerodynamic Model

According to thin aerofoil theory for incompressible potential flow, the sectional unsteady
aerodynamic loads due to the wing motion may be written as [22]:

∆L =
c
2

ρ
[π

2
c
(
Uθ̇ − ḧ + xMC θ̈

)
+ κUCl/α (CTV)

]
, V = Uθ − ḣ + xMC θ̇, (5)
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∆M = − c
2

ρ

{
π

2
c
[

c2

32
θ̈ + xCPUθ̇ − xMC

(
ḧ− xMC θ̈

)]
+ κUxACCl/α (CTV)

}
, (6)

where ρ and U are the reference air density and horizontal flow speed; the aerodynamic centre xAC
(where the circulatory load acts) and the control point xCP (where the non-penetration boundary
condition for the vertical flow speed V(y, t) is imposed) lay at the first- and third-quarter chords,
respectively; xMC refers to the mid-chord (where the non-circulatory load acts); Cl/α is the derivative
of the sectional lift coefficient Cl with respect to the nominal angle of attack α.

Within tuned strip theory [21], the scaling factor κ introduces steady three-dimensional downwash
effects due to the tip vortices [33] and takes part in the derivative of the wing lift coefficient
CL/α = κCl/α [34], while the complex lift-deficiency function CT(k) is defined in the reduced-frequency
k domain and embeds the lag due to two-dimensional inflow effects from the travelling flat
wake [35], namely:

Cl/α = 2π

(
1 +

4ε

3
√

3

)
, κ =

πη

πηe + Cl/α
, CT =

H2
1

H2
1 + iH2

0
, k =

cω

2U
, (7)

with ε being the aerofoil thickness ratio, η the wing aspect ratio, e(η) Jones’ edge-velocity factor (i.e.,
the ratio between wing semi-perimeter and span [36]) and H2

n(k) Hankel’s functions of the second
type and n-th order. Note that the proposed approximate correction for the wing lift coefficient is
analogous to applying Oswald’s efficiency factor [37], whereas κ ≡ 1 for standard strip theory.

In summary, unsteady aerodynamics account for both circulatory lag and non-circulatory
inertia effects [38], whereas quasi-unsteady aerodynamics neglect circulatory lag terms [39] within
a quasi-static approach (i.e., CT ≈ 1 with k << 1). Quasi-steady and steady aerodynamics then
disregard non-circulatory inertia terms too, within a static approach (i.e., CT = 1 and k ≈ 0) where
the control point coincides with the elastic axis in the former case (in order to avoid unrealistic
aerodynamic damping [23]) and all time derivatives are eventually discarded in the latter case. Note
that the structural motion represents a time-dependent boundary condition for the incompressible
airflow in all cases, but a synchronous proportional variation of the circulatory airload occurs within
quasi-static approaches only [40].

2.3. Modal Approach and Stability Analysis

Given the natural vibration modes of the wing, the relative equations of motion can be transformed
into ordinary differential equations (ODEs) by employing Ritz’s method [41], where generalised
coordinates {χ(t)} multiply the natural vibration mode shapes φ. Recasting the whole aero-structural
model in vector-matrix form, the governing modal equations then read:

[M] {χ̈}+ [C] {χ̇}+ [K] {χ} = {0} , {FA} = [MA] {χ̈}+ [CA] {χ̇}+ [KA] {χ} , (8)

where the aeroelastic mass [M], damping [C] and stiffness [K] matrices are given by:

[M] = [MS]− [MA] , [C] = [CS]− [CA] , [K] = [KS]− [KA] , (9)

and enforce a monolithic FSI, with {FA(t)} the aerodynamic load; as anticipated, [CS] = [0] is hereby
assumed for convenience without loss of generality.

Due to linearity, the parametric aeroelastic stability of the wing is then monitored from the root
locus of the characteristic equation for the flutter determinant as the reference airspeed increases;
in particular, the system becomes metastable when the real part of at least one eigenvalue λ vanishes
and leaves the response undamped, namely:

{χ} ≈ {u} eλt,
(

λ2 [M] + λ [C] + [K]
)
{u} = {0} , (10)
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with λ = iω in the case of dynamic flutter where a coupled resonant harmonic motion excites the
eigenmode {u} (Hopf’s bifurcation occurring when a couple of complex conjugate eigenvalues cross
the imaginary axis), whereas λ = 0 in the case of static divergence (occurring when the aeroelastic
stiffness matrix becomes singular). Note that the eigenvalues and eigenvectors are suitably assumed
to form a complete distinct set, as per most of the practical cases [42]; of course, a sufficient number
of natural vibration modes shall be employed in order to grant proper convergence of the modal
analysis [43].

2.4. Sensitivity Analysis

The aeroelastic stability boundary acts as a typical constraint in aircraft MDO problems, where
parametric sensitivities of both flutter and divergence speeds with respect to variations in the design
variables are required for gradient-based optimisation algorithms [44,45]. In general, such derivatives
may numerically be obtained by performing many simulations with small alterations of each and every
design variable; nevertheless, the aircraft’s conceptual and preliminary design stages would require
extensive robust computations for the trends of both objective function and constraints while changing
the design parameters [46,47]. Effective analytical solutions (with explicit expressions in a few special
cases) have hence been derived by differentiating the governing equations, taking advantage of the
self-adjoint nature of complex eigenproblems and then separating real and imaginary parts [48,49].

Especially when the sensitivity of the critical mode shape is also required, the continuation method
may efficiently be employed to calculate the critical point and obtain all desired derivatives at the
same time [50]. The eigenproblem arising in flutter and divergence analysis may indeed be considered
as a system of nonlinear equations with a normalisation condition for the eigenvectors; the solution
is then numerically sought by the Newton–Raphson method, where the aeroelastic equations are
differentiated with respect to a design parameter of interest p and the system is linearised at each
iteration [51]. Within a single unified procedure, the eigenvalues’ and (right) eigenvectors’ derivatives
may then automatically be determined along with the eigensolution itself at once, with no information
about the transposed (left) problem being required; higher-order derivatives may be obtained by
further differentiation. In particular, with U = Uc(p), ω = ωc(p) and {u} = {uc(p)} in the critical
flight condition, the nonlinear eigenproblem for the flutter mode reads [9]:

[S] {uc} = 0, {uc}T {uc} = 1, [S] = −ω2
c [M] + iωc [C] + [K] , (11)

and is differentiated to give the eigensolution sensitivity with respect to the design parameter as:
Re [S] −Im [S] Re {υ} Re {ς}
Im [S] Re [S] Im {υ} Im {ς}

Re {uc}T −Im {uc}T 0 0
Im {uc}T Re {uc}T 0 0

 ∂

∂p


Re {uc}
Im {uc}

Uc

ωc

 =


Re {ι}
Im {ι}

0
0

 , (12)

where the submatrices and subvectors involve the derivatives of the aeroelastic model, namely:

{ς} = ∂ [S]
∂ωc
{uc} ,

∂ [S]
∂ωc

= −ω2
c

∂ [M]

∂ωc
+ iωc

∂ [C]
∂ωc

+
∂ [K]
∂ωc

− 2ωc [M] + i [C] , (13)

{υ} = ∂ [S]
∂Uc
{uc} ,

∂ [S]
∂Uc

= −ω2
c

∂ [M]

∂Uc
+ iωc

∂ [C]
∂Uc

+
∂ [K]
∂Uc

, (14)

{ι} = −∂ [S]
∂p
{uc} ,

∂ [S]
∂p

= −ω2
c

∂ [M]

∂p
+ iωc

∂ [C]
∂p

+
∂ [K]
∂p

; (15)

in the degenerate case of static divergence with Im {uc} = 0 and ωc = 0, all quantities are inherently
real and the matrix of algebraic equations above specialises without the second and fourth rows and
columns, respectively. Following previous studies [27], the derivatives may finally be normalised with
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respect to the reference values of the involved quantities, thereby comparing all sensitivities within
a coherent representation.

3. Lower-Fidelity Model

The Typical Section abstraction [52] is hereby employed as the analytical lower-fidelity model,
as it is conceptually illuminating, inherently robust and computationally efficient within its limitations.
It resembles the section of the uniform wing and its fundamental aeroelastic behaviour for the
bending–torsion coupling mechanism; matching the wing inertia and natural frequencies, such an
abstraction, may be regarded as a condensed ROM. The structural arrangement is a classic mass-spring
system for the wing section, where the coupled pitch and plunge motion is restrained by vertical
and angular linear springs with equivalent stiffnesses kh = mω2

h and kθ = µω2
θ (see Appendix A),

respectively; it is representative of the inertial and elastic properties per unit length of the wing at about
75% of its span, where the structural arrangement becomes progressively flexible and the aerodynamic
load is still high. The model is hereby extended to include all bending modes having natural frequency
below that of the first torsion mode, as the instability may involve any combination of them in general.

Considering the first two uncoupled bending modes and the first uncoupled torsion mode of
Euler–Bernoulli’s beam model (with γ1 ≈ 1.875, γ2 ≈ 4.694 and ν1 ≈ 1.571) [12], the aeroelastic
equations of motion for the wing’s Typical Section in (time-varying) steady incompressible flow are:

[MS] =

 m 0 −mxCG f
0 m −mxCGg

−mxCG f −mxCGg µ + mx2
CG

 , [KS] =

kh 0 0
0 khr 0
0 0 kθ

 , (16)

[MA] = [0] , [CA] = [0] , [KA] =
ρ

2
U2cCL/α

0 0 f
0 0 g
0 0 −xAC

 , (17)

where the cross-projections of the non-orthogonal modes scale the off-diagonal coupling terms:

f =
1
l

∫ l

0
φh (y, γ1) φθ (y, ν1) dy, g =

1
l

∫ l

0
φh (y, γ2) φθ (y, ν1) dy, r =

γ4
2

γ4
1

; (18)

in particular, all the latter are constant and read f ≈ 0.959, g ≈ 0.274 and r ≈ 39.275 for homogeneous
aero-structural properties. Note that assuming a static aerodynamic approach is consistent with
the rigorous application of the scaling factor κ, which is hereby based on steady lifting-line theory;
no damping is hence provided to the aeroelastic response. It is also worth stressing that the equations
for the first and second bending/plunge modes are not coupled directly, but the equation for the
torsion/pitch mode couples them indirectly.

Aero-Structural Parametric Derivatives

The sensitivity of the aeroelastic matrices with respect to aero-structural parameters can readily
be obtained in explicit analytical form, where the chain rule applies [28]. In particular, the derivatives
with respect to the material density ρm and elastic modulus E are given by:

∂ [M]

∂ρm
=

1
ρm

[MS] ,
∂ [K]
∂ρm

= [0] ,
∂ [M]

∂E
= [0] ,

∂ [K]
∂E

=
1
E
[KS] , (19)

whereas those with respect to reference flow speed U and perturbation frequency ω read:

∂ [M]

∂U
= [0] ,

∂ [K]
∂U

=
2
U

[KA] ,
∂ [M]

∂ω
= [0] ,

∂ [K]
∂ω

= [0] , (20)
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and with respect to the wing semispan l it is:

∂ [M]

∂l
= [0] ,

∂ [K]
∂l

= −2
l
[D] [KS] +

1
CL/α

[KA]
∂CL/α

∂l
, [D] =

2 0 0
0 2 0
0 0 1

 , (21)

∂CL/α

∂l
=

2
c

∂CL/α

∂η
,

∂CL/α

∂η
= CL/α

(
1− κ

η

)
. (22)

4. Higher-Fidelity Model

The high-fidelity model is based on a FEM of a slender beam solved with the commercial code
Nastran [53] for the structural analysis; the latter is coupled with either the doublet lattice method
(DLM) available in the same software [54] or an in-house panel code based on Morino’s boundary
element method (BEM) for the steady and unsteady aerodynamic analysis [55,56], thereby enforcing
a numerical FSI. Both Nastran-based structural FEM and in-house aerodynamic BEM are generated
with automatised routines, in order to ease parametric studies; this capability is exploited to perform
numerical convergence studies (see Appendix B) and compare the analytical flutter derivatives with
their numerical counterparts obtained via finite difference.

4.1. Structural Model

Following previous works [21], the wing structure is modelled with CBEAM elements and
accounts for the distance between inertial and elastic axes; the node lying at the wing root is then
clamped (see Figure 1). Further FEM nodes are placed at the leading and trailing edges of the wing
and connected to the beam nodes with the rigid elements RBE2, in order to support mapping with the
aerodynamic grid (in terms of both structural deformation and aerodynamic load: the latter modifies
the former, which changes the airflow boundary condition in turn) according to the closely-spaced
rigid diaphragm (CSRD) assumption [57]. For the natural vibration analysis, shear deformation is
neglected in order to obtain the Euler–Bernoulli beam model, with PBEAM defining the properties (i.e.,
inertia and stiffness) of the beam element and SPC1 defining the single-point constraint for the clamped
root. Using Nastran’s SOL103 to obtain the structural eigenvalues and eigenvectors, the vibration
analysis is performed while selecting Lanczos’ method [58] as available in EIGRL and normalising the
modes to unit values of the generalised mass.

Figure 1. Structural FEM of Loring’s wing.
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4.2. Aerodynamic Model

Standard flutter prediction methods in the industrial environment are based on aerodynamic
panel codes (mostly DLM [59,60]) that idealise wing and empennage as lifting surfaces; if considered,
the aircraft fuselage is treated with dedicated elements for non-lifting bodies. The lower computational
cost compensates for the lower fidelity of the model; however, the reliability may be increased by
correcting the aerodynamic influence coefficients with higher-fidelity data (which are generally not
available at the preliminary stage of an MDO process though). Considering small perturbations of
an unsteady irrotational flow, the BEM proposed by Morino [55,56] is hereby adopted and consists of
an integral representation of the velocity potential at any point of the computational domain in terms of
the values on the surface surrounding the aircraft body and wake; the principle of superposition applies.
The linear equation of acoustic waves propagation governs the unsteady flow for the case of isentropic
compressible fluid and accounts for the finite speed of sound [61], whereas Laplace’s equation is
resumed for the case of steady flow by taking advantage of Prandtl–Glauert’s transformation [62].
Green’s function representing a unit-impulsive point source, the theoretical formulation of the
boundary value problem for the perturbation potential is then based on Green’s formula [33],
with (Neumann-type, generally instationary) non-penetration boundary conditions on the aircraft
surface and wake as well as (Dirichlet-type, generally stationary) unperturbed asymptotic conditions
far from the latter. Bernoulli’s theorem is linearised to calculate the pressure coefficient and Kutta’s
condition is imposed at the trailing edge of lifting surfaces, where the wake detaches and is shed back
with the reference airspeed, trailing circulation variations without sustaining any pressure load [37];
its trajectory then represents a streamline at any time and may generally become part of a nonlinear
iterative solution where roll-up occurs due to downwash effects, if it is not prescribed a priori (as is
in fact typical for most practical applications [53,63], especially when characterised by moderately
unsteady flow). Thus, Morino’s BEM is able to deal with arbitrary 3D geometries in a unified manner,
reducing the effort of the abstraction process and easing the integration with complex structural models.
Although the original theory is valid for arbitrary motion in time or frequency domain, only harmonic
oscillations in the frequency domain are here considered as suitable for flutter analysis.

The current implementation of Morino’s BEM is described in previous works [64] and is equivalent
to an appropriate combination of doublets (for lifting bodies and wake) and point sources/sinks
(for thickness effects and non-lifting bodies). The 3D geometry is approximated with flat quadrilateral
panels that follow the local wing surface and the aerodynamic potential is assumed constant over
them, with an analytic expression for their mutual induction. Note that similar flow conditions can be
modelled by either vortex or doublet distributions and a quadrilateral doublet element is equivalent to
a vortex ring placed at the panel edges [65]; higher-order methods have also been formulated in order
to improve accuracy and computational efficiency for complex geometries and configurations, but
they are more prone to becoming ill-posed and typically not necessary as long as enough quadrilateral
panels refine the aerodynamic grid for lower-order methods to capture high pressure gradients while
still staying away from ill-conditioning [66]. Through the wake being assumed as flat, rigid and
parallel to the free-stream velocity in order to perform rigorous comparisons with Nastran’s DLM and
Theodorsen’s theory without loss of generality (in the absence of aircraft fuselage and empennages [67]),
a linear system is obtained:

Tσσk = Tϑϑk, (23)

where frequency-dependent Tσ and Tϑ are the matrices of aerodynamic influence coefficients (AIC),
whereas σk and ϑk are the aerodynamic potential and normal wash associated with the k-th mode
shape of the structural displacement [68], having mapped the latter onto the aerodynamic grid with
an effective implementation of the infinite plate spline (IPS) method [69]. The elements Qhk of the
generalised aerodynamic forces (GAF) matrix Q(s) are then calculated from the work done by the
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aerodynamic pressure Cp due to the k-th mode on the displacement defined by the h-th mode φh for a
prescribed range of reduced frequencies [40], namely:

Qhk =
N

∑
i=1

φh
i · ni AiCi

p(σ
k), (24)

where ni and Ai are the normal vector and area of the i-th aerodynamic panel, respectively.
The NACA0002 aerofoil [26] is suitably adopted to obtain a baseline 3D representation of Loring’s

wing surface (see Figure 2); this particular choice of thin symmetric aerofoil is consistent with the
original work with no loss of generality, as the parametric sensitivity of the aeroelastic stability
boundary with respect to aerofoil thickness was already found to be poor for small perturbations
of subsonic potential flow (i.e., in the absence of strong shock waves and/or significant flow
separation) [70].

Figure 2. Aerodynamic panels model of Loring’s wing.

4.3. Aeroelastic Model

After obtaining the natural vibration modes, the GAF are computed with Morino’s BEM, and
the continuation method [50] is used to solve the aeroelastic stability eigenproblem and trace the root
locus. In order to avoid its costly re-computation during the stability analysis, the GAF matrix is
approximated by a rational expression in which the non-linear dependency on the complex reduced
frequency s appears explicitly. Here the matrix fraction approach (MFA) [71] is used and preferred
to the rational function approximation (RFA) [72], since the former exhibits higher accuracy than the
latter for the same number of poles [73]; yet, both methods provide the analytical continuation of the
GAF for complex reduced frequency, increasing the accuracy of damped solutions with respect to the
p− k method. According to MFA, the GAF matrix is expressed as fraction of matrix polynomials:

Q ≈
(

M+2

∑
i=0

Nisi

)(
M

∑
i=0

Disi

)−1

, (25)

and the accuracy of the approximation increases with increasing the number of poles M, which is
equal to the size of the state-space system [74]; in particular, three poles have been used in this
proof-of-concept work. The approximation matrices Di and Ni are both obtained by solving
a least-square problem in which the distance from the GAF samples Q(ik) is minimised.
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The continuation method hereby adopted provides a straightforward and efficient tracking
technique without using any correlation function, such as the modal assurance criterion (MAC) [75].
For this reason, the method is rather insensitive to the number of poles used for the aerodynamic
finite-state approximation and is able to distinguish between actual and artificial aerodynamic states by
construction. In the continuation method, the aeroelastic equations are differentiated with respect to the
free-stream airspeed, thereby resulting in a system of ODEs which are solved with a predictor–corrector
integration schema starting from an initial airspeed value for which a true solution is known (e.g.,
the natural vibration frequencies for U = 0).

For validation purposes, flutter analysis is also carried out with Nastran’s DLM directly: a flat
plate aligned with the free-stream is used as lifting surface and the aerodynamic panels are defined with
CAERO1 and PAERO1 cards; the distribution and number of such panels follow established guidelines
and convergence studies (see Appendix B). The mode shapes are mapped onto the aerodynamic grid
with the IPS method [76] using the SPLINE1 card and the GAF matrix is then generated for sixteen
reduced frequencies specified in the MKAERO1 card, suitably ranging from k = 0 to k = 1 (with
logarithmic-like spacing) as per literature studies and common practice [53,63]; a cubic spline is then
exploited to interpolate the GAF therein. For the dynamic aeroelastic stability analysis, the p− k
method as available in the FLUTTER card is used: the aerodynamic damping is approximated as
the imaginary part of the GAF matrix computed for (undamped) harmonic motion, limiting results’
accuracy to the case of lightly damped aeroelastic solutions [12]. The p− k approximation of the
aeroelastic eigenproblem [77] is then solved for all the free-stream speed values defined in the FLFACT
card, according to the reference length and air density specified in the AERO card. After damping
ratios are obtained in the given speed range for all modes, the (undamped) flutter point is determined
by linear interpolation.

4.4. Aero-Structural Parametric Derivatives

To calculate the sensitivity of the flutter boundary with respect to any aero-structural parameter,
the derivatives of the aeroelastic matrices are also necessary in the first place. In particular,
the derivatives of structural eigenvalues and eigenvectors with respect to structural parameters, such as
wing material properties (e.g., density or elastic modulus) and element properties (e.g., moments of
inertia or distance between elastic and inertia axis), are obtained with Nastran SOL200. The design
variable label and initial value are defined with the DESVAR card, which is connected to the relative
bulk data entry by DVMREL1 or DVPREL1 cards for material or element properties, respectively;
derivatives are hence computed for the structural responses defined by DRESP1 cards, which are the
first n structural eigenvalues and eigenvectors.

The GAF matrix is differentiated with respect to both reduced frequency and design variables:
according to MFA, the finite-state approximation allows the analytic differentiation with respect to the
complex reduced frequency s, whereas the method presented in previous works [73] was used for the
derivatives with respect to the design variables p. In particular, by defining the functions P

(
σk, p

)
and R

(
σk, p

)
as:

P = Qhk

(
σk, p

)
, R = Tσσk − Tϑϑk, (26)

a sub-differentiation process is set up, and depending on the number of design variables and mode
shapes to be considered [11], the derivatives may be obtained by either a direct approach:

dP
dp

=
∂P
∂p

+
∂P
∂σ

dσ

dp
,

∂R
∂σ

dσ

dp
= −∂R

∂p
, (27)

or an adjoint approach:

dP
dp

=
∂P
∂p

+ Λ
∂R
∂p

,
(

∂R
∂σ

)T
Λ = −

(
∂P
∂σ

)T
. (28)
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In computing the partial derivatives, it is important to note that the imaginary component
is introduced only by the normal wash ϑ and the wake’s influence coefficients inside matrix Tσ ;
therefore, the partial derivatives of the steady (real) contribution to the GAF are computed via
complex step [78] and the partial derivatives of the unsteady (complex) contribution are then
analytically assembled.

5. Results and Discussion

Loring’s uniform slender thin wing [25] is hereby considered, as both experimental wind-tunnel
data and numerical results assuming two-dimensional incompressible potential flow are available
and all results can hence be explained from both physical and mathematical standpoints;
moreover, this fundamental benchmark embeds the full complexity of the aeroelastic problem without
introducing detrimental uncertainties. The wing’s chord is 0.305 m and the semi-span is 2.057 m,
giving an aspect ratio 13.5. The inertial axis lays at 42.3% of the chord, with mass 8.05 kg/m and mass
moment of inertia 0.0471 kg·m. The wing root is clamped at the elastic axis, with flexural stiffness
677.3 N·m2 and torsional stiffness 1018.9 N·m2 placed at 30% of the chord.

The coupled natural vibration frequencies of the first bending and torsion modes were observed
at 1.29 and 18.1 Hz, respectively; that of the second bending mode was detected in between at 7.7 Hz.
With a fluid density 1.11 kg/m3, the flutter speed and frequency were experienced at 90.3 m/s and
10.2 Hz, which give a reduced frequency around 0.11; the subsonic flow may then be considered
as moderately unsteady. A Euler–Bernoulli beam model calculated the first three coupled vibration
frequencies as 1.29, 7.65 and 17.98 Hz; once coupled with two-dimensional unsteady aerodynamics
for a flat plate using standard strip theory, flutter was predicted at 90.7 m/s and 9.2 Hz with good
accuracy.

In order to elaborate on the literature results and visualise the flutter mechanism, the aeroelastic
stability analysis of Loring’s wings is first performed with the same assumptions as in the original
publication and the approach here described in the Problem Formulation; the p− k method (with
Theodorsen’s exact function [35]) has consistently been used and results have been cross-verified
against the state-space representation (with a common two-term RFA of Theodorsen’s function) [21].
By employing the first two bending modes and the first torsion mode, the respective coupled vibration
frequencies are calculated as 1.21, 7.59 and 17.91 Hz; once still coupled with two-dimensional unsteady
aerodynamics for a flat plate using standard strip theory, flutter is consistently predicted at 91.15 m/s
and 9.2 Hz (which is indeed an excellent approximation, as confirmed by a modal convergence study
up to the first three bending and torsion modes). The evolution of the aeroelastic system’s eigenvalues
is presented in Figure 3 and confirms static divergence to arise well beyond dynamic flutter (i.e.,
Ud >> U f ).

Figure 3. Real (left) and imaginary (right) parts of the aeroelastic eigenvalues for Loring’s wing in
incompressible flow.
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Due to the remarkable agreement between measurements and simulations, the assumptions of
slender beam structure and two-dimensional incompressible potential flow in the latter are hence
deemed justified. Note that the instability mechanism involves second bending and first torsion
modes directly, but the first bending mode is indirectly essential for their coupling to occur before that
between first bending and first torsion modes (see Appendix A).

5.1. Aeroelastic Analyses

The aeroelastic stability of Loring’s wing is investigated and compared using the proposed
lower and higher-fidelity models, while still assuming incompressible flow. The analyses encompass
parametric variations of the aero-structural properties, quantifying their effects on the aeroelastic
stability boundary and critically assessing the differences in the multifidelity results from both
theoretical and computational perspectives, for possible practical applications in airplane design
and optimisation adopting hybrid strategies.

Figure 4 shows the aeroelastic stability analysis from the higher-fidelity model, focusing on the
same flutter mechanism as found earlier: the first torsion mode becoming unstable and extracting
energy from the airflow through the coupled second bending mode, flutter is found at 94.77 m/s and
10.04 Hz in excellent agreement with the experimental results and exhibits a slightly higher vibration
frequency than the theoretical one. The aeroelastic stability analysis performed with Nastran and its
embedded DLM for the flat wing is also presented and confirms the higher-fidelity results based on
Morino’s BEM with NACA0002 aerofoil, flutter being found at 94.44 m/s and 10.38 Hz. Note that both
sets of code share the same structural model, and the coupled natural vibration frequencies in the void
are 1.21, 7.55 and 21.03 Hz for the first three bending modes, whereas it is 17.88 Hz for the first torsion
mode; these first four modes have been used in all analyses (see Appendix B). As expected from the
wing aspect ratio being relatively large, three-dimensional downwash effects are actually moderate
and the (beneficial) steady ones on the (attenuated) airload distribution are roughly compensated by
the (detrimental) unsteady ones on the (accelerated) airload evolution [21]; thus, the flutter speed is
just slightly higher than that predicted assuming unsteady two-dimensional flow.

Figure 4. Higher-fidelity real (left) and imaginary (right) parts of the aeroelastic eigenvalues for
Loring’s wing in incompressible flow.

Still focusing on the flutter mechanism, Figure 5 then shows the aeroelastic stability analysis from
the lower-fidelity model: despite its inherent simplicity, the latter predicts flutter quite accurately at
92.1 m/s and 9.09 Hz, thereby proving the effectiveness of such an idealisation (analogous stability
diagrams have indeed been obtained by retaining only steady aerodynamic terms in the higher-fidelity
model, for cross-verification purposes). The coupled natural vibration frequencies in the void are 1.21
and 7.59 Hz for the two bending modes, and 17.91 Hz for the torsion mode, in excellent agreement
with the higher-fidelity ones. The aeroelastic response is then metastable until the first instability
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occurs, as no damping is provided by either the elastic structure or static aerodynamics; to this respect,
it is worth mentioning that the lift-derivative correction for the steady three-dimensional downwash
(which tends to increase the flutter speed, by providing lower airload) incidentally compensates the
lack of aerodynamic lag (which tends to decrease the flutter speed, by neglecting wake inflow). Note
that, although the flutter reduced-frequency is rather high for steady aerodynamics to be rigorously
applicable, the latter was still adopted in order to exacerbate the difference between lower and
higher-fidelity models and stress the multilevel approach for more general conclusions.

Figure 5. Lower-fidelity real (left) and imaginary (right) parts of the aeroelastic eigenvalues for
Loring’s wing in incompressible flow.

5.2. Sensitivity Study

Following previous studies on the aeroelastic stability boundary of slender cantilever wings
and its sensitivity [27,28], linear FSI models give nonlinear flutter trends as relevant aero-structural
parameters are perturbed. The reciprocal positions of aerodynamic, elastic and inertial axes being often
constrained by the available space inside the wing as well as the chosen structural layout and systems
arrangement, the flutter point’s sensitivity to the wing’s structural properties is individually explored
by changing its material density ρm (which scales m and µ) and elastic modulus E (which scales EI
and GJ), whereas varying the wing’s semi-span l (which modifies the lift coefficient derivative Cl/α)
alters its geometry and affects both structural and aerodynamic properties at the same time.

From Figure 6, it can be seen that changing the wing’s material density alters all natural frequencies
through the inertial properties and hence the flutter frequency, but has marginal/no influence on the
flutter speed; all symbols give the actual nonlinear percentage variation of the flutter point, whereas all
lines with corresponding colour draw its normalised linear prediction. In particular, a 1% increment in
the material density causes about a 0.5% decrement in the flutter frequency; the negligible variation of
the flutter speed is confirmed by previous works [27] as being due to the (small) beneficial effect of an
increase in sectional mass being compensated by an (almost) equal and opposite detrimental effect of
an increase in mass moment of inertia. This outcome may indeed help while minimising the aeroplane
weight, as reducing the material density does not significantly affect the present flutter boundary due
to wing bending–torsion instability (especially in the absence of lumped masses). However, it shall be
recalled that varying the wing inertia might cause other types of aero-structural instabilities to arise at
the aircraft level due to modal coalescence, and monitoring the variation of the flutter frequency is then
important to preventing potential resonance. It is also worth mentioning that the small higher-fidelity
effect on the flutter speed is due to the unsteady airload being frequency dependent through the
lift-deficiency function and the related aerodynamic lag.
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Figure 6. Flutter speed (left) and frequency (right) parametric variation and sensitivity to changes in
the wing’s material density.

As per Figure 7, changing the wing’s material elastic modulus alters all natural frequencies
through the stiffness properties and hence the flutter speed and frequency; in particular, a 1% increment
in the elastic modulus induces about a 0.5% increment in all the latter, leaving the flutter reduced
frequency practically unchanged. This outcome is quantitatively confirmed by previous works [27]
as being due to the detrimental effect of an increase in flexural stiffness being much lower than
the beneficial effect of an increase in torsional stiffness. The striking agreement between lower and
higher-fidelity results is mostly driven by the respective structural models being equivalent (as seen
from the close agreement between the natural vibration frequencies), while the different aerodynamics
play a minor role (as the airflow is moderately unsteady). The quasi-linear trend of the percentage
variations reveals a rather large confidence interval for the normalised sensitivity; however, the
dimensional counterpart of the latter to be used by optimisation routines follows a highly nonlinear
pattern (note that the explicit lower-fidelity expression given in Appendix A for the torsional static
divergence speed provides a straightforward theoretical check).

Figure 7. Flutter speed (left) and frequency (right) parametric variation and sensitivity to changes in
the wing’s material elastic modulus.

Finally, Figure 8 shows that changing the wing semispan has a large effect on the stability
boundary through the stiffness properties as well as the aerodynamic loads and hence on the flutter
speed and frequency. In particular, a 1% increment in the wing semispan induces about a 0.8%
decrement in the critical speeds and about a 1.6% decrement in the flutter frequency; note that
analogous trends for the variations and orders of magnitude for the sensitivities were obtained in
previous studies on similar slender wings [28], as a qualitative means of validation. Lower and higher-
fidelity results are still in very good agreement and differences are mainly due to unsteady downwash
effect, as the aspect ratio of the wing changes considerably with the span and so does the sectional airload.
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Figure 8. Flutter speed (left) and frequency (right) parametric variation and sensitivity to changes in
the wing semispan.

For the sake of completeness, it is worth mentioning that variations and sensitivities of the
divergence speed (see Appendix A) with respect to the same aero-structural parameters considered
above were consistently found to have trends and orders of magnitude very close to those pertaining
the flutter speed. In particular, it is observed that changing the wing’s geometry has a much larger
impact on the flutter boundary than changing the material properties (especially density); this is
particularly true for the flutter frequency, the variations of which exhibit a more significant nonlinear
behaviour and local curvature.

Due to the sufficient mutual separation of the natural vibration modes, it is also worth stressing
that the instability mechanism did not change across the parametric variations, and the derivatives of
the flutter stability boundary have accurately been calculated by the lower-fidelity model at a (marginal)
fraction of the computational complexity and costs. In particular, semi-analytical solutions drastically
reduced the latter, being almost instantaneous and demanding minimal pre- and post-processing (if any
at all) while granting an enhanced theoretical understanding. Thus, the healthy combination of lower
and higher-fidelity models enables efficient multidisciplinary exploration of a large design variable
space for innovative aeroplane concepts and configurations; further numerical savings may still be
obtained by exploiting reliable surrogate models for the higher-fidelity solutions, with an effective
synthesis of the underlying complexity [20].

6. Conclusions

Within the context of aircraft multidisciplinary design and optimisation, a comparative sensitivity
study for the bending–torsion flutter instability of flexible aircraft wings in subsonic flow has been
presented. Analytical models and numerical tools with different complexities and fidelities have
been used, in view of possible practical applications exploiting multilevel approaches within the
conceptual and preliminary MDO phases. Parametric studies have been performed where the effects
of varying the wing’s aero-structural properties on the aeroelastic stability boundary have been
quantified and critically assessed from both theoretical and computational perspectives. When the
natural vibration modes of the wing are well separated from all other natural vibration modes of
the aircraft and the aeroelastic instability mechanism does not change in nature, an efficient hybrid
strategy is then recommended where the flutter analysis is performed using higher-fidelity approaches,
whereas the sensitivity analysis of the flutter boundary is performed using lower-fidelity approaches,
thereby improving theoretical understanding and reducing computational costs while retaining
accuracy. Future works are encouraged to investigate additional effects (e.g., wing sweep and flow
compressibility) and increased complexity (e.g., presence of a control surface) or perform the full MDO
of a flexible aircraft wing, effectively exploiting the proposed multifidelity strategy.
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Abbreviations

Symbols
A aerodynamic panel area
c section chord
Cl section lift
Cl/α section lift derivative
CL/α wing lift derivative
Cp pressure coefficient
CT Theodorsen’s function
[C] generalised damping matrix
D aerodynamic approximation matrix (fraction denominator)
e semiperimeter-to-span ratio
E section Young’s elastic modulus
f cross-projection of first bending and first torsion modes
{F} generalised load vector
g cross-projection of second bending and first torsion modes
G section shear elastic modulus
h section flexural (plunge) displacement
H2

n Hankel’s functions of the second type and n-th order
I section flexural area moments of inertia
J section torsional area moments of inertia
k reduced frequency
k equivalent spring stiffness
[K] generalised stiffness matrix
l wing semi-span
∆L section aerodynamic force
m section mass
∆M section aerodynamic moment
[M] generalised mass matrix
n aerodynamic panel normal vector
N aerodynamic approximation matrix (fraction numerator)
p design parameter
Q generalised aerodynamic forces matrix
r squared ratio of second and first flexural vibration frequencies
s complex reduced frequency
[S] system matrix
t time
T aerodynamic influence coefficients matrix
{u} eigenvector
U horizontal airspeed
V vertical airspeed
x chordwise coordinate
y spanwise coordinate
w section vertical displacement
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Greek
α angle of attack
{χ} generalised coordinates
ε aerofoil thickness ratio
φ natural vibration mode shape
γ flexural natural vibration constant
η wing aspect ratio
κ aerodynamic load scaling function
λ eigenvalue
µ section mass moment of inertia
ν torsional natural vibration constant
θ section torsional (pitch) displacement
ϑ normal wash matrix
ρ air density
ρm material density
σ aerodynamic potential matrix
τ reduced time
ω natural vibration frequency

Subscripts
A aerodynamic
c critical
f flutter
d divergence
h flexural
S structural
θ torsional

Acronyms
AC aerodynamic centre
AIC aerodynamic influence coefficient
BEM boundary element method
CFD computational fluid dynamics
CG centre of gravity
CP control point
CSRD closely-spaced rigid diaphragm
DLM doublet lattice method
EA elastic axis
FEM finite element method
FSI fluid-structure interaction
GAF generalised aerodynamic forces
IPS infinite plate spline
MAC modal assurance criterion
MC mid-chord
MDO multidisciplinary design and optimisation
MFA matrix fraction approach
MST modified strip theory
ODE ordinary differential equation
PDE partial differential equation
QST quasi-steady theory
RFA rational function approximation
ROM reduced order model
SST standard strip theory
TST tuned strip theory
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Appendix A. Aeroelastic Stability of the Typical Section with Steady Aerodynamics

Providing full control on the results with respect to the specific assumptions of the methods and
tools employed for the analysis, theoretical formulations grant a clear and complete overview of the
problem which is essential for any engineering application. Although inherently limited in their general
capabilities, analytical solutions then offer a wealth of qualitative information and quantitative details
as well as fundamental insights and rigorous validation for both educational and practical purposes.

Considering a single mode for the wing bending and torsion, respectively, the aeroelastic equations
for the Typical Section with steady aerodynamics read [79]:

m
(
ḧ− xCG f θ̈

)
+ khh =

ρ

2
U2cCL/α f θ, (A1)

µθ̈ −mxCG
(
ḧ− xCG f θ̈

)
+ kθθ = −ρ

2
U2xACcCL/αθ, (A2)

where f ≡ 1 for two-dimensional aerofoils [12], with φh ≡ 1 and φθ ≡ 1. By neglecting the aerodynamic
load, the coupled bending and torsion natural vibration frequencies are explicitly obtained as:

F4ω4
v − F2ω2

v + F0 = 0, ωv =

√
1

2F4

(
F2 ±

√
F2

2 − 4F4F0

)
, (A3)

F0 = 1, F2 =
µ

µ + mx2
CG (1− f 2)

[
ω2

θ +

(
1 +

m
µ

x2
CG

)
ω2

h

]
, F4 =

µω2
hω2

θ

µ + mx2
CG (1− f 2)

, (A4)

where the uncoupled counterparts are resumed whenever inertial and elastic axes coincide (i.e.,
with xCG = 0). Otherwise, the characteristic equation for the flutter determinant provides with the
metastable boundary and gives the flutter frequency as:

P4ω4
f − P2ω2

f + P0 = 0, ω f =

√
1

2P4

(
P2 ±

√
P2

2 − 4P4P0

)
, (A5)

and setting the inner radical discriminant equal to zero then gives the flutter speed as:

D4U4
f + D2U2

f + D0 = 0, U f =

√
1

ρD4

(
−D2 ±

√
D2

2 − 4D4D0

)
, (A6)

where the sign before the inner radical shall provide with the smallest positive real value;
finally, note that setting both ω f and P0 equal to zero provides with the torsional static divergence
speed. In particular, when the aerodynamic centre is ahead of the elastic axis (i.e., with xAC < 0),
the latter explicitly reads:

Ud =

√
−2kθ

ρxACcCL/α
, (A7)

regardless the bending stiffness; when the elastic axis is ahead of the inertial axis (i.e., with xCG > 0),
the flutter condition is given as:

U f =

√
1

ρD4

(√
D2

2 − 4D4D0 − D2

)
, ω f =

√
P2

2P4
, (A8)

where all coefficients are analytical functions of the aero-structural parameters, namely:

P0 = kh

(
kθ +

ρ

2
U2xACcCL/α

)
, (A9)
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P2 = m
[
kθ +

ρ

2
U2
(

xAC − xCG f 2
)

cCL/α

]
+ kh

(
µ + mx2

CG

)
, (A10)

P4 = m
[
µ + mx2

CG

(
1− f 2

)]
, (A11)

D0 =
[
mkθ + kh

(
µ + mx2

CG

)]2
− 4m

[
µ + mx2

CG

(
1− f 2

)]
khkθ , (A12)

D2 = 2m
{(

xAC − xCG f 2
) [

kθm + kh

(
µ + mx2

CG

)]
− 2

[
µ + mx2

CG

(
1− f 2

)]
xACkh

}
cCL/α, (A13)

D4 =
[
m
(

xAC − xCG f 2
)

cCL/α

]2
. (A14)

The formulas above were implemented and compared with literature results for the stability
boundary of a Typical Section assuming standard strip theory (SST) with steady aerodynamics [12,79]:
exact agreement was always found and provided rigorous validation, also with respect to the relative
root locus. The same formulas have then been used to investigate the stability boundary of Loring’s
wing Typical Section when either the first or the second bending mode is coupled with the first torsion
mode, employing tuned strip theory (TST) with steady aerodynamics [21]. Without accounting for the
modal cross-projection (i.e., f ≡ 1 for a “pitch & plunge” apparatus), flutter is calculated at 106.5 m/s
and 4.32 Hz in the former case whereas at 73.9 m/s and 11.28 Hz in the latter case; when the modal
cross-projection is considered (i.e., f < 1 for a slender beam), flutter is calculated at 109.7 m/s and
4.28 Hz in the former case whereas at 139.2 m/s and 9.60 Hz in the latter case. The static divergence
speed pertains the torsion mode only and is found at 210.2 m/s, regardless the bending modes and
their cross-projections.

A direct comparison with the low-fidelity results hence reveals that the interaction between
bending and torsion modes as well as their cross-projections are essential to reproduce the correct
behaviour of the flutter mechanism, where the coalescence between first bending mode and torsion
mode drives that between second bending mode and the latter (which have closer natural vibration
frequencies) to occur earlier.

Appendix B. Higher-Fidelity Model Results Convergence Study

The number of elements for the structural and aerodynamic models was defined according to
rigorous convergence studies. Following Nastran’s best practice [80] with kmax = 1 the maximum
reduced frequency employed in the aeroelastic analysis, fifteen DLM panels have uniformly been
distributed along the wing chord. When adopting Morino’s BEM, thirty aerodynamic panels were
symmetrically placed along both upper and lower aerofoil surfaces according to the convergence
study in Figure A1 (left), with a suitable refinement around the leading edge in order to capture high
pressure gradients. The number of aerodynamic panels in the span-wise direction was determined
according to another convergence study shown in Figure A1 (right) and all higher-fidelity results
presented in this work were obtained with fifteen panels strips uniformly distributed along the wing
span, since sufficient to grant a relative error below 1% for both flutter speed and flutter frequency.
Following convergence studies in previous works [37,64], the wake extends for a hundred chords
behind the wing and is modelled with a hundred rows of shed panels, the length of which is cubically
increased with increasing their distance from the trailing edge. Figure A2 (left) shows the indicial
lift-deficiency function Φ(τ) (which represents the equivalent of the complex lift-deficiency function
CT in the reduced-time domain τ) from a unit step in angle of attack, whereas Figure A2 (right)
depicts the normalised distribution of the steady circulation κ(y) (which represents the ratio between
the sectional circulation in three- and two-dimensional flow within the framework of modified strip
theory, MST [13]); note that the unsteady lift development approaches quasi-steady theory (QST)
asymptotically. These results also justify the assumption of two-dimensional flow for the lower-fidelity
model, within the framework of TST [21] (to this respect, it is worth mentioning the higher-fidelity
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lift coefficient derivative of the wing is obtained as CL/α = 5.25, in excellent agreement with the
lower-fidelity analytical estimation CL/α = 5.21).

Figure A1. Flutter speed and frequency varying the number of aerodynamic panels along the wing
chord (left) and span (right).

Figure A2. Indicial lift-evolution function from a step-change in the angle of attack (left), spanwise
lift-decay function (right) for Loring’s wing in incompressible flow.

Figure A3 (left) then shows the evolution of the natural vibration frequencies percentage error with
varying the number of FEM nodes of the structural beam; the value obtained with the most dense grid
is used as reference to compute the plotted error. The first four natural vibration frequencies exhibit
a good convergence behaviour, with the third one (i.e., the first torsional mode) almost insensitive
to the number of nodes. All higher-fidelity results presented in this work were hence obtained with
20 nodes uniformly distributed along the wing span, since sufficient to grant a relative error below
2%. Finally, Figure A3 (right) shows that employing the first four natural vibration modes granted
convergence of both flutter speed and flutter frequency.

Figure A3. Natural vibration frequencies varying the number of FEM nodes along the wing span (left),
flutter speed and frequency varying the number of natural vibration modes employed in the aeroelastic
stability analysis (right).
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