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Abstract: Computational fluid dynamics is employed to evaluate the mean aerodynamic loading on
the retractable landing-gears of a regional transport commercial aircraft. The mean turbulent flow
around simplified landing-gear systems including doors is simulated by using the Reynolds-averaged
Navier–Stokes approach, where the governing equations are solved with a finite volume-based
numerical method. Using a dynamic meshing method, the computational grid is automatically
and continuously adapted to the time-changing geometry, while following the extension/retraction
of the landing-gear systems. The temporal evolution of the aerodynamic forces on both the nose
and the main landing-gears, along with the hinge moments of the doors, is numerically predicted.
The proposed computational modeling approach is verified to have good practical potential when
compared with reference experimental data provided by the Leonardo Aircraft structural loads group.

Keywords: industrial aerodynamics; aircraft landing-gears; computational fluid dynamics

1. Introduction

Retractable landing-gears are highly critical subsystems of commercial aircraft. They must be
accurately designed to have minimum weight and volume, together with high performance and a long
life, while meeting all the prescribed regulatory and safety requirements. Along with experimental
studies, landing-gear design and development can be drastically improved by means of preliminary
computer simulations, which reduce the cost of further studies and the risk of late design fixes.
Among the different methodologies that are employed for this purpose, Computational Fluid Dynamics
(CFD) analysis has been becoming more and more important. In fact, CFD has been strongly emerging
as an effective tool for industrial aerodynamics research [1,2], where CFD simulations are being used
to understand the flow physics around rudimentary landing-gears, e.g., [3,4].

The numerical simulation of the turbulent flow around retractable landing-gears, due to the
presence of a number of moving bluff bodies with different sizes and shapes, is very challenging [5,6].
The turbulent wakes behind the different parts need to be simulated, along with the interaction of the
wakes generated by upstream components impinging on downstream ones. The complex airflow can
lead to large fluctuations in the aerodynamic forces acting, for instance, on the landing-gear doors,
and the resulting unsteady loads can cause serious issues when lowering/retracting the landing-gear
systems. CFD techniques can be used to simulate the flow field around these complex systems in order
to determine the time history of the unsteady forces, while the predicted mean loads can be used as
input for the aircraft structures’ design. For instance, CFD calculations can provide the preliminary
estimation of the hinge moments of the landing-gear doors, which helps to size the hydraulic actuators
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for the release/retraction of the system. In the framework of industrial aerodynamics, the studies
that are typically conducted make use of the Finite Volume (FV) discretization approach, supplied
with Reynolds-averaged Navier–Stokes (RANS) turbulence modeling procedures, e.g., [7,8]. Typically,
an eddy viscosity-based diffusion term is introduced into the momentum equations to mimic the effects
of turbulence, while solving additional evolution equations for the turbulence variables. In this study,
dealing with complex geometries and unsteady flow configurations, the more sophisticated unsteady
RANS method is utilized [9–11].

The main goal of the present work is the computational evaluation of the mean aerodynamic loads
on a retractable tricycle-type landing-gear that is commonly used for regional transport commercial
aircraft. The analysis focuses on the validation of the proposed computational modeling approach with
the distinctive feature of using a real-case landing-gear geometry, as provided by the Leonardo Aircraft
researchers, rather than rudimentary models, as is typically done. The simulation of the turbulent flow
field around simplified models of both the nose and main landing-gear systems is carried out using a
dynamically adaptive unstructured grid that is automatically modified in time, while following the
extension/retraction of the landing-gear systems. The numerical simulations are conducted using
the solver ANSYS Fluent, which is commonly and successfully employed for building virtual wind
tunnels in industrial aerodynamics research [12–16]. The present results are validated by comparison
with reference experimental data that are provided by the industrial aerodynamicists.

The remainder of this manuscript is organized as follows. In Section 2, the overall computational
modeling approach is introduced. The results of the numerical simulations that are performed for
different flight conditions are presented and discussed in Section 3, while the validation against
empirical industrial data is conducted in Section 4. Finally, some concluding remarks are given in
Section 5.

2. Computational Modeling

In this section, the overall computational modeling and simulation approach is introduced.
After presenting the proposed methodology, the geometric models of the landing-gear systems under
examination are made known. The numerical meshing technique and the turbulence modeling
approach that are used are briefly described.

2.1. Methodology

The design and development of retractable landing-gear systems require the knowledge of
the aerodynamic loads associated with the time-dependent positions of their various components.
However, given the motion laws of the different parts, the overall geometric configuration can
be related to a single angular position, say θ, representing, for instance, the rotation angle of the
landing-gear strut. Since the present research focuses on the validation of the proposed computational
modeling approach, having the advantage of using a real-case landing-gear geometry rather than a
rudimentary model, the speed of deployment/retraction is considered given and known. The motion of
realistic landing-gear systems of a small commercial aircraft is faithfully reproduced in the numerical
simulations by utilizing the time and position data provided by the industrial research partner.
Depending on the simulated flight conditions, the aerodynamic loading is determined for different
relative wind directions, that is for different angles of attack, say α, and sideslip, say β. The definition
of these angles is illustrated in Figure 1, where the side and plan views of the aircraft under study are
depicted, with V∞ representing the relative wind velocity.
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(a) Side view, angle of attack α.

(b) Plan view, angle of sideslip β.

Figure 1. Aircraft side and plan views, angles of attack, and sideslip.

By assuming α and β as independent variables with a reduced range of variation, whereas
θ = θ(t), the following linear approximation, for a general loading coefficient CN , is considered:

CN(α, β, θ(t)) ∼= CN0(t) + CNα(t)α + CNβ(t)β, (1)

where CN0(t) = CN(0, 0, θ(t)). The partial derivatives CNα(t) and CNβ(t) have to be evaluated for
suitable values of angles of attack and sideslip. This way, the unsteady aerodynamic loading is
completely characterized by the three time-dependent parameters CN0, CNα, and CNβ. To determine
these coefficients numerically by using a virtual wind tunnel, one possibility would consist of
performing a number of different calculations with different values of (α; β), for some prescribed
instantaneous configurations of the landing-gear system, say for θi = θ(ti) (i = 1, . . . , n). In the
simplest scenario, for each chosen position, once a computation with zero angles of attack and sideslip
has been conducted to estimate CN0, two additional calculations would suffice to approximate CNα

and CNβ as fractional incremental ratios.
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In this work, alternatively, numerical flow simulations with moving boundaries are conducted
for given couples (α; β), where the body-fitted numerical grids are continuously modified during the
calculation, following the motion of the different components of the landing-gear systems. The present
dynamic approach allows the numerical solution to follow more closely the unsteady flow evolution
and, thus, to represent better the time history of the stresses acting on the various bodies surfaces and,
in particular, on the landing-gear doors. Moreover, even considering the time needed for the mesh
generation and the pre-processing phase, a substantial savings of computational time is achieved by
using the dynamic meshing technique with respect to the equivalent number of static computations.

2.2. Geometric Models

The present study focuses on the computational evaluation of the aerodynamic loading on a
retractable tricycle-type landing-gear of a small commercial aircraft. The geometry of both simplified
systems under investigation, namely the nose landing-gear (NLG) and the main landing-gear (MLG),
is introduced in the following. Starting from the complex geometries that are provided by the Leonardo
Aircraft structural loads group, the present geometric models are simplified to make the computational
cost of the numerical simulations affordable. However, in order to achieve a meaningful comparison
with reference experimental data, the main features of the original models are maintained, differently
from similar studies where rudimentary landing-gears were investigated [17,18]. The aerodynamic
flow is described in a Cartesian coordinate system (x, y, z), where the three directions correspond to
the roll, pitch, and yaw axes of the aircraft, respectively.

2.2.1. NLG Geometry

The three-dimensional geometric model for the NLG calculations is based on the generic nose
structure of a short-range narrow fuselage aircraft with an NLG compartment. The landing-gear
is assumed to retract fully forward and upward into the fuselage during flight. In this case,
the computational domain corresponds to a square prism whose height (45 m long) is aligned with the
fuselage symmetry axis, while the side length of the transverse square section is 30 m long. The fuselage
model, which is cut at about a quarter of its total length, has a diameter of 3.45 m. The reduced model
for the NLG system is comprised of a bay with a couple of opening/closing large front doors, a
couple of opening small rear doors, a landing-gear strut, rotatable between stowed and deployed
positions, and two wheels. The different parts of the system are shown in Figure 2, for both stowed and
deployed positions. The rotation axes of each door and gear strut are precisely defined, along with the
corresponding laws of rotation. In particular, the axis of rotation of the gear strut is parallel to the y-axis,
those of the rear doors are parallel to the x-axis, whereas the front doors rotate around axes with the
prescribed direction in the (x, y) plane. The different rotation laws are consistently assigned such that the
synchronous movements of the different parts are correctly reproduced. During the deployment of the
gear, which lasts for 10 s, the front doors are opened and then closed, while the rear doors are opened and
stay open, with a final value of the opening angle that is 90◦.

(a) Bay and doors in stowed position. (b) Gear strut and wheels in stowed position.

Figure 2. Cont.
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(c) Deployed configuration.
Figure 2. NLG: simplified geometric model.

2.2.2. MLG Geometry

The three-dimensional geometric model for the MLG calculations is based on the same fuselage
structure used for the NLG, where the entire fuselage body is taken into account. The MLG system
consists of two specular components that fully retract inboard into the aircraft fuselage, while rotating
around axes that are parallel to the x-axis. The reduced model for each of the two identical parts is
comprised of a bay with an opening/closing door, a gear strut rotatable between stowed and deployed
positions, and two wheels. Differently from the NLG, which is equipped with additional bay doors,
the MLG wheels are not covered and remain exposed even when fully retracted, as is typical of
short-range, regional airliners with short landing-gears and, thus, limited space between the fuselage
and the ground. In Figure 3, one of the two identical MLG components is shown, in stowed position.
The complete deployment of the MLG system lasts for 10 s, consistent with the NLG lowering time.
The exact correspondence between the instantaneous NLG and MLG configurations is given and
known, based on available time and position data. The instantaneous position of the MLG system is
represented by the rotation angle of the gear strut θ, as illustrated in Figure 4. Note that, while the
final position of the landing-gear strut corresponds to θ = 90◦, the opening angle for the MLG
doors achieves a maximum opening angle of 124◦, when the system is fully deployed. For the MLG
simulation, the computational domain is represented by a square prism whose height (130 m long) is
aligned with the fuselage symmetry axis, while the side length of the cross-section is 60 m long. It is
worth noting that, for the calculations with zero sideslip angle, half of the above computational domain
is actually employed, while imposing a symmetry condition at the plane y = 0. For the simulations
with non-zero sideslip angle, the mesh mirroring procedure is exploited to build the whole FV grid.

Figure 3. MLG: simplified geometric model including bay, door, gear strut, and wheels.
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Figure 4. MLG: angular position of the gear strut, from stowed to deployed configuration.

2.3. Dynamic Meshing

The use of the dynamic meshing approach allows obtaining accurate time-dependent results
because the computational grid varies in time consistently with the changing positions of the different
moving parts [19,20]. In order to avoid the deterioration of the mesh quality and/or the degeneration of
existing FV cells, due to the geometry modification, two different methods are used, which are referred
to as smoothing and remeshing. The former technique consists of moving the interior nodes of the
mesh, without changing their number and connectivity, where appropriate. The latter technique allows
for the local update of the mesh by either adding or deleting cells, where the boundary displacement
would be otherwise too large with respect to the local mesh size. Following previous studies for bluff
body flows [14], the remeshing and the diffusion-based smoothing techniques are simultaneously
used in the present research. The computational cost of such a dynamic approach is high due to the
requirement of fine grids and small time steps, in order to ensure both the desired numerical accuracy
and the stability of the calculation. However, the application of the dynamic meshing procedure is not
needed in the whole computational domain, but only in flow regions that are expected to be actually
influenced by the deployment/retraction of the landing-gear systems, while opening/closing the
doors and moving the different system components. Therefore, computational sub-domains where the
dynamic meshing is effective are properly defined, with the FV grids in the rest of the computational
domains staying unaltered. Practically, these space regions must contain the bays, the doors, and the
landing-gear structures, regardless of the instantaneous system configurations. For the present
numerical simulations, these sub-zones are shown in Figure 5, for both landing-gear systems. Initially,
two unstructured meshes are generated in the two different sub-domains, while imposing the grid
conformity at the interfaces between them. For instance, the overall numerical grid for the NLG
simulation with non-zero sideslip angle involves about two million computational cells, with the
maximum skewness factor being equal to 0.85, which ensures the good quality of the FV mesh. Due to
the dynamic meshing approach, the latter parameter is directly controlled during the calculations.

A global view of the initial grid, which corresponds to the stowed NLG system, along with a
close-up view of the mesh inside the gear cavity, is shown in Figure 6. The different background color
that is used allows for the easy visualization of the two different sub-domains, where the dynamic
meshing is either active or not. Similar considerations can be made for the MLG model. The initial
grid, which corresponds to the stowed MLG system, is illustrated in Figure 7, where a global view at
the symmetry plane is reported, along with the close-up view of the landing-gear cavity. For instance,
the computational grid used for the MLG simulation with non-zero sideslip angle is made up of about
five million FV cells, with a maximum skewness of 0.81, as is controlled.
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(a) NLG simulation. (b) MLG simulation.

Figure 5. Computational sub-domains with active dynamic meshing.

(a) Whole domain.

(b) Close-up view of the gear cavity.

Figure 6. NLG: initial computational mesh.

(a) Whole domain.

Figure 7. Cont.
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(b) Close-up view of the gear cavity.

Figure 7. MLG: initial computational mesh.

2.4. Turbulence Modeling

The aerodynamics of the landing-gears is predicted by solving the RANS governing equations,
which describe the mean turbulent flow field around the aircraft. In this work, the one-equation
Spalart–Allmaras (SA) model [7] is used, where the closure is achieved by solving an additional
evolution equation for a modified eddy viscosity variable. Due to the complex geometry flow
under investigation, the turbulent boundary layer is modeled using a wall-function approach,
where semi-empirical correlations are employed instead of resolving the near-wall region. This way,
the wall boundary conditions are implemented so that relatively coarser meshes can be used in the FV
calculations. The equations governing the RANS models, which are not reported here for brevity, can be
found, for instance, in Wilcox [21]. The unsteady RANS method is commonly used for the simulation of
both incompressible and compressible aerodynamic flows, e.g., [8,11]. Here, the governing equations
are solved in the computational domains described above, imposing velocity inlet and pressure outlet
boundary conditions.

3. Results and Discussion

A number of different calculations were conducted with freestream velocity directions that mimic
realistic flight conditions at Mach number 0.27. In the following, the results corresponding to three
baseline configurations of particular interest are shown and discussed, for both landing-gear systems.
Together with the configuration with zero angles of attack and sideslip (I), two other configurations
were considered, with either α = 4◦ (II) or β = 5.7◦ (III), to examine the effect of increasing these angles.
The six different calculations that are presented in this work are summarized in Table 1, along with the
corresponding number of FV cells. The mesh resolution that was used represented a fair compromise
between numerical accuracy and computing time, as empirically found through a grid independency
study. As the present computational model employed a dynamic meshing procedure, a preliminary
analysis was conducted for a limited number of frozen geometries, corresponding to different positions of
the landing-gear systems, by using three different static grids with different resolution. The FV mesh was
naturally refined in the landing-gear zones, with the overall number of computational cells resulting in
being the same order as for similar studies [22,23]. The mean aerodynamic loads are reported only for
the deployment phase. In fact, as practically demonstrated by the simulation of the retraction phase,
the loading evolution for a complete cycle (opening/closing) showed a substantially specular behavior.
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Table 1. Summary of different calculations presented with the number of FV cells.

Case α β # Cells

NLG–I 0◦ 0◦ 1 M
NLG–II 4◦ 0◦ 1 M
NLG–III 0◦ 5.7◦ 2 M

MLG–I 0◦ 0◦ 2.5 M
MLG–II 4◦ 0◦ 2.5 M
MLG–III 0◦ 5.7◦ 5 M

3.1. NLG Simulation

For the NLG configuration, the flow Reynolds number based on the wheels diameter was
Re = 3.6 × 106. The sufficiently small integration time step of 5 × 10−4 s was prescribed in order
to maintain a Courant–Friedrichs–Lewy (CFL) number of unitary order and, thus, to achieve an
accurate and time consistent numerical solution. As for the computational time, for example, the flow
simulation for the NLG–I case took about three days on a parallel workstation that employed 12 Intel
Xeon Gold 2.2 GHz processors. For each flow configuration, in order to obtain meaningful initial
conditions, a steady solution for the initial geometry, corresponding to the stowed position of the
landing-gear with all the doors closed, was first performed. Starting from this preliminary solution,
due to the dynamic meshing approach, the FV grid that was actually employed automatically varied in
time, while following the system deployment. This is apparent from inspection of Figure 8, where the
instantaneous meshes at four subsequent time instants during the lowering phase, which were t = 3,
6, 8 and 10 s, are drawn in the clockwise order. The views reported in the figure corresponded to the
symmetry plane of the computational domain. Apparently, the continuous rotations of the doors and
the landing-gear rod affected the spatial distribution of grid points. The mesh quality was actually
maintained during the simulation as demonstrated by the maximum value of the skewness that was
controlled. In fact, the use of the diffusion-based smoothing technique allowed for the optimal grid
evolution, which avoided excessive mesh thickening.

To illustrate the numerical solution, the instantaneous distributions of the pressure and the skin
friction coefficients on the different moving parts of the NLG system are reported in Figures 9 and 10,
respectively. Here, the gauge pressure and the wall shear stresses were non-dimensionalized by the
dynamic pressure of the air stream, namely qref =

1
2 ρ∞V2

∞, with ρ∞ being the freestream air density.
The contours corresponding to the four doors, the gear leg, and the wheels are depicted at the same
time instants considered in Figure 8.

As the system deployed, the stress distributions variation led to the existence of time-dependent
aerodynamic loading on the different moving parts. The time histories of the mean loads on the
landing-gear strut and wheels are reported in Figure 11, in terms of force coefficients, for the three
different simulations NLG–I, II, and III. The drag and lift coefficients are defined as CD = D/(qref Aref)

and CL = L/(qref Aref), where D and L are the components of the mean aerodynamic force acting along
and perpendicular to the relative wind direction, respectively, while Aref stands for the unitary surface
area. Apparently, the aerodynamic force appeared as soon as the gear strut left the cavity at t ≈ 2 s,
and rose with the gear leg rotation and the doors opening. While the drag component monotonically
increased, achieving its maximum value when the gear strut and wheels were completely immersed in
the oncoming flow, the lift force showed a more complex behavior. After the initial rise, the intensity of
the negative lift diminished. This was mostly due to the changing position of the large front doors that
were resealed, while directly affecting the exposure of the system to the main air stream. Furthermore,
the lift component approached a final value that depended on the angle of attack. As expected, once the
deployment phase of NLG terminated at t = 10 s, the aerodynamic forces maintained practically
steady values.



Aerospace 2020, 7, 68 10 of 19

Figure 8. NLG: computational mesh during the lowering phase (clockwise).

Figure 9. NLG: pressure distribution during the lowering phase (clockwise), for the case NLG–I.
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Figure 10. NLG: skin friction distribution during the lowering phase (clockwise), for the case NLG–I.

TIME (seconds)

D
R

A
G

 C
O

E
F

F
IC

IE
N

T

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

I

II

III

TIME (seconds)

L
IF

T
 C

O
E

F
F

IC
IE

N
T

0 2 4 6 8 10 12
0.1

0.08

0.06

0.04

0.02

0

0.02

I

II

III

Figure 11. NLG: time history of drag and lift coefficients for the gear strut and wheels.

The time histories of the mean aerodynamic forces acting on large front and small rear NLG doors
are reported in Figures 12 and 13, respectively. The right doors (as seen by the pilot) were considered
because, given the relative wind velocity vector in the case NLG-III, which had a positive component
along the y-axis, higher aerodynamic loading occurred for the downwind doors with respect to the
upwind ones. Here, for the sake of clarity, two different scales were adopted for the two different force
coefficients. The aerodynamic loads on the doors showed a complex behavior due to the complex fluid
dynamic scenario, which involved massively separated flows. For the simulations NLG-I and II, with
zero sideslip angle, the drag force on the doors, which was almost aligned with the main air stream,
resulted in being relatively low, due to the their small friction area and thinness, which led to the
existence of reduced wakes. Looking at the solution NLG-III, the sideslip angle showed a remarkable
influence, for both front and rear doors. For the downwind front door, in particular, the aerodynamic
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loading achieved a relatively high level when the door was completely open. As for the final forces,
the difference between the front doors, which were closed, and the rear doors, which remained open,
was evident.
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Figure 12. NLG: time history of drag and lift coefficients for the downwind front door.
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Figure 13. NLG: time history of drag and lift coefficients for the downwind rear door.

3.2. MLG Simulation

Given the distance between the two systems, the MLG aerodynamics was assumed independent
of the NLG wake evolution, so that the MLG simulation could be independently conducted. However,
as previously discussed, there existed a one-to-one correspondence between the instantaneous positions
of the two different systems. For the MLG simulation, three baseline computations with the same
different air stream velocity directions as for the NLG simulation are presented. Here, the flow
Reynolds-number based on the wheels diameter was Re = 5.7 × 106. The unsteady RANS equations
were solved with an integration time step of 2.5 × 10−3 s. The whole calculation, which was conducted
by employing the same parallel workstation utilized for the NLG simulation, took about eight days
for the MLG–I case, for example. For each of the three configurations, a steady solution for the
initial geometry, corresponding to the stowed position of the landing-gear with doors closed, was
first performed. The time-dependency of the spatial mesh was apparent from inspection of Figure 14,
where the instantaneous FV grids at four subsequent time instants during the deployment, which were
t = 3, 6, 8 and 10 s, are reported in clockwise order. Note that the two-dimensional views shown in
this figure correspond to a cut operated in the computational domain at x = 0. The corresponding
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instantaneous distributions of pressure and skin friction coefficients on the different parts of the MLG
system are drawn in Figures 15 and 16, respectively.

Figure 14. MLG: computational mesh during the lowering phase (clockwise).

The time histories of the mean aerodynamic loads on the MLG structure, including strut and
wheels, are reported in Figure 17, in terms of force coefficients per unit reference area, for the three
different simulations MLG–I, II, and III. In the latter case, due to the flow asymmetry, the two different
components of the MLG system were separately considered. During the lowering phase, the drag
increased with the rotation of the gear leg, achieving its maximum value at t ≈ 6 s, when the system
was completely immersed in the oncoming flow. The sideslip angle was demonstrated to have a
great effect also in this case. The increased drag force for the MLG–III case could be attributed to the
enlarged wake and related pressure drag, as illustrated in Figure 18, where the comparison between
MLG–I and III calculations is presented in terms of mean velocity contours at a given time instant. As
for the lift force component, its intensity first increased and then decreased, being influenced by the
changing position of the large doors. As expected, once the deployment phase for MLG had terminated
at t = 10 s, both forces maintained practically steady values.
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Figure 15. MLG: pressure distribution during the lowering phase (clockwise), for the case MLG-I.

Figure 16. MLG: skin friction distribution during the lowering phase (clockwise), for the case MLG-I.
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Figure 17. MLG: time history of drag and lift coefficients for the gear structure.

(a) MLG–I configuration (β = 0◦). (b) MLG–III configuration (β = 5.7◦).

Figure 18. MLG: mean velocity contours at a given time instant.

The time history of the hinge moment of the doors, which was the component of the moment of the
aerodynamic force along the rotation axis, is presented in Figure 19, for the three baseline calculations.
Note that the hinge moment was assumed positive in the direction of opening of the doors. It can be
seen that, initially, the hinge moment was minimal. This fact was due to the presence of gaps along the
doors, as well as uncovered wheels, which allowed for the balance of the pressure force acting on the
outer surface and that exerted by the fluid occupying the MLG bay. As the landing-gear deployed,
with the opening of the doors and the consequent circulation of fresh air inside the landing-gear bay,
the pressure level on the inner surface and, thus, the hinge moment of the doors increased. Looking at
the effect of the angle of attack α, the hinge moment augmented with this parameter, as was apparent
by making a comparison between the results of simulations MLG–I (α = 0◦) and II (α = 4◦). As for
the solution MLG–III, since it corresponded to a crosswind from left to right (β > 0), the hinge
moment was different for the two different MLG components. Specifically, the aerodynamic load
on the downwind right door was more relevant and the hinge moment took higher values than
those achieved for both cases, MLG-I and II, with zero sideslip. Therefore, the effect of increasing
the sideslip angle resulted in being the most noticeable, as confirmed by looking at the drag and lift
force coefficients for the doors reported in Figure 20. The important role of the sideslip angle was
also emphasized in similar studies [22,23]. Due to the significant value of the lift force acting on the
downwind door, apparently, the large MLG doors could be also viewed as small additional wings for
the aircraft. Finally, it should be noted that no safety factors were applied in obtaining the present
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results. However, depending on the specific uses of the predicted aerodynamic loads, suitable safety
factors could be employed.
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Figure 19. MLG: time history of hinge moment coefficient for the doors.
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Figure 20. MLG: time history of drag and lift coefficients for the doors.

4. Validation

In order to validate the proposed computational evaluation procedure, the present CFD results
were compared to corresponding data predicted by the Leonardo Aircraft structural loads group,
during the preliminary design phase of a new regional transport commercial aircraft. The reference
data were obtained through empirical extrapolation by using geometrical shape scaling parameters,
along with proper combinations of α and β, which were selected among various significant flight
conditions of engineering interest. The different configurations were expressed in terms of different
aircraft weights and center of gravity excursions, load factors, flap positions, and speeds, which were
pertinent to the aircraft model under examination.

To make a meaningful comparison with reference data, the predicted normal force acting on the
doors was determined from the knowledge of the corresponding numerical hinge moments, given the
landing-gear geometry. The normal force coefficient was obtained by employing the simplified linear
model represented by Equation (1). Namely, a number of CFD calculations corresponding to a subset
of the flight parameter combinations considered by the empirical industrial method were conducted
for determining the coefficients CN0, CNα, and CNβ.These simulations used FV grid resolutions similar
to those reported in Table 1. As a result, in Figure 21, the maximum and minimum values for the
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scaled normal forces acting on the landing-gear doors are reported, along with the envelopes of
the empirical data, against the opening angle, for the two different landing-gear systems under
investigation. The maximum and the minimum loadings were numerically predicted, for instance, for
(α; β) = (9◦; 15◦) and (0◦; 12◦), respectively. However, the limit values were also obtained for other
combinations of angles of attack and sideslip. It is worth stressing that these results are shown in
non-dimensional form, without expressly indicating the reference values, because the empirical data
were not classified for public diffusion.

As far as NLG was concerned, the industrial data were provided up to a rotation angle of
about 80◦, whereas the angle of rotation of the doors for fully deployed configuration was actually
90◦. The minimum values predicted through the computational modeling approach were fully
acceptable, with the absolute error resulting of order 0.1 in the chosen scale. The maximum values
were clearly underestimated, where the discrepancy could achieve the value of 0.4, for large opening
angles. Considering that positive normal forces tended to pull the doors outward, maximum values
corresponded to aerodynamic suction forces exerted by the air stream, due to lower pressure levels on
the outer than the inner side of the doors. The present calculations seemed able to predict the correct
sign, but not the intensity of the maximum pressure difference.

For MLG, the comparison between CFD and reference data appeared quite successful for both
extrema, the absolute error resulting of order 0.1, except for the maximum normal force in the range of
low opening angles, say, less than 15◦. In fact, the present calculations provided maximum normal
force that practically vanished with the opening angle. That was consistent with analogous results
found in [22], by means of both numerical simulations and wind tunnel tests, for similar commercial
aircraft landing-gear geometries, with either β = 0◦ or 5◦. On the contrary, according to reference data,
significant positive values were taken by the normal force for small opening angles. This discrepancy
was likely to be attributed to the fact that the present simulations did not reproduce all the different
experimental configurations, on which the empirical industrial data were based. These configurations
were in fact expressed in terms of a number of different flight parameters, some of which were not
pertinent to the proposed computational modeling framework. Moreover, the CFD results were also
affected by the approximation of the adopted geometrical models, which were simplified with respect
to the real ones. That was particularly effective in the NLG case, because of the relatively lower
aerodynamic loadings. Further investigation is required to examine the performance of the present
CFD method to accurately predict the pressure level inside the landing-gear bays, as well as the effects
of the air leakage through the existing gaps when the doors are sealed.
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Figure 21. Extrema of the scaled normal force on the doors for (left) NLG and (right) MLG simulations.
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5. Conclusions

The present study was intended as a proof-of-concept, namely the preliminary development of
a CFD-based prediction tool in the aerodynamic design of retractable landing-gears for a regional
transport commercial aircraft. Different from similar studies, where the CFD predictions were obtained
for generic and rudimentary landing-gear geometries, this work dealt with simplified models directly
derived from real geometries provided by industrial researchers. Dynamic mesh calculations were
performed for both the nose and the main landing-gear systems, with the aim of demonstrating the
practical potential of the proposed methodology. The computational analysis of the aerodynamic
loads on retractable landing-gears and doors was performed in different operating conditions for
the opening/closing cycle. The acceptable agreement with the empirical data made available by
the industrial aerodynamics researchers in terms of normal forces was achieved. There remains the
possibility of developing more sophisticated computational models, which can be employed depending
on the particular application and level of accuracy that is required.
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