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Abstract: Aircrafts require a large amount of fuel in order to generate enough power to perform a
flight. That consumption causes the emission of polluting particles such as carbon dioxide, which is
implicated in global warming. This paper proposes an algorithm which can provide the 3D reference
trajectory that minimizes the flight costs and the fuel consumption. The proposed algorithm was
conceived using the Floyd-Warshall methodology as a reference. Weather was taken into account
by using forecasts provided by Weather Canada. The search space was modeled as a directional
weighted graph. Fuel burn was computed using the Base of Aircraft DAta (BADA) model developed
by Eurocontrol. The trajectories delivered by the developed algorithm were compared to long-haul
flight plans computed by a European airliner and to as-flown trajectories obtained from Flightradar24®.
The results reveal that up to 2000 kg of fuel can be reduced per flight, and flight time can be also
reduced by up to 11 min.

Keywords: flight reference; fuel burn; pollution; flight optimization; algorithm; carbon dioxide;
weather

1. Introduction

Air transportation has become an important part of the world’s economic system, as it is one
of the most common means of traveling long distances and a safe way to transport valuable and
perishable cargo. This has led to a continuous increase of air traffic. Naturally, this increase has created
a significant rise in the demand for fossil fuels [1]. Burning fossil fuel releases polluting particles as
gases; especially nitrogen oxides (NOy) and carbon dioxide (CO;). The former is known to deplete
the ozone layer, and the latter is known to contribute to global warming. It is also believed that CO,
has caused wind pattern alterations, making the round trip between America and Europe longer than
before, thus requiring more fuel [2]. It has been estimated that the aeronautical industry is responsible
for 2% of the global CO; released to the atmosphere [3].

The aeronautical industry has proposed its own goals to reduce air pollution. To meet these goals,
different technologies have been explored within the aircraft themselves, such as lighter materials,
more efficient engines, improved aerodynamics, and better aerodynamic modeling; all contributing to
reducing fuel consumption and thus polluting emissions. Airlines have also implemented procedures
such as washing engines, one-engine taxiing, and reducing the Auxiliary Power Unit (APU) when
on the ground to reduce fuel consumption [4]. Flight operations have also been investigated and
improved in order to reduce fuel consumption. Two interesting navigation examples that have reduced
fuel are the Continuous Descent Approach/Operations (CDA/CDO) and the Required Navigation
Precision (RNP) approach.
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The CDA is a procedure in which the aircraft descends while setting engines at lowest power/lowest
consumption (IDLE). Savings of 2 million gallons of fuel have been reported in Los Angeles per
year [5] and of 36 gallons of fuel per flight in Atlanta [6]. The Top of Descent (ToD) coordinates must
be computed correctly [7,8] while executing this procedure in order to avoid complications and the
resulting need to execute further procedures such as missed approach, which are expensive in fuel
burn terms as well as being costly in time and the associated airport complications [9,10].

In the terminal maneuvering area, efforts have been conducted to find the optimal landing
aircraft sequence to reduce fuel burn using deterministic algorithms, metaheuristic algorithms and a
combination of both [11-13].

Satellite navigation systems such as GPS have allowed aircraft to fly very accurate 3D routes
(latitude, longitude, and altitude). These systems have allowed aircraft to fly closer to hazardous zones
such as at lower altitudes and closer to mountains instead of flying long distances to fly around them.
The developed RNP approach trajectories have reduced fuel consumption by up to 800 lb. per flight in
Oslo [14]. The recorded savings in Kelowna were of 265,000 L per flight per year [15].

The successes of the CDA and the RNP studies show the potential advantages of providing
aircrafts with a fuel-efficient trajectory. These fuel-efficient trajectories must be computed both before
and during flight. Current Air Traffic Management (ATM) systems require aircraft to fly at segments
of constant Mach number, at constant altitudes and following a pre-defined horizontal trajectory
(or ground track). Flight trajectories must be authorized by ATM before takeoff and can be modified
subsequently after a vocal clearance by ATC. This authorization is required in order to ensure separation
between aircraft. However, ATC is reaching its maximum traffic capacity, and more aircrafts are
expected to join the current ones. Development in Asia and Latin America suggest an increase of
air traffic in the next few years. To meet this increasing demand, new systems such as NextGEN
(https://www.faa.gov/nextgen/) in North America and SESARS (http://www.sesarju.eu/) in Europe
are being developed to increase traffic capacity and improve safety. These new systems may allow
aircrafts to automatically negotiate and move freely within the airspace, a flight mode called free flight.

A number of algorithms have been developed to find the most economical aircraft trajectory.
Lovegren showed the importance of computing the optimal cruise speed and the optimal aircraft
altitude; that same work also analyzed the effects of step climbs during cruise [16]. Later studies based
on that work proved that commercial flights over the continental United States and inter-continental
commercial flights do not take place at their optimal altitudes and speeds [17-19]. Another study
indicated that domestic flights within Turkish airspace loaded unnecessary weight, which led to an
increase of fuel flow and thus added to the fuel consumption [20]. These studies served to highlight
the need to develop trajectory optimization algorithms to reduce fuel consumption.

Franco and Rivas developed an algorithm able to compute the optimal speeds for fixed cruise
altitudes by taking into account a Required Time of Arrival (RTA) constraint [21]. The algorithm
proposed in [22] found a path in the horizontal (ground track) dimension, as well as the most
convenient fixed cruise altitudes that avoid the formation of contrails. Contrails are formations of
clouds due to engine exhaust combined with water vapor, and humidity. Contrails are believed to
be at least as harmful to the environment as CO,. For this reason, it is important to take contrails
formation zones avoidance on the optimal trajectory problem [23]. Another algorithm designed to
achieve a compromise between contrail formation and optimal fuel trajectories was developed in [24].
Rosenow et al. developed a 3D trajectory optimization algorithm that reduced CO, and NOy emissions
taking into account the airline network [25].

Using a numerical performance model with pre-defined sets of speeds and altitudes, an algorithm
able to compute the optimal fixed cruise altitude and speed was developed in [26]. Felix-Patron
implemented the golden section search algorithm to find, within a pre-defined set of altitudes,
the optimal altitude that reduced the fuel consumption for short haul flights [27]. Dynamic programming
was implemented by Hagelauer et al. and Yoshikazu et al. in order to find the most economical
trajectory by changing the aircraft heading and altitude during the cruise phase while imposing time
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constraints [28,29]. In [30], following a realistic commercial flight and by taking into account different
flight zones, flights were optimized in the horizontal dimension by taking into account wind and using
a mixed integer nonlinear programming. Using that same technique, Valenzuela et al. [31] optimized
an aircraft trajectory by following current airspace constraints such as constant altitude segments and
constant speed.

In a similar way, Murrieta et al. [32] implemented Dijkstra’s algorithm to find the optimal lateral
trajectory while taking winds into account. Murrieta et al. [33] also used that algorithm to find the
best waypoints in the lateral and vertical dimensions to reduce fuel burn. Félix-Patron et al. [34] used
Genetic Algorithms to optimize the lateral trajectory. Algorithms [27-29] were developed using a
numerical performance model. Murrieta and Botez [35] proposed an algorithm to compute the flight
cost using such a model. Ng et al. in [36] developed an algorithm that found the optimal trajectory by
using good horizontal trajectories and executing step climbs over those horizontal trajectories. In a
similar way, Félix-Patron and Botez [37] optimized the flight trajectory in its horizontal and vertical
dimensions at constant speed using Genetic Algorithms; subsequently, speed was also varied to find
the optimal set of speeds on which the vertical and horizontal trajectory should be flown [38].

Using hybrid optimal control, Franco and Rivas [39] optimized the trajectory by taking into
account different phases of flight such as climb, cruise and descent over a pre-defined ground track.
Murrieta et al. [40,41] used a beam search algorithm to find the optimal trajectory by taking also into
account climb, cruise and descent phases.

Aircraft speed plays an important role in reducing fuel consumption. A study performed by
Filippone showed that an aircraft normally should reduce its speed as its weight decreases [42].
Lovegren computed different speeds to reduce fuel burn during the cruise phase [16]. Murrieta et al.
implemented an algorithm based on the Ant Colony Optimization methodology [43] to select the
optimal combination of Mach numbers from a given set in order to fulfill am RTA constraint for a
constant altitude algorithm. Murrieta et al. developed an algorithm based on the Artificial Bee Colony
and Particle Swarm Optimization (PSO) in order to find the optimal trajectory on the lateral and
vertical reference trajectories while fulfilling an RTA constraint [44,45]. Optimal control was used as
the base of an algorithm designed to be used in a Flight Management System (FMS) to find the optimal
Mach number [46]. Rosenow et al. developed an optimization algorithm, which adapts the optimal
lateral route to existent ground navaids infrastructure to allow existing aircraft the Area Navigation
(RNAV) implementation [47].

Although there are many different algorithms that have provided good results for the aircraft
trajectory optimization problem, there are still many more algorithms that remain to be explored
for aircraft trajectory on cruise phase and that could potentially provide good results. One of these
algorithms is the Floyd-Warshall. The new algorithm proposed in this paper has the particularity that
it simultaneously optimizes the vertical and the lateral reference trajectories instead of optimizing
the lateral first, and then the vertical trajectory as t is normally done in the literature. This paper as
well shows a way to deal with the different weights of the aircraft coming from different edges to a
given waypoint.

A new algorithm is proposed in this paper to find an economical flight trajectory for a commercial
aircraft. This proposed algorithm was inspired by the Floyd-Warshall algorithm, especially because
it is a deterministic algorithm, meaning that it will always provide the same output for the same
inputs. Moreover, the Floyd-Warshall algorithm enables to trace back its decisions. For this reason,
the developed algorithm could potentially be loaded onto in-flight avionics systems such as the FMS,
unlike the metaheuristic and heuristic algorithms based on random decisions. Its characteristics are
very desirable, as they are fundamental for the avionics certification process. This paper has two main
goals: 1) to find the optimal (most economical) trajectory in terms of flight cost, and 2) to analyze and
validate that the provided trajectories are feasible.

This paper is organized as follows. In Section 2, the aircraft, search space, the fuel burn, and the
weather models are explained. The proposed optimization algorithm is described in Section 3. Section 4
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presents the results obtained, and then the paper ends with the conclusions and recommendations for
future work.

2. Aircraft, Search Space, Fuel Burn, and Weather Models

2.1. Aircraft Model

The aircraft model selected for this work was the point mass approach. This 3 Degrees of Freedom
(DOF) model is derived from aerodynamics and Newtonians laws. The performance characteristics,
and especially the fuel burn, are computed using the Base of Aircraft DAta (BADA) model developed
by Eurocontrol [48].

The aircraft equations of motion used here are those developed in [49]. They consider that the
aircraft is a point of mass, the Earth is flat and non-rotational, gravity is constant, aircraft mass is not a
state variable, thrust force is aligned with airspeed, there is no side slip, and path angle changes are
assumed to be instantaneous. These considerations lead to the use of simplified equations. This model
is also known as the gamma-command model, and is defined in Equations (1)—(6):

Thrust —D —m - g - sinyTas

Vras = - Wxg 1)
. 1 L- Sin,UTAS .
= — 2
XHDG = 7= COSVTAS( - Wyq 2)
L-cospras —m-g-cosyTas +m-wzg =0 (3)
. VTas - cosyTas - sinXupg + v
= Ry +h )
. Vv - cos - C0S +u
A= TAS V]ZAS XHDG ®)
M+ h
h = Vras - sinyras +w (6)

where A and @ represent the aircraft longitude and latitude, respectively, / is the altitude; yypg is the
aircraft heading, y is the pitch, y is the roll, and m is the aircraft’s mass. The variables w;,;, Wy4, and w,4
represent the wind rate parallel to the aircraft, parallel to the Earth’s surface and perpendicular to the
aircraft, respectively, and u, v, and w indicate the west, south, and vertical winds, respectively. Finally,
L is the lift. This last coefficient is computed using BADA, and is a function of the in-flight conditions.

All these equations of motion are provided for completeness. As the distance between two
waypoints is small enough (a maximum of 150 Nautical Miles-NM), it is considered that the heading
is kept constant while flying between two waypoints. Therefore, updating the heading state is not
required while flying between two waypoints. Distance is computed using the waypoints’ geographical
position (latitude, longitude) and the Vincenty’s formulae [50].

2.2. Weather Model

Wind information is given in the form of a forecast called the Global Deterministic Forecast System
(GDPS) provided by Environment Canada. This forecast dataset provides the world’s weather forecast
on a 601 x 301 latitude-longitude grid at a resolution of 0.6° X 0.6° every 3h (0h,3h,9h, ..., 144 h),
and at different pressure altitudes. Every point of the grid contains weather information. Among
the data provided by this forecast model, only the Wind Angle, Wind Speed, and Temperature are of
interest for the proposed algorithm.

The weather information for the aircraft’s exact geographical position, time, and altitude is
computed using the following procedure:
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1.  Identify the four GDPS’s grid points surrounding the aircraft during the flight performance
computation. In other words, not only at the waypoints;

2. Determine the pressure altitude for the current aircraft’s flight level;

3. Identify the immediate higher and lower pressures from the aircraft’s flight level from the GDPS
forecast. For example, at 35,000 ft, the pressure is 230 hPa, and so the lower and higher available
pressures would be 225 hPa and 250 hPa, respectively;

4. Using the GDPS forecast, identify the immediate higher and lower time blocks from the current
time. (For example, if the current time is 14 h 35 m, the lower and higher time blocks would be
12 h and 15 h, respectively, thus interpolations are executed for 14 h 35 m with these two limits.);

5. Perform temporal linear Lagrange interpolations for the lower and higher pressure altitudes for
the 4 points surrounding the aircraft, as shown in Figure 1a;

6.  Perform linear Lagrange interpolations in pressure levels (flight level) for the 4 points surrounding
the aircraft, as indicated in Figures 1 and 2 After executing these interpolations, the weather
is known for the exact pressure altitude at the current time for the 4 points surrounding the
aircraft; and

7. Perform bilinear interpolations using the 4 points surrounding the aircraft to obtain the weather
information at the aircraft’s position, as shown in Figures 1-3.

a.- Find the closest points. b.- Interpolation for the right c.- Bilinear interpolation for the
Interpolation in time flight level exact geographical position
— FLi+1 — FLi+1 —
v v [
% % 2
o = s
E 5 :
= ) =

Longitude Longitude Longitude

Figure 1. Weather interpolations. In time (a), by flight level/pressure altitude (b), and finally by exact
geographical position via bilinear interpolation (c).

The information obtained from the weather forecast allows the computation of different parameters,
such as the local speed of sound, the Ground speed, and the International Standard Atmosphere (ISA)
temperature deviation (ISAdev). These values are required to compute the fuel burn, as is explained in
Section 2.3.

The local speed of sound (a) is defined in Equation (7):

a=yrT, (7)

where ) is the air adiabatic value 1.1, r is the gas constant with a value of 286 m?/s?/K, and T is the
local temperature.

The ISA temperature deviation (ISAdev) can be defined as the temperature difference between
the real local temperature and the temperature provided by the ISA model (ISATEMP), as shown in
Equation (8):

ISAgey = T —ISATEMP 8
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The Ground Speed (GS) is the aircraft speed relative to the ground. It is computed using the Wind
Speed (W) and the Wind Angle (W,) obtained from the weather forecast, the True Air Speed (TAS),
and the aircraft heading, as shown in Equation (9):

GS = TAS — W, )

where
TAS = Mach -a, (10)

2.3. Search Space

Flying under the “free trajectory” concept means that the aircraft can fly anywhere within the
airspace. This fact implies that there are infinite combinations of points in the space with which a
trajectory can be generated. To limit the number of combinations, the search space is modeled as a
unidirectional graph G(E,V), in which E denotes the links connecting two consecutive waypoints, and V
are the waypoints defining the search space. The search space is created in 3D: the lateral coordinate,
the longitudinal coordinate, and the altitude. This search space contains the cruise phase, defined as
from the Top of Climb (ToC) to the Top of Descent (ToD) coordinates. Trajectories are generated from
the ToC, and they end at any waypoint at the ToD. This search space is generated using a reference
trajectory, which can be a great circle (geodesic) trajectory or a real trajectory obtained either from flight
plans or historical flights via such sources as Flightaware® or Flightradar24®. The separation between
the ToC and the two first waypoints in the lateral dimension was arbitrarily set to 7.5°, a value that was
assumed large enough to avoid sudden pronounced heading changes. A large angle would place the
adjacent waypoints too from each other by creating a larger distance among waypoints. In this case,
the effect of wind might not be enough to compensate for this extra distance. A too small deviation
angle might place the waypoints too close to each other, which would mean that weather remains
practically the same within the search space. For this reason, the aircraft might follow the central
waypoints as there would be no advantage of changing waypoints. Altitudes can only be flown at
1000 ft multiples. As stated before, the distance between to waypoints is the geodesic computed using
the Vincenty’s formulae. The search space is illustrated in Figure 2.

Latitude ,

Longitude

Figure 2. 3D search space for the cruise phase.

Figure 2 shows the ToC at the initial cruise altitude in green, and the possible ToDs in orange.
The path created by the line crossing waypoints 1-4-14-27-35 is the lateral and longitudinal reference
trajectory at constant altitude. All the other waypoints are placed using this path as reference. The red
lines show examples of different alternatives to get from waypoint 1 to intermediate waypoint 15.
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2.4. Fuel Burn Model

Only the cruise phase is taken into account in the proposed algorithm. During this phase,
the aircraft is normally flying at a constant altitude and at a constant Mach number. However,
the aircraft is able to perform changes of altitudes, either climbing to a different flight level (step climb),
or descending to another flight level (step descent).

2.4.1. Fuel Burn Model in the Cruise Phase

The fuel burn model is computed based on a steady cruise flight where the generated lift is
equal to the aircraft’s weight (Equation (3)). As shown in the BADA model, the lift coefficient (Cy ) is

computed with Equation (11). )
. m . go

CL (11)

Cpey- Srer - Mach?’
This Cp, is introduced in a polynomial provided by the BADA model, which in turns provides
the drag coefficient (Cp) that allows the drag to be computed for the given flight condition with
Equation (12).
p-)/-Sref'Mach2
—
As for a flight in equilibrium, thrust equals drag, and so the thrust coefficient (Ct) required to
compute the fuel burn is given by Equation (13).

Drag = Cp, (12)

Thrust

pﬂa'Mref'gO,

C = (13)

This thrust coefficient (Ct) is also introduced in another BADA polynomial, which in turn provides
the fuel coefficient (Cy). Fuel flow can then be computed with Equation (14).

p

1
t\2
fuel flow = p—o-(%) "Myef-80-a0

th * Cf !

(14)

where Ly, is the lower heating value of the aircraft and M, is the aircraft’s reference mass defined by
the BADA model times gg.

While computing the fuel burn in cruise, the algorithm divides the distance between two waypoints
in 25 nm sub-segments (and a smaller one if the total distance is not a multiple of 25 NM). At each
sub-segment, the weather is obtained and the fuel burned is reduced from the aircraft’s total mass.
This is done in order to improve accuracy. A distance of 25 NM was selected as it is a good compromise
between fuel burn accuracy and computation time. When the aircraft changes level, the edge’s cost
consist of the change level cost plus the cost of flying at the new level until the next waypoint.

2.4.2. Fuel Burn Model for Climb and Descent during Cruise

When the aircraft climbs to a different flight level, it is assumed that the throttle is set to the
maximum climb position (MCMB), and that it is set at IDLE for descent.

When performing step climes (or descents) during the cruise phase, the aircraft steadily gains
altitude without performing sudden path angle changes. It can also be assumed that steady climbs
present small path angle variations. For this reason, C, Cp, and D can be computed with Equation (11)
and Equation (12) as if it was a steady cruise. The Thrust for the aircraft configuration is computed
using Equation (15):

Thrustcrp = Ctmcmh-pﬁo-m, (15)
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where m is the aircraft grossweight, Ct;enp is computed using a polynomial provided by BADA. Cyis
once again computed using the BADA polynomial, but as a function of Ct,c;,. Fuel flow for the climb
phase is computed using Equation (14).

Having computed Thrustcrp and D, the Rate of Climb/Descent (ROCD) can be computed using
Equation (16).

t-(Th—D)-TAS -
ROCD = , (16)
tr:m-go

where t is the temperature at the actual altitude, ¢, is the temperature at the targeted altitude, Thrustcrp
is the thrust during climb, D is the drag, f,; is the energy factor, and g is the gravitational constant
(9.81 m/s?). The ROCD is used to track the targeted altitude, which is done as follows:

1. The Flight Time for a given horizontal distance is computed using the GS. This horizontal distance,
although it changes depending on the distance between two waypoints, is generally around
25 NM.

2. The ROCD is computed using Equation (16).

3. The current altitude is computed with Equation (17).

Altitude(iteration) = Altitude(iteration — 1) + ROC-FlightTime, (17)

4. If the resulting Altitude (iteration) is equal to or higher than the targeted altitude, the algorithm
computes the fuel burn as in the cruise phase (Section 2.4.1). Otherwise, the next distance is
selected, and the procedure continues again at step 1.

As a result that the horizontal distance is small enough, if the Altitude value overshoots the
targeted altitude by a few tens of feet, the cruise phase is rounded to the closest 1000 ft altitude.

The way the graph is designed, it allows only for a climb or a cruise per waypoint. For this
reason, when the fuel burn is computed for a cruise/descend, there is normally a constant cruise flight
computation. The algorithm computes first the climb/descent to the target altitude. Once there, it keeps
computing the flight cost following the process described for a fixed altitude cruise in Section 2.4.1.

2.5. Flight Cost Model

The typical flight cost for commercial aircraft depends on three parameters, as shown in
Equation (18).

Flight Cost(kg) = Fuel Burn(kg) + Cl(%) « Flight Time(h), (18)
where Cost Index (CI) is normally a parameter that translates the Flight Time in terms of Fuel Burn. This
parameter is defined by the airline before take-off, and it remains constant through the duration of
flight. The usual CI values are from 0 to 99 (or 999).

The CI gives priority to Fuel Burn or to Flight Time. For example, taking the CI scale from 0 to 99,
a CI = 0 means that the Flight Cost gives priority only to Fuel Burn, without taking into account Flight
Time. A CI = 50 would be a good compromise between Flight Burn and Flight Time. Finally, a CI = 99
gives full priority to Flight Time without caring about Fuel Burn. This means that for a set of available
speeds, the CI would directly affect the aircraft speed by making a good compromise between speed,
flight time cost and fuel burn (including step climbs). However, this research only uses one Mach
number (speed).

3. The Optimization Algorithm

The objective of this optimization algorithm is to minimize the Flight Cost described in Equation (18).
In other words, the algorithm finds the combination of waypoints that provides the most economical
reference trajectory in terms of Flight Cost. To achieve this objective, the Floyd—Warshall (FW) algorithm
was implemented in order to find the 3D reference trajectory optimization.
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3.1. The Floyd—Warshall Algorithm

The FW optimization algorithm is based on Dynamic Programming first reported in [51,52].
This is an iterative node-to-node algorithm that finds the optimized path between all the node pairs in
a given positive weighted directed graph. The FW algorithm is based on the concept that the optimal
path between a vertex vy and a vertex vy passes through the intermediate vertex v;. Thus, the sum of
the weights of vertices (vg, v;) and (v;, vy) is equal to the optimal trajectory. During the execution of the
algorithm, a node is selected as the intermediary node, and the optimal path between that node and
two other nodes is computed. The pseudo-code for the FW algorithm is shown in Figure 3.

procedure [array] FloydWarshall(D, S)
forkin1ton do (1)
foriinltondo (2)
torjinltondo (3)

if D[i][i] = D[i][k] + D[X][j] then 4)

DIil[j] = DE1[K] + DIA]] (5)

S[0] = SIKL] (6)

Figure 3. Typical Floyd-Warshall pseudo-code.

In Figure 3, D represents the edges” weights, and R is the adjacent matrix that shows the directly
connected vertices. This pseudo-code states that if placing the vertex k as an intermediate vertex
between the vertices i and j provides a more economical cost than the direct connection of vertices i and
j, then the node k is placed in the corresponding indices in the R matrix and the D matrix is updated
with the new cost. In other words, each column and row represent different vertices. This algorithm
takes a node vy (Figure 3—line 1) and compares the cost of interconnecting node v; and v; via node v
to the cost of the direct connection of v; to v; (Figure 3—line 4). If connecting via vy is more economical,
then that cost is updated on matrix D (Figure 3—line 5), and the node vy is put on matrix S between
nodes (or row i/column j) v; and v; (Figure 3—line 6). This process is repeated for all nodes among all
the edges’ connections until the last iteration, at which matrices D and S provide the most economical
costs and the immediate connections of all the nodes needed to obtain the optimal 3D trajectory.

For the sake of clarity, a demonstration of how the algorithm behaves is explained below
step-by-step using the graph shown in Figure 4.

Figure 4. Graph example.

In the beginning of the algorithm, the matrices Dy and S are the following in Figure 5.
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Do | vi| v2)|v3| vea| 05 So | v1| v2| V3| vs| U5
v1 | oo | 7 | 6 | o0 | oo vr| - | v | v | - |-
V2 | c0o | oo | oo | D | oo v2 | - - - |ov2| -
V3 | oo | oo | o0 | § | oo v | - - - |2 | -
Vg | oo | 0o | c0o | o0 | 3 vs | - - - | - | va
V5 | o0 | 0 | o0 | oo | oo s | - | - -] -] -

Figure 5. Matrices Dy and S at the first iteration of the algorithm.

By inspection, it can be seen that the weights in matrix Dy are those of linking nodes, for example,
the link v; to v, has a cost of 7, the link v4 to vs has a cost of 3 and so on. Matrix Sy shows the nodes
connecting any other two nodes. This can be read as follows: to get to node v, from node v;, we should
pass through v,. As this example advances, the utility of matrix S will become more evident.

At the first iteration k =1, the algorithm searches for all the nodes that v; interconnects. As this
node is the initial one, it does not help to interconnect any other two nodes (see Figure 4), no change in
D and R is required, and so D; and R; remain with the same values as Dy and Sy.

At k =2, it can be seen that node v interconnects nodes v; and v4. In the algorithm, with the terms
ati=1,j =4, and k = 2, the cost from v; to v4 via v, is compared to the known direct path cost between
v1 and vy, as shown in Figure 3 line 4 (D1 [v1][v4] > D1[v1][v2] + D1[v2][v4]). If the cost to flight via v; is
more economical than the direct cost v; — v4, then the new cost is replaced by the computed one and
the matrix S is updated with the vertex used to connect v; and vy4, v in this case. For this example,
replacing these values for the numerical ones is possible as co > 7 + 5. Obviously, (7 + 5) is smaller
than co. Therefore, the path can be improved and so the cost to travel from v; to v4 passing through v,
is added to the matrix as Dy[v1][v4] = 12 and matrix Sy[v1][v4] = v;. In other words, the path v to vy is
more economical via v,. The new matrices D, and S, are now as in Figure 6.

Dy | vi| v2| w3 | v | 05 S2 | o1 | v2| U3 | vs | Us
vr | 0| 7 | 6| 12 e v1 | - | 2| v | U2 |-
v2 | o | 0 |0 | 5 | oo v2 | - - - | 2| -
03 | oo | e | 0 8 | e v3 | - - - | 2| -
V4 | o0 | o0 | o0 | () 3 vs | - - - - | s
(5] o0 o0 o0 oo 0 05 - - - - -

Figure 6. Matrices D; and Sy, s iteration.

The same process is repeated until k = 4. For the last iteration k = 5 (node v5), according to the
graph in Figure 4, it does not serve to interconnect any nodes, and so there is no change. Thus, matrices
D, and S, are the same as matrices D5 and S5 in the final form.

Based on Figure 7, the most economical trajectory between v; and vs has a cost of 15, as shown by
Ds. The optimal path can be constructed using matrix Ss; to get from v; to vs, the path should pass
through v4. To go from v; to vy, the path should pass through v;, and finally, v; to v; is a direct path.
Thus, the optimal path is v1-v,-v4-vs.
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Daf/Ds | o1 | v2 | 03| va | ©s Saf/S5 | v1 | v2 | 3| va| U5
U1 0|7 |6 | 12|15 U1 -l | vs | v | ™4
U2 oo [ 0 | e | 5 8 02 - - - | va | U4
U3 oo [ eo | 0 8 | 11 03 - - - - | U4
V4 oo [ eo | oo | 0 3 V4 - - - - | U4
U5 oo | oo | oo | oo 0 U5 - - - - -

Figure 7. Matrices D5 and S5 at the fifth iteration.

3.2. The Floyd—Warshall (FW) Algorithm for the 3D Reference Trajectory

The search space defined in Section 2.5 is a unidirectional positive weighted graph, and so the FW
algorithm can be utilized to determine the 3D reference trajectory. It may be worthwhile to consider
all of the waypoints in order to compute sub-optimal trajectories in case ATC requests the aircraft to
change its current optimal trajectory. However, for the algorithm developed in this paper, the objective
is to find the most economical trajectory between the ToC and the ToD. The ToC is the first vertex, and
the ToD is the last vertex; for the rest of this paper, the word vertex will be interchanged with the word
waypoint. Thus, by taking advantage of the graph structure, only the element of the first row of the
matrices S and D needs to be found. In other words, the shortest path for the developed algorithm is
found between the first (the first column in the first row referring to the ToC waypoint) and the last
waypoints (the last columns referring to the ToD waypoints in the first row). This is expressed in the
pseudo-code shown in Figure 8.

forj from 1 to & (1)
forkfrom1toj (2)

if DI11{7]1 > DI1][k] + DIKI[j] (3)

DI1][j] < D[1]{k] + DIKI[j] (4)

SI[j] — & (5)

end if (6)

Figure 8. Floyd—-Warshall pseudo-code implementation for reference trajectory optimization.

The difference in this code from the typical FW pseudo-code is that there are now only two loops
(Figure 9) instead of three (Figure 3). In addition, note that Matrix R always refers to row 1 (ToC),
and that in most instances, matrix D only refers to row 1. This modification dramatically reduces the
computation time, as the algorithm does not loop for all nodes.

As the reference trajectory optimization algorithm evolves, the Flight Cost calculated for the
segment between two waypoints is computed talking into account the aircraft weight and the weather
at the time and location of the waypoint.

To solve the 3D reference trajectory problem, the algorithm must find the most economical
(shortest) paths between the ToC and the nodes that are defined as the ToDs. As explained above, the
algorithm uses two square matrices called S and D. S represents each waypoint and its connections
with the other waypoints, while D represents the flight cost between those waypoints.

The fuel burn optimization is mostly based on the vertical optimization. Optimizing the step
climb looks for the waypoint where to change cruise altitude, and thus ensures that the aircraft is flying
at the optimal altitude. Lateral navigation results in saving flight time which reduces the amount of
fuel burned.



Aerospace 2020, 7, 99 12 of 21

Flight time optimization is based on taking advantage of the winds. It modifies both the lateral
and the vertical trajectories in order to reduce the flight time using the same flight conditions (Mach
numbers, pressure), thereby reducing both the time of flight and the amount of fuel burned.

Using a graph search algorithm brings the problem of tracking the aircraft weight (and other
information such as the exact time, important for weather information and the flight cost computation)
when two different edges connect to a given waypoint which subsequently connects to another set of
waypoints. Keeping this information for all combinations is impractical as this would require high
memory requirements as well as extra time required to access to the different memory slots. To improve
this, the path systems is proposed.

3.3. Special Considerations for the Trajectories on the Algorithm: The Path System

The final form of a graph (E) is known. Taking the example of Figure 2, where all the possible
connections from TOC to node 15 are shown, the different connections are known shown in Table 1,
in which §;,; shows a direct connection between two nodes, where the cost can be directly computed
if the state at the current node (first row) is known. Infinite (co) refers to the costs to be computed.
According to Figure 8 the goal of the proposed algorithm is to find the optimal trajectory from the
node 1(ToC) to any other node within the graph.

Table 1. Connections matrix from node 1 to node 15. Underline items identify key waypoints.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 - S12 513 S14 S15 S16 S17 ® ® ®©®  ©  ®  ©  ®  ®
2 S8 S So11 Sa12 S04 S5
3 S39  S30 S312 S3i3 S3,15
4 Si11 Sa2 Sy14 S5
5 Ss12 Ss3 S5,15
6 Se14 Seis
7 57,15
15

The first row refers to the connections from the ToC to any other node until node 15. By inspecting
Table 1, it can be seen that many cells are not used, which is causing un-necessary memory utilization.
It is evident that the more nodes are in a table, the more un-necessary cells will be. For this reason, it is
better to represent the connections under the form of a list, as shown in Table 2.

By comparing the number of values, Table 1 requires 255 values in memory to compute the
optimal path from the ToC to node 15, while Table 2 only requires 35 values, this is a reduction of 640%.
This reduction dramatically reduces the computation time, and is the main advantage of Table 2 over
Table 1.

The second advantage is the way in which the values such as aircraft weight and time are treated
along the trajectory. Many edges can be connected to a given node, which in turn has more edges
connected to different nodes, weight and time (to determine weather information). All information for
every connection between nodes is necessary to correctly compute the flight cost. However, the main
interest is to find the optimal path from node 1 (ToC) to every other node in the graph. This finding
allows to discard information from nodes that have been discarded as they have been determined to
be non-optimal.

For example, in Table 2, indices 1 to 6 show all the connections (edges) that connect node 1 to
node 8. It is convenient that the aircraft weight and the time at the first node (the ToC) are known,
thus the first edge’s weights (1 to 2-6) can be computed. The optimal node connecting node 1 to
node 8 is stored in index 7 (Sy g). This is the only pair weight/time information saved, all the other
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information (pair weight/time) for the connections (edges) leading node 1 to 8 are discarded as it refers
to sub-optimal values.

Table 2. Known connections for a given graph. Underline items identify key nodes.

Index Value Index Value Index Value
1 Sip 13 83,10 25 S114(%0)
2 S13 14 S1,11(0) 26 So14
3 Si14 15 So11 27 S414
4 Si5 16 Ss11 28 Se,14
5 510 7 see)  » s
6 S17 18 S 12 30 5215
7 S1,8 () 19 S3,12 31 S315
8 Sy 20 S412 32 S415
9 S19() 21 S5,12 33 Ss,15
10 S29 22 S1,13(%) 34 S,15
11 S39 23 S3,13 35 S715

12 S1,10(c0) 24 Ss,13

3.4. The 3D Optimization Algorithm Pseudo-Code

The algorithm can be summarized as the pseudo-code in Figure 9.

In the first part of the algorithm, the flight information as well the weather information are loaded
from a flight plan and from the weather forecast. Weather is required to take wind and temperature
into account in order to compute the flight later. Then, the search space is created based on the flight
plan. As a result of the fact that the search space has always the same shape (ToD connected to a set
of waypoints, which are then connected to another set of waypoints until the ToDs are reached), the
required connection tables are created. The algorithm then requires specific information such as take-off
mass, Mach number, and the CI. When all this information is ready, the adapted Floyd-Warshall
algorithm is implemented. At this step, the cost to fly from any waypoint i to any waypoint j taking
weather into account is constantly computed. Once the Floyd—Warshall algorithm ends, the results
are displayed.

Load Flight Plan (1)
Load Weather information (2)
Create Search Space (graph) with the Flight Plan information (3)
Create connection tables (Section 3.3) (4)
Define take off mass, Mach number and CI (5)
Execute the Floyd Warshall Algorithm (Figure 7) (6)

At every edge between two waypoints.

Recover the previous aircraft state at the initial waypoint (Section 3.3) (6.1)
Weather interpolations (Section 2.2) (6.2)
Trajectory cost computation (Section 2.3) (6.3)

Store the aircraft state for the most economical arriving next waypoint  (Section 3.3)  (6.4)

Present the optimal trajectory (7)

Figure 9. The 3D optimization algorithm pseudo-code.
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4. Results

The aircraft selected to perform optimization tests is a twin-engine long haul wide body aircraft.
This aircraft has a maximal takeoff weight of around 164,000 kg and a capacity of around 200 passengers.
The flights were selected from two sources: flight plans provided by a major European airline and
flight plans from radar data provided by Flightradar24®.

4.1. Flight Optimization from Airlines Computed Flight Plans

The first set of results aims to graphically show the optimization results on 3D for both: the vertical
and the lateral reference trajectories. For this aim, a flight from Montreal to Rio de Janeiro is shown
in Figure 10 for the lateral (a) and for the vertical trajectories (b). The 3D optimization for this flight
represented a total saving of around 280 kg (0.82%) compared against the as “flown” flight.
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Figure 10. Lateral and vertical reference trajectory for the Flight between Montreal and Rio de Janeiro.
(a) Lateral reference trajectory. (b) Vertical reference trajectory.

In Figure 10a, the green waypoints represent the available search space for the current flight,
the blue waypoints represent the followed nodes (waypoints) for an as-flown flight, and the red
waypoints represent the 3D waypoints. It can be seen that for the 3D reference trajectory provided by
the algorithm, the flight tends to move more Eastwards than the as-flown flight, this result could be
explained by the fact that there are better wind conditions on the east than in the west side. Figure 10b
show the vertical trajectory optimization where it is possible to visualize the changes of altitude of the
as-flown flight (Real), the optimized vertical reference trajectory (following the blue waypoints), and
the optimized 3D vertical trajectory (following the red waypoints). It can be seen that all trajectories
are similar. The main difference is that the as-flown (real) trajectory has two cruise constant altitude
long flight segments at 37,000 ft and at 39,000 ft of around 3000 nm each. The optimized 3D consists in
a quick climb to 36,000 ft followed by a long constant cruise of around 2000 nm to execute then many
step climbs until reaching 41,000 ft. The 3D vertical trajectory as well shows a short constant cruise,
which could be attributed to a good combination of wind at the new flight level and the correct time to
change the altitude due to the aircraft’s weight. The low optimization is attributed to similar profiles,
the 3D optimized flight executes 5 step climbs, compared to the real flight. It can be seen that for the
3D optimized flight, there are two step climb at around 3000 nm executed one after the other. The fuel
savings from that part of the optimized flight can be considered to be low as climbing to a different
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altitude is an expensive procedure in fuel burn terms. The lateral profiles are close together with their
largest difference in the middle of the flight.

4.2. Flight Optimization from Airlines Computed Flight Plans

As-flown trajectories were optimized using the algorithm developed in this paper. A total of
four as-flown flight plans were provided by a European airliner. The takeoff and arrival airports were
Bucharest and Tenerife. The flight plans were first flown using the BADA fuel burn model. Next,
the optimization algorithm was executed for the same flights in two different ways: for the vertical
dimension only, and in 3D. The Mach number was 0.8, the weights were the same as t stated in the
flight plans. For reasons of confidentiality, the weights and the real cost indexes cannot be provided
here. As a result that the Mach number is fixed to only 0.8, the CI will not actually make any influence
in the decisions taking by the algorithm. The results are shown in Figures 11 and 12.

21,000
20,500
20,000
= 19,500 ® Flight Plan
: . b
E 19,000 Vertical Opt
T 18,500 — M3DFW
18,000 -
17,500 - -
1 - T T T 1
7,000 o r o o
Q Q Q Q
v v W\ \&
Q S \ S
A o N\ o
N % %

Figure 11. Fuel burn differences between reference flight, optimized vertical flight, and optimized 3D
Floyd-Warshall (FW) flight trajectories.
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Figure 12. Flight cost differences between reference flight, optimized vertical flight, and optimized 3D
FW flight trajectories. Flight optimization for different as-flown flights.
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For all four flights, the flight plan provided by the airline was the most expensive flight in terms
of flight cost, and three of the airline’s flight plans incurred more fuel burn. The optimized vertical
flight (Vertical Opt) was able to optimize the trajectory by selecting better altitudes than the flight plan
computed and flown by the airline. The trajectory provided by the optimization algorithm was able
to provide a more economical flight than the computed trajectory simply by optimizing the vertical
profile for three of the four flight plans.

However, the vertical trajectory optimization was more expensive than the flight plan for the
14th of July, but the flight cost was more economical. This result can be attributed to the fact that
the selected altitudes are more expensive in fuel burn terms, but the winds at the vertical optimized
reference trajectory made the flight faster and thus more economical in terms of flight cost.

4.3. Flight Optimization for as-Flown Flights

It is worthwhile to evaluate the optimal flights from different destinations. Therefore, different
destinations were evaluated by comparing the results provided by the optimization algorithm against
the as-flown flights’ flight costs. A variety of different flights were obtained from Flightradar24®;
the airport codes used for the evaluated flights are listed in Table 3.

Table 3. International Air Transport Association (IATA) codes for different airports.

IATA Code City
AMS Amsterdam
BOD Bordeaux
CDG Paris
FCO Rome
GLA Glasgow
LHR London

LIS Lisbon
MAN Manchester
MRS Marseille
TLS Toulouse

VCE Venice
YUL Montreal
YYZ Toronto

For all the tests shown in this section, the take-off weight at the ToC (the point where the cruise
phase begins) was considered to be 125,000 kg, and the cost index was arbitrarily set to 50. As can be
seen in Table 4, the 3D FW algorithm was able to provide more efficient fuel burn flights, as it could
identify the waypoints at which to execute step climbs in order to reduce fuel burn. The algorithm was
also able to guide the aircraft to zones where wind conditions were favorable for the aircraft in terms
of fuel burn (see Table 4).

The average fuel burn optimization (savings) was close to 4.44%. There was an additional flight
evaluated from London to Montreal, which burned a total of 32,982 kg and the optimization algorithm
provided a trajectory that only required 26,802 kg of fuel (6180 kg—18.74%). This flight was not
considered on the average nor on Table 2 or Table 3 because it is considered an abnormal flight,
as the as-flown flight was executed following a constant fixed altitude of 30,000 ft during the flight
duration. This constant fixed altitude brings as a consequence an inefficient flight. Long haul flights
normally begin at low altitudes and execute step climbs during cruise. This flight serves to show the
importance of providing good fuel-efficient trajectories. There are many possible explanations for
why this flight was flown at this altitude, including, but not limited to bad weather, too much traffic,
or ATC constraints.
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Table 4. Fuel burn comparison for different as-flown flights.

4 Flight Real Flight Fuel 3D Flight Fuel Fuel Burn
Burn (kg) Burn (kg) Difference (kg)

1 YUL-BOD 23,857 23,156 700 (2.94%)
2 YUL-FCO 26,756 25,798 959 (3.58%)
3 TLS-YUL 27,610 26,061 1550 (5.61%)
4 MRS-YUL 29,568 27,691 1877 (6.35%)
5 LIS-YYZ 27,923 25,906 2017 (7.22%)
7 CDG-YYZ 28,695 26,913 1782 (6.20%)
8 YYZ-LIS 23,471 23,002 468 (1.99%)
9 YYZ-MAN 21,763 20,921 842 (3.86%)
10 YYZ-GLA 22,261 21,550 712 (3.20%)
11 YYZ-AMS 25,774 24,663 1110 (4.31%)
12 YUL-VCE 25,961 25,043 918 (3.54%)

Table 5 shows the comparison between the reference flights and the optimized flights in terms of
flight time. It can be seen that all flights are shorter with the trajectories provided by the algorithm,
as the aircrafts were guided to zones where the winds tend to reduce flight time.

Table 5. Flight time comparison between real flights and the optimized 3D flights.

4 Flight Real Flight Time 3D Flight Time Flight Time
(sec) (sec) Difference (sec)

1 YUL-BOD 20,793 20,679 114 (0.55%)
2 YUL-FCO 23,240 23,181 59 (0.25%)

3 TLS-YUL 24,066 23,522 544 (2.26%)
4 MRS-YUL 25,760 25,172 588 (2.28%)
5 LIS-YYZ 23,992 23,534 458 (1.91%)
6 CDG-YYZ 24,778 24,104 674 (2.72%)
7 YYZ-LIS 21,084 20,727 357 (1.69%)
8 YYZ-MAN 18,622 18,321 301 (1.62%)
9 YYZ-GLA 19,361 19,070 291 (1.50%)
10 YYZ-AMS 22,476 22,162 314 (1.40%)
11 YUL-VCE 22,814 22,637 177 (0.78%)

Flight time is very important, as it is multiplied by the Cost Index to determine (along with the
fuel burn) the overall flight cost as in Equation (18). The Cost Index for all the flights evaluated here
was selected as 50. Figure 13 shows the flight costs, indicating the fuel burn parts and the flight time
cost parts for the real flights (in stripes, obtained from FlightTrack24®) and the 3D FW optimized flights
(in solid colors, obtained from the algorithm’s output).

By analyzing the results in Tables 4 and 5, it can be seen that the trajectories provided by the 3D
FW algorithm were more economical in terms of fuel, and that all the optimized flights were shorter.
Therefore, as expected, the flight costs were always more economical for all flights.

The optimal trajectories were delivered within an average of 281 s; the longest execution time was
348 s and the shortest delivery took 217 s. These tests were performed on an AMD ® Phenom II X4 B93
processor at 2.80 GHz.
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Figure 13. Real and 3D-optimized time and fuel burn costs for the different flights.

5. Conclusions

The Floyd-Warshall algorithm was able to optimize the fuel consumption during the cruise
phase on long haul flights by selecting the waypoints where step climbs were executed, and by
modifying the aircraft heading to guide it to zones where winds tended to be tailwinds. The search
space was modeled in the form of a weighted graph which allowed the implementation of a dynamic
programming-based algorithm.

The reduction of fuel burn and flight cost are helpful in reducing the pollution released to the
atmosphere, which could achieve the aeronautical industry’s environmental goals in green aircraft
technology. The flight cost reductions could also lead to increase the airlines” profits.

The deterministic nature of this algorithm allows it to be possible to be implemented in current
avionic devices such as the Flight Management System. The execution time is considered to be low;
however, it would be desirable to reduce this execution time even further in order to be able to
implement the algorithm in avionics systems that normally have limited power resources.

Improving this algorithm will allow it to fulfill the Required Time of Arrival (RTA) constraint,
which is key to future airspace systems. The Floyd—Warshall algorithm is able to provide the shortest
path between any two points. The algorithm presented in this paper only keeps the trajectory between
two points, the ToC to the ToD, in its memory. It would be advantageous to enable this algorithm to
hold many more waypoints and thereby allow an aircraft to fly to any waypoint if air traffic control
requests a change of trajectory.
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