
aerospace

Article

Plant Model-Based Fault Detection during
Aircraft Takeoff Using Non-Deterministic
Finite-State Automata

Ferdinand Settele *,† , Alexander Weber † and Alexander Knoll

Department of Mechanical, Automotive and Aeronautical Engineering, University of Applied Sciences Munich,
80335 Munich, Germany; weber13@hm.edu (A.W.); alexander.knoll@hm.edu (A.K.)
* Correspondence: ferdinand.settele@hm.edu
† These authors contributed equally to this work.

Received: 8 March 2020; Accepted: 29 July 2020; Published: 31 July 2020
����������
�������

Abstract: In this note, the application of a plant model-based fault detection method for nonlinear
control systems on aircraft takeoff is introduced. This method utilizes non-deterministic finite-state
automata, which approximate the fault-free dynamics of the plant. The aforementioned automaton
is computed in a preliminary step while during evolution of the plant the automaton is continually
evaluated to detect discrepancies between the actual and the nominal dynamics. In this way the fault
detection module itself can be implemented on simpler hardware on board of the plant. Moreover,
an implementation technique is presented that allows the use of the proposed fault detection method
when the plant dynamics is given only by means of a graphical programming script. The great
potential and practicality of the used method are demonstrated on a simulated takeoff manoeuvre of
a battery-electrically driven aircraft.

Keywords: model-based fault detection; finite-state automata; battery-electrically driven aircraft

1. Introduction

Fault detection is the first and most important component of the well-known scheme of Fault
Detection, Isolation and Accomodation [1,2]. Approaches of fault detection can be model-free (based
on simple “if-then” blocks) or model-based (e.g., based on models of signals, the plant dynamics
itself or knowledge-based). There is a wide variety of techniques for fault diagnosis. Rather simple
limit checking methods are applied in process automation systems [3]. For affine nonlinear systems
the work [4] shows a differential geometry approach using residual generators. Non-standard fault
detection methods include, for example, the use of artificial neural networks [5] or discrete event
systems [6–15].

Roughly speaking, the present work takes up ideas relying on discrete event systems, yet differs
in various aspects. To be specific, this work reformulates some known concepts of model-based fault
detection. A substantial difference of this note to existing results is the utilization of a non-deterministic
finite-state automaton (FSA) and the particular application on an aircraft takeoff fault detection
scenario. The FSA is used to detect discrepancies (“residuals”) between the model-predicted and
the actual behaviour of the dynamical system under consideration. It approximates the fault-free
dynamics in a discrete, non-deterministic form following the methodology of References [16,17]. The
non-determinism allows to account for unknown parameters or (regular) disturbances to the plant
dynamics.

Classically, this automaton can be obtained fully automated and computationally efficient under
certain continuity assumptions on the plant dynamics. For the purpose of fault detection, we propose

Aerospace 2020, 7, 109; doi:10.3390/aerospace7080109 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
https://orcid.org/0000-0003-4796-1362
https://orcid.org/0000-0002-4708-7583
https://orcid.org/0000-0003-4348-1708
http://dx.doi.org/10.3390/aerospace7080109
http://www.mdpi.com/journal/aerospace
https://www.mdpi.com/2226-4310/7/8/109?type=check_update&version=2


Aerospace 2020, 7, 109 2 of 15

a technique for generating an “empirical” approximation in case when only a simulation model, for
example, in form of a graphical programming script, is available. Clearly, this is not an exceptional
case in industrial engineering environments.

Though our method can be formally used in a wide range of situations (from plants with known
dynamics to the aforementioned case of simulation models) it is not the purpose of this paper to
compare our method in each application case with well-established fault detection techniques. The
goal of this work is to present a fully automated and easy-to-implement technique and we are going to
highlight the case of simulation models.

The differences to existing works are various. Firstly, “empirical” approximations have been
proposed previously, yet we extend this idea to generate approximations given by non-deterministic
finite-state automata rather than directed graphs (deterministic automata) [18]. As for fault-detection
based on discrete event systems [6–15], References [6–9] build up automata by hand on the basis of
discrete events. The authors of References [10–12] model the used discrete automaton based on the
continuous dynamics of the plant under consideration, as we do. In Reference [15] the original
system is mapped to a simplified system and conditions are given under which it is sufficient
to perform fault-detection on the simplified model only. The authors of References [13,14] add
focus on stochastic automata. In contrast, our approach relies on a fully automated sampling-based
methodology involving a non-determinism already mentioned before. The latter has been proven
to be applicable in real applications in the context of symbolic controller synthesis, for example,
Reference [19].

To demonstrate the practicality this work investigates the application of the novel fault detection
method to aeronautics. It is applied to the acceleration phase during aircraft takeoff using a detailed
propulsion model of a battery-electrically driven aircraft from Reference [20]. Our motivation origins
from the fact that a huge amount of accidents in aviation is related to the first phases of flight. For
example, between 1999 and 2002 about 25 % of all accidents of airliners happened during takeoff and
climb phase [21,22]. The accident of a Boeing 737–800 in Goa is a recent example, where an insufficient
stabilization phase for the two engines caused a runway excursion to the side [23]. To minimize risks
during acceleration phase, system states have to be monitored carefully by the pilot. Automated fault
detection, supporting pilot assistance systems can reduce workload for the pilot, risk potential can be
identified earlier and therefore accidents can be avoided.

Several work concentrates on fault detection during the takeoff. References [24,25] show a takeoff
monitoring concept, which contains two segments: In the first (pre-takeoff) segment, scheduled
performance data is generated, which is compared with measured data in the second (real-time)
segment. In contrast to the approach we will present, data measurement is done manually and specific
to the problem at hand. In References [26,27] a so-called Flight Safety Assessment and Management is
investigated which uses the theory of discrete event systems.

The rest of the paper is organized as follows. First, Section 2 explains the presented fault detection
method. It includes details to the concept of discrete approximations of plant dynamics. Section 3
discusses the application of the main contributions to aeronautics in simulation. Section 4 contains a
short conclusion and outlook.

2. Modification of Common Methodology

Before presenting the details of the novel method, the basic notation and terminology used
subsequently is introduced.

The set of real numbers, non-negative real numbers, integers and non-negative integers is denoted
by R, R+, Z and Z+, respectively. For a set A we denote by P(A) the power set of A. A \ B stands for
the set difference. A cover of a set A is a subset of P(A) such that the union of its elements is equal to
A. All elements of the cover represent A in turn. For non-empty sets A and B we denote by BA the set
of all maps A → B. If A ⊆ R then an element of BA is called signal with time range A. A set-valued
map f : A→ B is called strict if ∅ 6= f (a) for all a ∈ A.



Aerospace 2020, 7, 109 3 of 15

2.1. Systems and Faults

In this paper we consider continuous-time continuous-state control systems governed by a
differential inclusion of the form

ẋ(t) ∈ F(x(t), u(t)), (1)

where x : R→ X and u : R→ U is the state and input signal, respectively, and where X ⊆ Rn, U ⊆ Rm.
The map F : X ×U → P(X) in (1) is set-valued and strict. Disturbances or unknown parameters
can be formalized by means of the non-determinism induced by F to the dynamics. For example,
a parameter-depend control system governed by

ẋ(t) = f (x(t), u(t), p(t)), (2)

where p : R→ P, P ⊆ Rl is a non-empty set of parameters and f : X×U × P→ X is an ordinary map,
follows dynamics (1) by setting F = f (·, ·, P).

The method that we are going to use formally applies to sampled versions of the previous
dynamics. In fact, dynamics (1) transform through sampling to a discrete-time continuous-state
difference inclusion

x(k + 1) ∈ G(x(k), u(k)) (3)

with the state and input signals x and u, respectively. Here, the time range of x and u is Z+ rather than
R with discrete-time variable k. We assume the map G : X×U → P(X) to be strict throughout, thus
a successor state always exists. G(x0, v) is defined as the image of the point x0 under the flow of the
continuous-time dynamics (1) for input signal v at a predefined sampling period τ > 0 [17] (Sec. VIII).

The notion of a fault (in the dynamics) is conveniently modeled by a change from G in (3) to some
other function so that x(k + 1) /∈ G(x(k), u(k)) for at least one k ∈ Z+.

For the description of the presented method we first formalize the notion of system and its
behaviour [16,17].

Definition 1. A system is a triple (X, U, G) where X and U are non-empty sets and G : X×U → P(X) is
strict. The components of the triple are called state space, input space and transition function, respectively.
A system whose state space equals Rn for some n ≥ 1 is called plant.

Definition 2. For a system S = (X, U, G) the behaviour of S is the set

B(S) := {(u, x) ∈ (U × X)Z+ | ∀k∈Z+
: (3) holds}.

In words, the behaviour of a system consists of those pairs of input and output signal that are
generated by the system according to (3). See Figure 1.

S
u x

B(S)
Figure 1. Illustration of the behaviour of a system S.



Aerospace 2020, 7, 109 4 of 15

2.2. Fault Detection Method

Below, we introduce discrete approximations [28], also known as discrete abstractions, with which
the presented method detects faults. We will use the notion from Reference [17] in a simplified and
modified form that is suitable for our purposes.

The key property of a discrete approximation is that it quantizes the continuous state space of a
plant into a discrete set and that it “approximates” the behaviour of the plant in an appropriate sense.
We continue these descriptive explanations after the precise definition.

Definition 3. Let S = (X, U, G) be a plant, let X′ and U′ be a cover of X and U, respectively, by non-empty
sets. A system S′ = (X′, U′, G′) is called discrete approximation of S if

Ω2 ∩ G(Ω1, Υ) 6= ∅ ⇒ Ω2 ∈ G′(Ω1, Υ) (4)

holds whenever Ω1, Ω2 ∈ X′, Υ ∈ U′. Elements of X′ and U′ are called cells and input symbols, respectively.

Property (4) is crucial for the “approximation" of the plant behaviour: If for two cells Ω1, Ω2 ∈ X′

and an input symbol Υ ∈ U′ it holds Ω2 /∈ G′(Ω1, Υ) then the contrapositive of (4) implies that the
plant does not produce signals (u, x) ∈ B(S) such that

(u(k), x(k), x(k + 1)) ∈ Υ×Ω1 ×Ω2 (5)

for some k ∈ Z+. In turn, the observation of a signal possessing the property (5) gives evidence that a
fault in the dynamics is present.

The latter remark, which is a rigorous mathematical statement, results in a straightforward
algorithm for fault detection as follows. Firstly, the components of the algorithm are, besides the
discrete approximation (X′, U′, G′) of the plant (X, U, G), the two quantizers (“analog-to-digital
converters”)

Qstate : X → P(X′) and Qinput : U → P(U′), (6)

which are induced by the covers of X and U, respectively. (I.e., Ω ∈ Qstate(a) if and only if a ∈ Ω,
and analogously for Qinput). Then, for every point in time k ∈ Z+ the values

u(k), x(k) and x(k + 1)

are measured and converted to
Υ(k), Ω(k) and Ω(k + 1),

respectively, by means of the quantizers. More concretely, Υ(k) ∈ Qinput(u(k)) and Ω(s) ∈ Qstate(x(s))
for s ∈ {k, k + 1} is fulfilled. (If the image of a quantizer contains more than one element then an
element may be picked randomly for the conversion.) Finally, the test

Ω(k + 1) ∈ G′(Ω(k), Υ(k)) (7)

is performed. A fault is signaled if the latter set membership relation is violated. The algorithm is
illustrated in Figure 2.



Aerospace 2020, 7, 109 5 of 15

x(k + 1) ∈ G(x(k), u(k))

Qinput

Qstate

Fault

x(k)
u(k)

x(k + 1)

Ω(k)
Ω(k + 1)

Υ(k)

Ω(k + 1)
?
∈ G′(Ω(k), Υ(k))

False?

Figure 2. Illustration of the fault detection algorithm applied to a plant (X, U, G) with discrete
approximation (X′, U′, G′) and quantizers (6).

2.3. Computing Discrete Approximations

Consequently, the presented fault detection method requires a discrete approximation of the plant
to monitor.

2.3.1. Computational Method

Methods to compute discrete approximations (for the various existing notions of discrete
approximations) have been developed since several years, for example, References [17,19,29]. Typically,
the computation of a discrete approximation (X′, U′, G′) for a given plant (X, U, G) is done in three
steps [29], which are outlined subsequently.

Firstly, assuming for simplicity that U is finite, U′ = U is set and a finite cover X′ of X is
chosen. The cover typically contains two distinguished subsets X̄′ and X′ \ X̄′, which cover the
“operating range” of the plant and its complement (“overflows”), respectively. For example, in Figure 3
the cover is formed by the shown squares and outer enclosing rectangles. Secondly, for every cell
Ω ∈ X̄′ the set G(Ω, Υ) is overapproximated. Specifically, a set Ĝ(Ω, Υ) that satisfies G(Ω, Υ) ⊆
Ĝ(Ω, Υ) is calculated. Here, a proper superset is typically needed; the reachable set G(Ω, Υ) is
usually not explicitly representable, whereas an explicitly representable superset might be found. The
overapproximation property is also enough in order to establish (4) in the following last step: The
automaton is obtained, that is, G′ is defined, by establishing (4) through intersection tests

Ω2 ∩ Ĝ(Ω1, Υ) (8)

for every Ω1 ∈ X̄′, Ω2 ∈ X′ and Υ ∈ U′. To be specific, if (8) is non-empty then Ω2 ∈ G′(Ω1, Υ). The
trivial choice G′(Ω, Υ) = X′ is made for Ω ∈ X′ \ X̄′ (“overflow” cell).

2.3.2. Implementation

In order to allow for efficient computation, the cover in the first step of the scheme is formed by
translated copies of a closed hyper-rectangle and a few unbounded hyper-rectangles (aforementioned
overflow cells) to fulfill the cover property. When choosing the overapproximating superset Ĝ(Ω1, Υ)
in (8) also as a hyper-rectangle then (8) turns into an intersection test between hyper-rectangles,
which can be efficiently evaluated. So the difficult part when implementing the scheme described in
Section 2.3.1 for control systems with continuous-time dynamics (1) is to establish a computationally
efficient overapproximation method by hyper-rectangles.



Aerospace 2020, 7, 109 6 of 15

“White Box" dynamics

(a)

Ω1

G(Ω1, Υ)
Ĝ(Ω1, Υ)

G′(Ω1, Υ)

ẋ(t) = f (x(t), u(t))u x

“Gray Box" dynamics

(b)

Ω1

G(Ω1, Υ)

Ĝ(Ω1, Υ)

G′(Ω1, Υ)

x

y

ẋ(t) ∈ f (x(t), u(t)) + Wu x

“Black Box" dynamics

(c)

Ω1

G′(Ω1, Υ)

G(Ω1, Υ)

u x

System Knowledge Simulation Data

Figure 3. Illustration of the computation of a discrete approximation for a 2-dimensional plant in three
situations: (a) dynamics are fully known; (b) dynamics are known except for the set of disturbances
W; (c) dynamics are given by means of a simulation model. In the illustrations, for the cell Ω1 and
input symbol Υ ∈ U′ the image of the transition function G′(Ω1, Υ) is determined in (a) by a rectangle
Ĝ(Ω1, Υ) overapproximating the reachable set G(Ω1, Υ), in (b) as in (a) but with additional test points
(e.g., x is mapped to y) to take into account the unknown disturbances, in (c) by test points only.

2.4. Theory Versus Reality

Such an overapproximating method exists [30] and can be efficiently applied [17,19]. However,
one prerequisite is that F in (1) fulfills some smoothness conditions. More generally, the assumption
that F in (1) is given as a mathematical formula constitutes a rather ideal situation (“white box” model,
see Figure 3) which in applications is rarely present. In contrast, common engineering practice for
modelling complex control systems (like aircraft) is the assembling of the dynamics from various
subsystems to one huge “simulation model”. Quite common is the use of graphical programming tools
for it [31]. In this way, however, the function in (1) is hidden behind the assembled interconnection of
the subsystems. It is typically unpractical to extract the mathematical formula for further processing,
for example, for computing discrete approximations. Therefore, it suggests itself that, with abandoning
formal guarantees from theory, empirical techniques may allow to generate an “empirical” discrete
approximation from the simulation model. The details to this idea are given below.

Besides the aforementioned case of a “white box” model we further distinguish two more
situations. First, the plant dynamics are given by

ẋ(t) ∈ f (x(t), u(t)) + W (9)

where f is known and possesses the previous continuity properties and where W ⊆ Rn is unknown
(“gray box” model), but is encoded in the simulation model and 0 ∈W. (Works like References [17,32,33]
model uncertainties or disturbances by W in (9)). In this case, a discrete approximation (X′, U′, G′)
for the nominal dynamics, that is, for the plant (X, U, G) obtained from sampling (9) for W = {0},
is computed in a first step in the convential way. In a second step, transitions are supplemented to
the obtained automaton by evaluating the simulation model for a chosen set of test points in X and
U. More concretely, for every (Ω, Υ) ∈ X′ ×U′ two sets of test points xi ∈ Ω, uj ∈ Υ are chosen,
where (i, j) ∈ I × J and I and J are finite index sets. Next, the images yi,j of xi under uj obtained from
evaluating the simulation model are computed. Then, using the quantizers (6) the corresponding
triple T = (Υ, Ω1, Ω2) satisfying (uj, xi, yi,j) ∈ T is determined. If Ω2 /∈ G′(Ω1, Υ) then G′ is redefined



Aerospace 2020, 7, 109 7 of 15

so that Ω2 ∈ G′(Ω1, Υ). In this way, transitions due to the initially neglected set W are added to the
automaton. Hence, it approximates more accurately the actual dynamics (9) of the plant. See Figure 3b.

In the last situation (“black box” model), the simulation model is exclusively used to build up the
automaton. As before, for every (Ω, Υ) ∈ X′ ×U′ two sets of test points xi ∈ Ω, uj ∈ Υ are chosen,
where (i, j) ∈ I × J (I and J as before) and the images yi,j of xi under uj obtained from evaluating the
simulation model are computed. Finally, the automaton is defined by virtue of

G′(Ω, Υ) = {Qstate(yi,j) | (i, j) ∈ I × J}. (10)

See Figure 3c. In the case that the model additionally depends on parameters an additional set of
test points dk ∈ P, k ∈ K is chosen, where K is a finite index set. Then, the images yi,j,k of xi under uj
for parameter dk are computed and the elements Qstate(yi,j,k) for all (i, j, k) ∈ I × J × K are used in the
right hand side of (10) accordingly.

Finally, a remark on input inaccuracies is given. Formally, the control input u(t) in (1) is assumed
to be constant during the sampling period. In reality, those control values may vary. These disturbances
can be compensated by simply letting neighboring cells of U′ be strictly overlapping by an amount
accounting for the expected input inaccuracies. The previously described computational techniques
remain unchanged in this case.

3. Application: Takeoff Monitoring

To investigate the presented fault detection method in application, we consider a model of a
small battery-electrically driven aircraft accelerating on runway until V1-speed. At this pre-calculated
speed pilots must decide to continue takeoff and lift off or to start braking to abort takeoff. In case of
continuation the pilot commands rotation at speed VR ≥ V1, that is, initiates the lift-off (cf. Figure 4).

V0 VRV1

Figure 4. Takeoff Scheme.

We will consider the “black box” situation described in Section 2.4. Nevertheless, for convenience
the dynamics of the aircraft are outlined in the first part of this section. Three illustrative fault scenarios
will be considered. In addition, this section includes remarks on implementation and finally the
experimental evaluation of the presented fault detection algorithm on the chosen example is presented.

3.1. Regular Relations during Takeoff

The dynamic model of the battery-electrically driven airplane aims at a detailed energy
efficiency modelling of the involved components (Propeller, electric motor including motor controller
and battery). Figure 5 shows the components of the propulsion model.

V

TAir
SoC

Propeller
Motor

(incl. temperature 
and contr. efficiency) Battery

T

PNcmd

IBat

TMot
Controller

N

aero

Figure 5. Overview of propulsion components modelling.

Inputs of the system are the aerodynamic velocity Vaero, the commanded rotational speed of
the propeller Ncmd and the air temperature TAir , which is assumed to be constant. Outputs of the
system are the thrust T, produced by the propeller, the motor temperature TMot and the battery state
of charge SoC.



Aerospace 2020, 7, 109 8 of 15

The propeller, which produces a thrust T ∈ R, is modelled by means of lookup tables of
dimensionless thrust and power coefficients CT(Vaero, N) and CP(Vaero, N). With these, provided
thrust and required power are calculated depending on the aerodynamic velocity Vaero and rotational
speed N [20]. The motor (including motor controlling) translates the mechanical power P, required by
the propeller, into electrical power, provided by the battery, containing motor and controller efficiency
ηMot+Cont(N, P) [20]:

P = UBat IBat ηMot+Inv.

The battery voltage UBat is assumed to be constant during acceleration phase. Increasing of the
motor temperature TMot is modelled by

ṪMot =
dTMot

dt
=
(

P (1− ηMot+Cont)− Q̇cool
) 1

kTMot

(11)

with the thermal conductivity of the motor windings. The cooling flux Q̇ = αcool · Scool (TMot − TAir)

is determined with heat transfer coefficient αcool, the cooling surface Scool, the thermal conductivity
kTMot and the air temperature TAir, where all terms except the motor temperature TMot are assumed to
be constant during the acceleration phase of the takeoff. Furthermore, the motor dynamics contain
an internal saturation, which may reduce the resulting propeller RPM with respect to limitations
IMot(t) ≤ I, P(t) ≤ P of the motor. Here, IMot and P denotes the motor current and the motor power,
respectively, and some bounding constants I ∈ R and P ∈ R. The resulting propeller RPM N(t) equals

Ncmd if IMot(Ncmd, t) < I ∧ P(Ncmd, t) < P

N(IMot,max) if IMot(Ncmd, t)≥I ∧ P(Ncmd, t) < P

N(Pmax) otherwise .

Finally, the decrease of the state of charge of the battery SoC is calculated with the nominal
capacity Cnom of the battery:

˙SoC =
dSoC

dt
=

IBat

Cnom
. (12)

For more detailed descriptions of the components the reader is referred to Reference [20].
The aircraft dynamics are given by a parametrized differential equation of the form (2), where

f : R3 × R2 × P → R3. The parameter vector p = [µ VWind]
> in (2) includes the surface friction

coefficient µ and the headwind velocity VWind. Regarding the later fault scenarios, the surface
friction coefficient is realistically bounded by µ := [0.005, 0.04] [24,25] and the headwind amounts to
VWind := [0, 2] [m/s]. More realistic values of the friction coefficient can be determined by friction tests.
It is assumed that real friction parameter values do not spread that wide like given in our paper.
Furthermore, wind is assumed to hit the aircraft straightly from the front (Aircraft takeoff is typically
performed with headwind best possible with regard to the runway direction).

The state vector is given by

x(t) =
[
V(t) TMot(t) SoC(t)

]>
(13)

where the components represent the aircraft kinematic velocity V = Vaero + VWind, the motor
temperature TMot and the state of charge of the battery (SoC), respectively. The control vector is
given by

u(t) =
[
CL(t) Ncmd(t)

]>
(14)

where CL and Ncmd, respectively, is the commanded lift coefficient and commanded propeller RPM
(rotational speed of the propeller).



Aerospace 2020, 7, 109 9 of 15

Aerodynamic lift and drag forces L and D are computed using standard formulas, for example,

D = CD
ρ

2
V2

aero Sref (15)

with drag coefficient CD depending on CL by a polar, constant air density ρ and reference surface of
the wing Sref. The kinematic acceleration V̇ is given by

V̇ =
T − D− µ (mg− L)

m
(16)

with gravitational acceleration g, the mass m of the aircraft and the friction coefficient µ. Therefore, it is
assumed that (1) thrust T and drag D are co-linear with V̇, (2) lift L and weight force mg are co-linear
among each other and perpendicular to thrust and drag, and (3) the runway is exactly horizontal.
The dynamics for TMot and SoC taken from Reference [20].

3.2. Fault Modelling

Three different types of faults are modelled in the simulation of the takeoff run. For fault 1, which
is an exceptionally increasing motor temperature due to an assumed error in the cooling system, factor
e2 ∈ R is added to the state derivative ṪMot from time t2. This fault will cause an unusual faster
increase of the motor temperature TMot with (11). Fault 2 is an increasing friction due to a problem
with the tyres, so a factor e1 ∈ R is multiplied to the value of the drag D in (15) beginning from
time t1 of the takeoff run simulation time t. As a consequence, the acceleration (16) will decrease.
Fault 3 illustrates a short circuit in the powertrain, due to which the battery current IBat increases.
This is realized by a factor e3 ∈ R, which is multiplied to IBat from time t3. This fault will lead to
an unusual steeper decrease of the battery state of charge SoC (12). See Table 1 for the values of the
aforementioned constants.

Table 1. Numerical values and occurrence times of the faults.

Fault i Increasing of . . . ei ti [s]

1 motor temperature ṪMot 2.5 6
2 drag D 2.5 7
3 battery current IBat 2 2

3.3. Implementation of the Takeoff Monitoring

The takeoff monitoring system is divided into two parts according to the presented fault detection
method. In the first part, a discrete approximation for the model defined in Section 3.1 is computed.
The second part contains the “real-time” algorithm for fault detection during takeoff.

3.3.1. Computing the Discrete Approximation

The discrete approximation S′ = (X′, U′, G′) for the given plant (aircraft) is determined according
to Section 2, where the “black box” model situation is assumed. A detailed description of the
construction of S′ follows. To begin with, all states, controls and parameter ranges are given in
Table 2. The cover X′ of R3 is formed by translated copies of [0, 0.5]× [0, 0.5]× [0, 0.004] (covering
the operating range [0, 25]× [35, 45]× [0.94, 0.96]) and some unbounded hyper-rectangles to cover R3.
The cover U′ of U is given by translated copies of [0, 0.067]× [0, 20]. The shape of the cells and input
symbols can be deduced from Table 2. The cover P′ of the parameter range is given by the single
hyper-rectangle [0.005, 0.04]× [0, 2].



Aerospace 2020, 7, 109 10 of 15

Table 2. Ranges of the states, controls and the parameter assumed for the construction of the discrete
approximation.

Unit Interval Resolution

States

Velocity V m/s [0, 25] 0.5
Motor temp. TMot

◦C [35, 45] 0.5
State of charge SoC − [0.94, 0.96] 0.004

Controls

Lift coefficient CL − [0.9, 1.1] 0.067
Propeller RPM Ncmd RPM [2400, 2600] 20

Parameter

Friction coeff. µ − [0.005, 0.04] 0.035
Headwind VWind m/s [0, 2] 2

To obtain the transition function G′ of the discrete approximation S′ the sampling time for
evaluating the black box model is chosen as τ = 1 s and about 1.67 × 108 test points are used.
These points form a uniform grid on the Cartesian product of the six intervals defined in Table 2.

The calculation is performed using MATLAB [34]. The latter environment provides easy-to-use grid
organization using the function ndgrid on the one hand. On the other hand, it provides user-friendly
data accessing functions, for example, linear indexing by means of the function sub2ind. Furthermore,
using the function parfor from the Parallel Computing Toolbox [34] the computation of the discrete
approximation can be parallelized easily.

The computation of the discrete approximation takes 43 h using 6 threads at 3.7 GHz-CPUs. The
required memory for the discrete approximation amounts to 330 MB, where indices are saved as
4-byte integers. Finally, approximately 500 MB are needed for the on board implementation of the
introduced algorithm.

Of course, the price to pay for using user-friendly programming environments is an increased
runtime in comparison with compiled binaries. Nevertheless, we would like to point out that the
computation of the discrete approximation is done once per plant, so a higher runtime does not
limit applicability.

3.3.2. Simulation of the Takeoff Run

For a simulation of the takeoff run the initial state

x(0) =
[
0 35 0.95

]>
is assumed with the constant control u(t) = u0 with

u0 =
[
0.95 2500

]>
is applied. The friction parameter µ is assumed to be randomly distributed within its bounds given in
Table 2 over the runway to allow an investigation of the robustness of the monitoring module with
regard to deviation of parameters. For the simulation of fault 2 (drag increase, see Table 1), additionally
wind was added to test the systems reliability in presence of an unknown parameter. Here, headwind
is modelled in form of a sine function between values 0.1 and 1.9 m/s and a period time of about 15 s.



Aerospace 2020, 7, 109 11 of 15

3.3.3. Implementation of the Fault Detection Algorithm

The algorithm in Figure 2 is implemented as follows. From time 0 s the state x(t) and input u(t)
are measured and converted to Qstate(x(t)) and Qinput(u(t)), respectively, in a time raster of 0.05 s
width and saved in a memory. The time raster is defined according to

t = k1τ + k2 · 0.05

with k1 ∈ N and k2 ∈ {0, . . . , 19}. From time t = τ = 1 s, fault detection begins with evaluating (7)
according to Figure 2. (Before the chosen sampling time τ fault detection is not feasible by concept
since the state at time τ is located in the future.) The actual states x(t) are converted similarly by (6)
and the corresponding images at time t− τ are taken from memory and used in (7) (cf. Figure 2).
Cells and input symbols older than t− τ are discarded. The program sequence for automated takeoff
monitoring is depicted in Figure 6.

V = 0

V < V1? stop evaluation

measure and save
Qinput(u(t)),
Qstate(x(t))

t < τ?

wait for
0.05 s

Evaluate (7) for Qstate(x(t)),
Qstate(x(t − τ)),
Qinput(u(t − τ))

True? FAULT

yes

no

no

no

yes

yes

Figure 6. Program Scheme.

The core function (highlighted block) brings about a decision to continue or abort takeoff.
With the hardware described in Section 3.3 one automaton evaluation takes 0.034 ms. This

comparison in the real-time module can be implemented as a simple index search. The MATLAB

function is member can be used to determine whether the index Qstate(x(t)) is saved in the image of
the transition function for the pair (Qstate(x(t− τ)), Qinput(u(t− τ))) or not.

3.4. Experimental Evaluation

Below, the aforementioned three fault scenarios are simulated and discussed. The Figures 7–9
include the progression of the affected state (thick black line) together with the error flag of the fault
detection program. The state progression without fault (gray dotted) is added to the plot as well as the
bounds allowed by the discrete approximation (thin black stair lines).

State progression and the fault detection of Fault 1 is shown in Figure 7. The constant e2 leads to
a steeper increasing of the motor temperature beginning at 6 s compared to the fault free progression
(gray dotted line).



Aerospace 2020, 7, 109 12 of 15

35

40

45

T M
ot
[C
◦ ]

Time progression with fault
Time progression without fault
State bound as defined in Tab. 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

Time t [s]

Er
ro

r

Figure 7. Fault 1.

Here, the fault can be detected very early and clear at about half a second after the fault appears.
The fault detection is ‘disabled’ at about 12 s (red line) since the ground speed V exceeds the upper
limit of the operating range (cf. Table 2). In other words, the conversion of the continuous state
signal returns overflow cells. Furthermore, it should be noted that the state progress without fault
(gray dotted line) does not run within the thresholds included by the FSA. The state progression and
the fault detection logic are simulated with the active fault for Figure 7.

0

5

10

15

20

25

V
[m

/
s]

Time progression with fault
Time progression without fault
State bound as defined in Tab. 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

Time t [s]

Er
ro

r

Figure 8. Fault 2.

Fault 2 scenario can be seen in Figure 8. The increased friction slows down the acceleration during
takeoff. Consequently, the lines for state progression with and without fault diverge beginning at
t1 = 6 s. At 8.1 s a violation of property (7) occurs for the first time and the fault detection module
signals a fault. The resolutions chosen to compute the discrete approximation and the wide ranges
of both parameter µ and VWind do not allow an ealier detection of the fault. For the same reason an
alternating ‘true-false’ fault signal with a gap around 9 and 10 s appears first. From 12.5 s a stable error
is detected. A reason for this late fault detection is the rougher resolution of state V used in the discrete
approximation in comparison to the state TMot (cf. Table 2).

As described before, a sinusoidal headwind is added to stress the presented method’s reliability.
Therefore, the phase shift of the sinusoidal headwind was varied manually, so that the duration
between appearance and detection of the fault is nearly maximal. By using this adverse constellation
of fault and environment, the reliability of the presented system can be tested.



Aerospace 2020, 7, 109 13 of 15

State progression and the fault detection of Fault 3 is shown in Figure 9. Increasing battery current
leads to a steeper decrease of the state of charge in comparison to the non-fault progression beginning
at 2 s.

0.93

0.94

0.95

0.96

0.97
So

C
[−

]
Time progression with fault
Time progression without fault
State bound as defined in Tab. 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

Time t [s]

Er
ro

r

Figure 9. Fault 3.

Here, no fault can be detected in contrast to the cases of faults 1 and 2. Despite the fault, the SoC
stays within the limits recorded in the discrete approximation. The reasons for this is the poor resolution
of the cover of the discrete approximation in this component (cf. Table 2) and the comparatively ‘slow’
reacting state SoC. The scenario of fault 3 shows that the presented fault detection scheme has to be
tested extensively for every application and simulation times of the discrete approximation are to be
adjusted for proper work. Furthermore, the presented method can not guarantee complete reliability
in case of uncertainties in model and measurement.

4. Discussion and Outlook

A plant model-based fault detection method was presented and applied to an aircraft
takeoff scenario. Discrepancies between nominal and actual dynamics are detected utilizing a discrete
approximation of the plant dynamics in form of a finite-state automaton. This discrete approximation is
computed in a preliminary step. The fault detection module itself is less complex and can be executed
on simple hardware.

To show an application of the presented fault detection method, faults during the takeoff run
of a battery-electrically driven airplane have been simulated and detection capabilities have been
analysed. The application example is based on a “black box” simulation model with which the discrete
approximation is generated. It could be shown that with reasonable choices of the covers of the
discrete approximation and the resolution of the test points the fault detection system performs reliably.
Fault scenario 3 demonstrates that especially for ‘slow reacting’ states resolution must be enhanced
to allow proper fault detection. Furthermore, it could be shown that the separation of the presented
fault detection system in two segments simplifies its applicability. In spite of the long preliminary
calculation period, the on board fault detection module provides real time capability. For applications
with known dynamics (e.g., ‘white box’), the presented method is perhaps not the most efficient
moreover, but it can be utilized nevertheless.

The presented fault detection system offers further development potential. With small
customization of the presented theory the system can be extended to include plant outputs or
observable states in the fault monitoring instead of states. Therefore, more system information can be
observed and the reliability of the system can be improved. For the demonstrated application, a plant
output could be the resulting propeller RPM speed or the battery current. Moreover, the choice of the
sampling time (denoted by τ in this note) should be investigated to reduce general computing costs on
the one hand and to improve reliability of fault detection on the other hand. A decoupling of different
cause-and-effect relationships between faults and states is explicitly not suggested. By using only one



Aerospace 2020, 7, 109 14 of 15

FSA for the complete plant dynamics approximation, even faults with an unknown or unexpected
cause-and-effect relationship can be detected. In time- and security critical processes, it is not necessary
to know the exact cause of a failure. If any system parameter was not regular during the process,
it should be aborted and the failure should be reconstructed under laboratory conditions.

Author Contributions: Conceptualization, A.W. and F.S.; methodology, A.W.; software, F.S.; validation, F.S.;
investigation, A.W. and F.S.; resources, A.K; data curation, A.W. and F.S.; writing—original draft preparation,
A.W. and F.S.; writing—review and editing, all authors; visualization, A.W. and F.S.; project administration, A.K.;
funding acquisition, A.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by Bayerisches Staatsministerium für Wirtschaft und Medien, Energie
und Technologie (project AURAIS) and Bundesministerium für Bildung und Forschung (project ARCUS).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Frank, P.M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey
and some new results. Automatica 1990, 26, 459–474. [CrossRef]

2. Hwang, I.; Kim, S.; Kim, Y.; Seah, C.E. A survey of fault detection, isolation, and reconfiguration methods.
IEEE Trans. Control Syst. Technol. 2010, 18, 636–653. [CrossRef]

3. Isermann, R. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance; Springer Science &
Business Media: Berlin, Germany, 2006.

4. De Persis, C.; Isidori, A. A geometric approach to nonlinear fault detection and isolation.
IEEE Trans. Autom. Control 2001, 46, 853–865. [CrossRef]

5. Venkatasubramanian, V.; Chan, K. A neural network methodology for process fault diagnosis. AIChE J.
1989, 35, 1993–2002. [CrossRef]

6. Chand, S. Discrete-Event Based Monitoring and Diagnosis of Manufacturing Processes. In Proceedings of
the American Control Conference, San Francisco, CA, USA, 2–4 June 1993; pp. 1508–1512. [CrossRef]

7. Bavishi, S.; Chong, E.K.P. Automated fault diagnosis using a discrete event systems framework. In
Proceedings of the 9th IEEE International Symposium on Intelligent Control, Columbus, OH, USA,
16–18 August 1994; pp. 213–218. [CrossRef]

8. Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D. Failure diagnosis
using discrete event models. In Proceedings of the 33rd IEEE Conference on Decision and Control,
Lake Buena Vista, FL, USA, 14–16 December 1994; Volume 3, pp. 3110–3116. [CrossRef]

9. Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D.C. Failure diagnosis using
discrete-event models. IEEE Trans. Control Syst. Technol. 1996, 4, 105–124. [CrossRef]

10. Ramkumar, K.; Philips, P.; Presig, H.A.; Ho, W.; Lim, K. Structured fault-detection and diagnosis
using finite-state automaton. In Proceedings of the 24th Annual Conference of the IEEE Industrial
Electronics Society, Aachen, Germany, 31 August–4 September 1998; Volume 3, pp. 1667–1672.

11. Ramkumar, K.; Druckenmuller, M.; Xi, Y.; Philips, P.; Presig, H.; Ho, W.; Lim, K. A fault-detection
and diagnosis scheme by dynamic computation of finite-state automaton tables. In Proceedings of the
25th Annual Conference of the IEEE Industrial Electronics Society, San Jose, CA, USA, 29 November–
3 December 1999; Volume 2, pp. 698–703.

12. Xi, Y.X.; Lim, K.W.; Ho, W.K.; Preisig, H.A. Fault diagnosis using dynamic finite-state automaton models.
In Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, CO, USA,
29 November–2 December 2001; Volume 1, pp. 484–489.

13. Lunze, J.; Schröder, J. State Observation and Diagnosis of Discrete-Event Systems Described by Stochastic
Automata. Discret. Event Dyn. Syst. 2001, 11, 319–369. [CrossRef]

14. Lunze, J.; Schröder, J. Sensor and actuator fault diagnosis of systems with discrete inputs and outputs. IEEE
Trans. Syst. Man Cybern. Part B (Cybern.) 2004, 34, 1096–1107. [CrossRef] [PubMed]

15. Schmidt, K. Abstraction-based failure diagnosis for discrete event systems. Syst. Control Lett. 2010, 59, 42–47.
[CrossRef]

http://dx.doi.org/10.1016/0005-1098(90)90018-D
http://dx.doi.org/10.1109/TCST.2009.2026285
http://dx.doi.org/10.1109/9.928586
http://dx.doi.org/10.1002/aic.690351210
http://dx.doi.org/10.23919/ACC.1993.4793123
http://dx.doi.org/10.1109/ISIC.1994.367815
http://dx.doi.org/10.1109/CDC.1994.411307
http://dx.doi.org/10.1109/87.486338
http://dx.doi.org/10.1023/A:1011273108731
http://dx.doi.org/10.1109/TSMCB.2003.820593
http://www.ncbi.nlm.nih.gov/pubmed/15376855
http://dx.doi.org/10.1016/j.sysconle.2009.11.004


Aerospace 2020, 7, 109 15 of 15

16. Willems, J.C. Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Autom. Control
1991, 36, 259–294. [CrossRef]

17. Reissig, G.; Weber, A.; Rungger, M. Feedback Refinement Relations for the Synthesis of Symbolic Controllers.
IEEE Trans. Autom. Control 2017, 62, 1781–1796. [CrossRef]

18. Junge, O.; Osinga, H.M. A set oriented approach to global optimal control. ESAIM Control. Optim. Calc. Var.
2004, 10, 259–270. [CrossRef]

19. Weber, A. Methoden zur Effizienzsteigerung Abstraktionsbasierter Reglerentwurfsverfahren. Ph.D. Thesis,
Universität der Bundeswehr München, Verlag Dr. Hut, München, Germany, 2018.

20. Settele, F.; Bittner, M. Energy-optimal guidance of a battery-electrically driven airplane. CEAS Aeronaut. J.
2020, 11, 111–124. [CrossRef]

21. Ranter, H. Airliner Accident Statistics 2006. Aviation Safety Network. 2007. Available online: https:
//aviation-safety.net/pubs/asn/ASN_Airliner_Accident_Statistics_2006.pdf (accessed on 30 July 2019).

22. Flight Safety Foundation. Reducing the Risk of Runway Excursions—Report of the Runway Safety Initiative.
2009. Available online: https://www.skybrary.aero/bookshelf/books/900.pdf (accessed on 18 February
2019).

23. Flight International. Accident Reports Issued during the Second Half of 2018. 2019. Available online:
https://finreader.flightglobal.com/publications-dist/1263/7943/2301/23183/article.html
(accessed on 14 February 2019).

24. Srivatsan, R.; Downing, D.R.; Bryant, W.H. Development of a Takeoff Performance Monitoring System; Technical
Memorandum; NASA: Hampton, VA, USA, 1986.

25. Srivatsan, R.; Downing, D.R.; Bryant, W.H. Development of a takeoff performance monitoring system.
J. Guid. Control Dyn. 1987, 10, 433–440. [CrossRef]

26. Balachandran, S.; Atkins, E.M. An evaluation of flight safety assessment and management to avoid loss
of control during takeoff. In Proceedings of the AIAA Guidance, Navigation, and Control Conference,
National Harbor, MD, USA, 13–17 January 2014; p. 0785.

27. Balachandran, S.; Atkins, E.M. Flight safety assessment and management for takeoff using deterministic
Moore machines. J. Aerosp. Inf. Syst. 2015, 12, 599–615. [CrossRef]

28. Raisch, J.; O’Young, S.D. Discrete approximation and supervisory control of continuous systems.
IEEE Trans. Autom. Control 1998, 43, 569–573. [CrossRef]

29. Reißig, G. Computing abstractions of nonlinear systems. IEEE Trans. Autom. Control 2011, 56, 2583–2598.
[CrossRef]

30. Kapela, T.; Zgliczynski, P. A Lohner-type algorithm for control systems and ordinary differential inclusions.
Discret. Contin. Dyn. Syst. Ser. B 2009, 11, 365. [CrossRef]

31. Breitenecker, F. Development of simulation software-from simple ode modelling to structural dynamic
systems. In Proceedings of the 22nd European Conference on Modelling and Simulation (ECMS),
Nicosia, Cyprus, 3–6 June 2008; pp. 20–37.

32. Weber, A.; Rungger, M.; Reissig, G. Optimized State Space Grids for Abstractions. IEEE Trans. Autom. Control
2017, 62, 5816–5821. [CrossRef]

33. Bai, Y.; Mallik, K.; Schmuck, A.; Zufferey, D.; Majumdar, R. Incremental Abstraction Computation for
Symbolic Controller Synthesis in a Changing Environment. In Proceedings of the IEEE 58th Conference on
Decision and Control (CDC), Nice, France, 11–13 December 2019; pp. 6261–6268.

34. MATLAB Documentation; MathWorks: Natick, MA, USA, 2019.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/9.73561
http://dx.doi.org/10.1109/TAC.2016.2593947
http://dx.doi.org/10.1051/cocv:2004006
http://dx.doi.org/10.1007/s13272-019-00398-x
https://aviation-safety.net/pubs/asn/ASN_Airliner_Accident_Statistics_2006.pdf
https://aviation-safety.net/pubs/asn/ASN_Airliner_Accident_Statistics_2006.pdf
https://www.skybrary.aero/bookshelf/books/900.pdf
https://finreader.flightglobal.com/publications-dist/1263/7943/2301/23183/article.html
http://dx.doi.org/10.2514/3.20237
http://dx.doi.org/10.2514/1.I010350
http://dx.doi.org/10.1109/9.664160
http://dx.doi.org/10.1109/TAC.2011.2118950
http://dx.doi.org/10.3934/dcdsb.2009.11.365
http://dx.doi.org/10.1109/TAC.2016.2642794
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Modification of Common Methodology
	Systems and Faults
	Fault Detection Method
	Computing Discrete Approximations
	Computational Method
	Implementation

	Theory Versus Reality

	Application: Takeoff Monitoring
	 Regular Relations during Takeoff
	Fault Modelling
	Implementation of the Takeoff Monitoring
	Computing the Discrete Approximation
	Simulation of the Takeoff Run
	Implementation of the Fault Detection Algorithm

	Experimental Evaluation

	Discussion and Outlook
	References

