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Abstract: The modern National Airspace System (NAS) is an extremely safe system and the aviation
industry has experienced a steady decrease in fatalities over the years. This is in part due the
airlines, manufacturers, FAA, and research institutions all continually working to improve the
safety of the operations. However, the current approach for identifying vulnerabilities in NAS
operations leverages domain expertise using knowledge about how the system should behave
within the expected tolerances to known safety margins. This approach works well when the
system has a well-defined operating condition. However, the operations in the NAS can be highly
complex with various nuances that render it difficult to assess risk based on pre-defined safety
vulnerabilities. Moreover, state-of-the-art machine learning models that are developed for event
detection in aerospace data usually rely on supervised learning. However, in many real-world
problems, such as flight safety, creating labels for the data requires specialized expertise that is time
consuming and therefore largely impractical. To address this challenge, we develop a Convolutional
Variational Auto-Encoder (CVAE), an unsupervised deep generative model for anomaly detection in
high-dimensional time-series data. Validating on Yahoo’s benchmark data as well as a case study of
identifying anomalies in commercial flights’ take-offs, we show that CVAE outperforms both classic
and deep learning-based approaches in precision and recall of detecting anomalies.
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1. Introduction

As the National Airspace System (NAS) has evolved over the years, it has been able to
accommodate commercial passenger demand while maintaining exceptional levels of safety. According
to the National Transportation Safety Board (NTSB), the accident rate per 100,000 flight hours has been
cut in half since 2000—from 0.306 to 0.156 in 2018 [1]. While the number of passenger enplanements
has increased 20% from 706 million in 2009 to 851 million in 2017, the number of departures has
decreased 5% from 9.7 million to 9.3 million over the same period [2]. This trend has resulted in a
historically high passenger load factor of 82.3% in 2017 [3]. While the number of flights has remained
relatively flat, the passenger load factor is approaching saturation and will result in more departing
flights in the future. To remain at this historically low level of accidents per year, the NAS will need to
innovate and proactively identify operationally significant safety events that are currently not being
tracked. The FAA outlines proactive and reactive hazard and risk reduction under the auspices of
safety risk management. This process is described within Section 2.1.3 of the 2019 Safety Management
System Manual [4]. Identifying vulnerabilities or hazards is a key step in the process where machine
learning can provide assistance and eventually lead to implementation of risk mitigation in the form of
revising safety requirements to address the newly identified vulnerability. Although any vulnerability
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discovery method needs to be cognizant of high false positive rates when determining requirements
for the operationalization of the system, missed detection also carry a high cost to safety and should be
factored into the planned operations by the stakeholders.

Identifying situations where unknown risk or vulnerabilities exist is not a trivial problem. Much of
the knowledge of adverse events comes from after-the-fact analysis using forensic investigations to
determine the root cause of an incident or accident such as the manual process that NTSB uses when
investigating accidents [5]. In 2007, the Federal Aviation Administration (FAA) partnered with MITRE
Corp to develop the Aviation Safety Information and Sharing (ASIAS) system. This system archives air
carrier flight data and promotes proactive analytics which could identify safety risks in the NAS before
they lead to a significant incident or accident. One aspect of the program acts as a repository for Flight
Operational Quality Assurance (FOQA) data. These data are comprised primarily of 1 Hz recordings
for each flight. These recordings cover a variety of systems, including the state and orientation of
the aircraft, positions and inputs of the control surfaces, engine parameters, and auto pilot modes’
corresponding states. The data are acquired in real time on-board the aircraft and downloaded by
the airline once the aircraft has reached the destination gate. These time series are analyzed by
domain experts, who derive threshold-based algorithms post-flight to flag known events. Events that
are deemed to be of operational significance are then determined by the airline. These events are
monitored over time to determine emerging trends or quantify safety improvements. The ASIAS
program acts as an independent broker that does not have regulatory authority and can provide each
airline a centralized assessment of their safety performance compared to other similar airlines in a
de-identified context. However, in 2013, an Inspector General’s (IG) report [6] found that the “system
lacked advanced analytical capabilities” and tasked the FAA to further improve the system. In October
2019, the IG began a follow-up review to assess the progress of ASIAS in addressing the IG’s 2013
recommendations [7].

Improving the ability to identify emerging vulnerabilities in current operations helps to increase
awareness of new threats. Proactively addressing safety requires developing, testing, and validating
new approaches that can process and model large amounts of historically recorded heterogeneous
data. Such data describe the operations of millions of flights over multiple years and covers various
diverse regions in the NAS. Data science and machine learning approaches have the potential to
automatically identify anomalous events in these observed data. However, the events identified still
need to be reviewed and assessed by subject matter experts familiar with the procedures in order to
better understand how operations are carried out, and their safety implications. Possible vulnerabilities
can then be addressed by mitigating the contributing factors with proper countermeasures. These may
include improved pilot/controller training or developing automation safety processes, which, when in
place, help to avoid states that result in an increased likelihood of an incident or accident that may
result in damage to the aircraft, injury, or loss of life. For example, as the Boeing 737 MAX went into
service, comparisons with existing 737 models’ operations may have highlighted significant differences
due to the Maneuvering Characteristics Augmentation System (MCAS). This early identification of
unexpected behaviors during a critical phase of flight, shortly after takeoff, in the 737 MAX might have
yielded insights about the vulnerabilities of the MCAS. Having this information available to operators,
manufacturers, and regulators could have led to actions that might have prevented the Lion Air Flight
610 and Ethiopian Airlines Flight 302 accidents [8]. However, it is important that any decision support
tool has both low false positive (false alarm) and false negative (missed anomalies) rates, in order
to ensure that the user has trust in the system and takes appropriate actions.

In order to improve and automate identification of these vulnerabilities, we have developed
an unsupervised machine learning algorithm that constructs models based on observed operations
and identifies operationally significant safety anomalies. This algorithm is demonstrated to improve
performance as compared to existing anomaly detection methods used in this domain. The paper is
organized as follows: In Section 2, we cover related work. In Section 3, a description of the proposed
method is discussed with a background on existing concepts used to construct the method and
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attention to the innovative contribution we have made. In Section 4, we demonstrate the model’s
performance on the publicly available Yahoo! benchmark time series data and real world FOQA data
and compare performance with several classic (K-Means and One-Class Support Vector Machine)
and deep learning-based (Auto-Encoder and Generative Adversarial Networks) anomaly detection
methods. Finally, in Section 5, we discuss our conclusions and future work.

2. Related Work

The standard anomaly detection technique in aerospace data is exceedance detection.
This technique compares specific parameters against pre-defined thresholds, which are identified
based on domain knowledge. The exceedance analysis is described in the FAA document on
the FOQA program [9] and implemented in flight data monitoring software used by airlines and
aviation equipment manufacturers (e.g., eFOQA from GE or AirFase from Teledyne). The exceedance
detection method performs well on known issues, but is incapable of identifying unknown risks
and vulnerabilities.

In order to identify unknown risks and vulnerabilities, we need to go beyond simplistic rule-based
thresholding approaches. Recent advancements in the field of machine learning have shed light on their
application for identifying anomalies in aviation data. Generally, machine learning approaches used for
anomaly detection can be categorized into supervised and unsupervised methods, with the presence
of labels a key differentiator between the two. Lee et al. [10] developed an interpretable framework to
visualize and process FOQA data and to identify safety anomalies in the data using several supervised
machine learning classification methods. Janakiraman [11] also developed a deep multiple instance
learning approach for supervised classification of adverse events to identify precursors in FOQA data.
However, the difficulty of obtaining labels even for known anomalies in aerospace data makes an
unsupervised approach often the only feasible option, and such an approach is the focus of this article.
Unsupervised machine learning algorithms used for anomaly detection in aerospace data include
proximity-based methods (nearest neighbors and clustering-based), support vector machines (SVM)
and, more recently, deep learning methods.

Bay and Schwabacher [12] is among the proximity-based approaches that develop an algorithm
which defines an anomaly as a point in feature space whose nearest neighbors are far from it.
This algorithm was applied to detect anomalies in Space Shuttle main engines. Another line of
work relies on clustering methods, such as the Sequence Miner algorithm for discrete flight parameters
(cockpit switch flips) [13] and the Inductive Monitoring System (IMS) [14] for continuous parameters.
These studies rely on identifying “normal” regions in the feature space, and then computing an anomaly
score by measuring the distance between the observed data and these regions. In the investigation of the
Space Shuttle Columbia disaster, IMS has been applied to temperature-sensor data of the Shuttle’s left
wing, detecting in retrospect the damage from the foam impact [15]. The ClusterAD-Flight method [16]
transforms FOQA time series data into high-dimensional vectors, making different flights comparable
by sampling each flight parameter at fixed temporal or distance-based intervals starting from an
anchoring event (e.g., time from takeoff or distance from touchdown) with subsequent clustering using
the density-based spatial clustering algorithm.

One-class SVMs (OC-SVM) are a popular unsupervised approach for anomaly detection.
A OC-SVM constructs an optimal hyperplane separating normal data in the high dimensional kernel
space by maximizing the margin between the origin and the hyperplane. This approach has been
developed for anomaly detection in aviation data as well [17]. A major challenge in implementing
OC-SVMs is the computational complexity of the kernel building step, which is quadratic with respect
to the number of training examples.

Anomaly detection using deep neural networks has caught much attention recently. This reflects
a rising trend in the popularity of deep learning due to its flexibility and scalability. One of these
approaches is the Autoencoder (AE) [18], which is a feed-forward multi-layer neural network trained
to copy its input to its output by minimizing the reconstruction error. It could be viewed as a nonlinear
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generalization of Principal Component Analysis (PCA). An AE uses a multi-layer encoder network to
transform the high-dimensional data into a low-dimensional latent space, and a decoder network to
recover the input data from the latent space [18]. Anomaly detection with an AE uses the reconstruction
error as an anomaly score. Reddy et al. [19] applied an AE to raw time series data from multiple flight
sensors by using sliding overlapping time windows to form input vectors (a much earlier example
of applying an AE to spacecraft data can be found in [20]). Zhou et al. [21] implement an AE with
regularization term (called “robust AE”) to eliminate outliers in case of lacking clean training data.
The main difficulty of applying autoencoders is the choice of the right “degree of compression”,
i.e., the dimensionality of the latent space and finding its right trade-off between fit to the data and
model flexibility.

Work by Kingma and Welling [22] and Rezende et al. [23] bridged recent advancements in
deep learning with variational inference by introducing the concept of a Variational Auto-Encoder
(VAE) (see details in Section 3 of this paper). VAEs are deep generative models that are used for
various applications, with anomaly detection becoming increasingly popular. An and Cho [24]
proposed an anomaly detection method based on a VAE with the anomaly score as a Monte Carlo
estimate of the reconstruction log-likelihood, which they called “reconstruction probability”. Haowen
Xu et al. [25] used this approach for detecting anomalies in univariate time series representing seasonal
key performance indicators in web applications, with the input vector formed by applying a sliding
time window.

Generative adversarial networks (GANs) are another type of deep generative models that have
increased in popularity for use in anomaly detection. For example, Zenati et al. [26] developed an
efficient anomaly detection approach based on Bidirectional GANs [27,28], which we also use for
benchmarking performance of our proposed model. Following the success of using deep Recurrent
Neural Networks (RNN) for machine learning applications with sequential data, approaches of using
VAEs with RNNs for anomaly detection in time series have been actively explored as well. They usually
use Long Short-Term Memory (LSTM) constructs for VAE encoder and decoder networks to handle
temporal dependencies in data [29–33]. The LSTM-VAE approach has also been applied for anomaly
detection in telemetry data from the Soil Moisture Active Passive (SMAP) satellite and the Mars
Curiosity rover [34]. However, VAEs based on the RNN architecture are computationally expensive to
train for high-dimensional time series and may overlook local temporal dependencies.

3. Method

Unsupervised detection of anomalous patterns in high-dimensional heterogeneous time series
such as FOQA data are an extremely challenging task. The model trained for this task must be able
to capture complex patterns in correlated heterogeneous data in order to identify anomalous trends.
In this section, we outline our proposed model, the Convolutional Variational Auto-Encoder (CVAE),
which is specifically designed for anomaly detection in high-dimensional heterogeneous time series
data. The CVAE model is comprised of two main parts: (1) an encoder, which maps the original data
space (X) into a compressed low-dimensional latent space (Z) and (2) a decoder, which reconstructs
the original data by sampling from the low-dimensional latent space. As illustrated in Figure 1,
given all data entries, CVAE adapts the rate of fitting the model to the unbalanced training data,
which contains a significantly lower number of anomalous than nominal examples. In this process,
CVAE is able to successfully learn the optimal mapping of the nominal data to the latent space and to
reconstruct them (i.e., x̂nominal) with small reconstruction error, i.e., ||xnominal − x̂nominal||22. However,
for anomalous data, the mapping to the latent space is not optimized and hence results in significantly
higher reconstruction error. In this way, the reconstruction error can be used as a metric to identify
anomalies. It should be noted that the level of fitting to the training data needs careful consideration,
as CVAE can also fit to the anomalous data. If this is the case, the reconstruction error for anomalies
can be as low as the error for nominal data, which is an undesirable outcome. We take inspiration
from [35] to control the levels of fitting to nominal and anomalous training data by introducing a
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hyperparameter in the loss function of the machine learning model. We start with summarizing a basic
understanding of variational inference and VAEs, and then explain the proposed model in detail.

Figure 1. Overview of the proposed unsupervised anomaly detection approach.

3.1. Variational Inference

Let us assume the following problem: given the original data, x ∈ X, and the latent variables,
z ∈ Z, the goal is to estimate the conditional density of the posterior of the latent variables, i.e., p(z | x),
which can be computed using the Bayes rule,

p(z | x) =
p(z, x)
p(x)

(1)

The denominator in the above equation is called the evidence. In order to calculate the evidence,
one needs to compute the following integral:

p(x) =
∫

z
p(z, x)dz (2)

However, computing this integral is usually intractable. In order to approximate the posterior of
the latent variables, i.e., p(z | x), two paradigms are used: (1) Markov Chain Monte Carlo (MCMC),
which uses sampling across an ergodic Markov chain on the latent variable z whose stationary
distribution is the posterior p(z | x); and (2) variational inference (VI), which uses optimization instead
of sampling to approximate the posterior by minimizing the Kullback–Leibler (KL) divergence between
the estimated posterior and the exact one,

f ∗(z) = argmin f∈FKL ( f (z)||p(z | x)) (3)

where f (z) is an arbitrary function defined over variable z, F is the domain of all possible candidates
for function f , and f ∗(z) is the function that achieves the minimum KL divergence with respect to the
posterior distribution p(z | x). While MCMC provides guarantees of producing samples from the exact
posterior distribution, it is computationally expensive—especially when datasets are large and models
are complex. VI, on the other hand, is faster and applicable to complex problems, while sacrificing
the guarantee of convergence to the exact posterior. However, the objective defined in Equation (3) is
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not tractable to compute as it requires computing the log of the evidence, i.e., log p(x). To see this, we
need to extend the definition of the KL divergence:

KL ( f (z)||p(z | x)) =
∫

f (z) log
(

f (z)
p(z | x)

)
dz

= E f (z)[log f (z)]−E f (z)[log p(z | x)]

= E f (z)[log f (z)]−E f (z)[log p(z, x)] + log p(x)

(4)

Due to the dependence of the KL divergence on the evidence (i.e., log p(x)), we cannot compute
it. As a result, VI relies on optimizing an alternative objective, which is called the evidence lower
bound (ELBO),

ELBO( f ) = E f (z)[log p(z, x)]−E f (z)[log f (z)] (5)

As noted, the ELBO is the negative KL divergence (defined in Equation (4)) plus log p(x), which
is a constant when we take the expectation with respect to f (z). As a result, maximizing the ELBO
is equivalent to minimizing the KL divergence, which is the main objective of VI optimization,
i.e., Equation (3).

3.2. Variational Auto-Encoder

The Variational Auto-Encoder (VAE) approximately optimizes the evidence defined in
Equation (2). It should be noted that VAEs are called Auto-Encoders because their training objective
resembles an encoder–decoder combination [36], as we discuss later. Re-organizing the definition of
the KL divergence in Equation (4) (renaming the approximate posterior as qφ(z | x)), we obtain

KL
(
qφ(z | x)||p(z | x)

)
= Eqφ(z|x)[ log qφ(z | x)− log pθ(x | z)

− log pθ(z)] + log pθ(x)
(6)

where φ and θ are parameters of functions q and p that map X to Z (i.e., the encoder part) and Z to X
(i.e., the decoder part), respectively. Using the KL divergence definition again Equation (6) turns into

log pθ(x)−KL
(
qφ(z | x)||p(z | x)

)
=Eqφ(z|x)[log pθ(x | z)]−

KL
(
qφ(z | x)||pθ(z)

) (7)

Equation (7) is the key equation in VAEs: The left-hand side is the term that we would like to
optimize, which is the sum of the log-likelihood of the data, x ∈ X, minus the error in approximating
the true posterior pθ(z | x) with the approximate one qφ(z | x). The right-hand side of the equation
is equivalent to the definition of the ELBO in Equation (5) and is an objective that we can optimize
using stochastic gradient descent given the right choice of q (refer to [36] for further details). Hence,
the objective function of the VAE is defined as follows:

L(θ, φ; x) = Eqφ(z|x)[log pθ(x | z)]−KL
(
qφ(z | x)||pθ(z)

)
(8)

However, taking the gradient of L(θ, φ; x) with respect to φ is problematic, especially for the first
term. Kingma and Welling [22] propose a solution called the reparameterization trick, which introduces
variable ε ∼ N (0, I), and reformulates the objective function so that the expectation is only with
respect to fixed x and ε. This ensures the objective function to be deterministic and continuous in θ

and φ, which makes backpropagation with stochastic gradient descent possible.
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Let the prior over the latent variables z be a standard Gaussian, i.e., pθ(z) = N (z; 0, I), and the
variational approximate posterior a multivariate Gaussian with diagonal covariance, qφ(z | x) =

N (z; µ, σ2 I). Then, the objective function in Equation (8) becomes [22]

L(θ, φ; x) =
1
L

L

∑
l=1

log pθ

(
x | z(l)

)
+

1
2

J

∑
j=1

(
1 + log(σ2

j )− µ2
j − σ2

j

) (9)

where z(l) = µ + σε(l), and ε(l) ∼ N (0, I). The first term in Equation (9) is, in autoencoder terminology,
the negative reconstruction error and the second term is the analytical form for the KL divergence of
the multivariate Gaussian posterior from the standard Gaussian prior.

3.3. Convolutional Variational Auto-Encoder (CVAE)

Recently, there has been a growing interest in modifying the loss function of VAEs to improve
the disentanglement of different dimensions of the latent space with the goal that each latent space
dimension corresponds to a continuum of a meaningful domain-specific attribute. Higgins et al. [35]
formulate this as a constrained optimization problem to maximize the marginal log-likelihood of the
observed data as

max
θ,φ

Ex∼D[Eqφ(z|x)[log pθ(x | z)]

s.t. KL
(
qφ(z | x)||p(z)

)
< ε

(10)

In addition, Lagrangian KKT conditions are used to define

F (θ, φ, β; x, z) =Eqφ(z|x)[log pθ(x | z)]−

β
(
KL
(
qφ(z | x)||p(z)

)
− ε
) (11)

Higgins et al. [35] find that increasing β improves the disentanglement of the latent space
dimensions; however, it decreases the reconstruction quality. More recent work [37,38] has
introduced extra terms to factorize the latent space and improve the total correlation between the
dimensions of the latent space, which has shown to improve the disentanglement of the latent space.
Although this disentanglement is easy to quantify and validate when dealing with imagery data,
it turns out that such disentanglement is not quite as clear when it comes to time series data. Building
upon the work of [35], we define the CVAE loss function as follows:

L(θ, φ, β; x, z) = Eqφ(z|x)[log pθ(x | z)]− βKL
(
qφ(z | x)||pθ(z)

)
(12)

Since β and ε in Equation (11) are both positive constants, L is the lower bound for F :
F (θ, φ, β; x, z) ≥ L(θ, φ, β; x, z). It should be noted that we do not introduce β to improve
disentanglement in the latent space, but we rather use it as a regularization hyperparameter. Recall
that the KL divergence term in the loss function penalizes latent-variable posteriors that are far from
the prior (which is standard-normal). As a result, one can imagine that hyperparameter β serves as a
metric that determines how much we want CVAE to fit on the training data. Given that we are using
a completely unsupervised approach and our training data consist of both nominal and anomalous
time series, there is a degree of freedom of to what extent CVAE fits the mapping to the latent space.
As a result, we treat β as a regularization hyperparameter that needs tuning. As β tends towards zero,
CVAE converges to the regular convolutional autoencoder (as we will see later), and if β = 1, then our
CVAE model is identical to the convolutional VAE [22].
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CVAE uses windowed time-series data as an input and applies series of convolutional operations
with different filter sizes to take multiple local temporal dependencies into account. Then, the results
of each series of convolutions are concatenated and mapped to the latent space. We use a similar
architecture for both the encoder and the decoder. As a result, the decoder consists of a series of
deconvolution and up-sampling with different filter sizes. Each branch of the encoder has four
convolutional layers followed by a pooling layer, of which the number of input channels increases as
the window size shrinks. Similarly, the decoder consists of four layers of de-convolution followed by
an up-sampling layer, the number of input channels of which decreases as the window size expands.
The exact number of layers depends on the size of the inputted time series windows, as we shrink the
window size to 1× #channels before the latent space layer. Figure 2 shows the general architecture
used for all of the results presented in the paper. We treat the dimension of the latent space as well as β

as hyperparameters that need tuning for each application, and we use the limited number of labels
available to show what combinations performed best in a post-processing step.

Figure 2. Network architecture of the Convolutional Variational Auto-Encoder (CVAE). On the right
panels, (i) Conv depicts 1D convolution, where the first input is the channel (or filter) size, the second
is the kernel size, and the third is the activation function, (ii) Maxpool refers to max pooling operation,
(iii) ConvT refers to 2D transpose convolution with the first input is channel (or filter) size, the second
input is kernel size, and the third is the activation function, and (iv) Upsample refers to the up sampling.
It should be noted that only the first layer of the decoder performs 2D transpose convolution to build
the feature dimension and the remaining layers do not expand the feature dimension.

3.4. Anomaly Detection Metric

Once CVAE is trained, we use the reconstruction errors obtained from the training data to set a
threshold for detecting anomalies. To do so, we first calculate the reconstruction error for all training
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data, i.e., ζi = ||xi − x̂i||22, for i ∈ {1, ..., Ntrain}, where x̂i = Dθ

(
Eφ (xi)

)
(with D denoting the decoder

and E the encoder). Once the reconstruction error is defined for the entire training dataset, we define
the threshold for anomaly detection as

thr = E[ζ] + 2σ(ζ) (13)

where E and σ represent the expected value and the standard deviation. In the above equation, we set
the threshold according to the prior knowledge that ∼2 % of the data are anomalous. As a result,
we expect that the top 2% tail of the reconstruction error corresponds to the anomalous examples,
assuming that the reconstruction error follows a Gaussian distribution. If testing on a different data,
the threshold formula needs to be adjusted according to the ratio of anomalous/nominal examples.
Once the threshold is identified, we identify anomalies in the test data by calculating the reconstruction
error for each test data instance and compare it to the above threshold. It should be noted that the
model is fully unsupervised, and we only use test data to evaluate the performance of CVAE in a
post-processing step.

4. Results and Discussion

Throughout this section, we compare performance of the proposed CVAE to five alternatives:
(1) Conv-AE, which is a deep Auto-Encoder with convolutional architecture (identical to CVAE,
except that it is not variational) and serves as a comparison to CVAE with small values of β,
(2) FC-AE, which is a deep Auto-Encoder with fully connected architecture (architecture is reported
in Appendix A), (3) BiGAN, which is anomaly detection based on deep Bidirectional GANs [26]
(architecture is reported in Appendix A), (4) KMeans, which is a clustering-based anomaly detection,
and (5) One-Class SVM (OC-SVM), which is an unsupervised kernel-based classification algorithm.

In any scenario, we divide the data into three sets of training, validation, and testing. We use
training to train CVAE, validation to tune the hyper-parameters (i.e., dimension of latent space and β)
with limited available labels, and testing to evaluate the unbiased estimate of the model’s performance
with a threshold (Equation (13)) calculated just based on the training set.

4.1. Validation on Yahoo!’s Data

We first comprehensively validate performance of CVAE on the recently published benchmark
data set of Yahoo! for time series anomaly detection [39]. This dataset is comprised of four different
time series: A1-4. A1 and A2 are univariate real and synthetic production traffic to some of the
Yahoo! properties, respectively. A3 and A4 are synthetic multivariate time series with outlier and
change-point anomalies, respectively. The multivariate data have additive noise and 12-h, daily,
and weekly seasonality associated with the actual values of the traffic.

In all of the results, we assume that nominal data are the negative class, and the anomalous data
are the positive class. We evaluate the performance of all models according to two metrics of precision
and recall defined as

precision =
TP

TP + FP

recall =
TP

TP + FN

(14)

where TP is true positive: anomalies that are correctly identified, FP is false positive (or false alarms):
anomalies that are incorrectly identified, and FN is false negative, or anomalies that are missed and
classified as nominal by mistake.

Figure 3 shows the precision (top panel) and recall (bottom panel) for the performance of
classification on test data for each of the above-mentioned methods. Each data instance is a windowed
time series, where, for A1 and A2, we use a window size of 50, and, for A3 and A4, we use a window
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size of 20 across all methods. We have also fixed the dimension of the latent space for CVAE, Conv-AE,
FC-AE, and BiGAN to two dimensions for A1 and A2 and to 25 dimensions for A3 and A4. The value
of hyperparameter β is fixed to 0.001 for these data sets. The reason for using a small value of
hyperparameter β is that anomalies in Yahoo! data are point anomalies (anomalies that happen only in
one time step) and, as a result, a lower value of β allows higher variance and complexity in the model,
which leads to a better performance in the case of point anomalies. As mentioned above, for small
values of β, the CVAE is similar to a Conv-AE, as can be seen from their performance across the data
sets. For KMeans, we cluster the data into two clusters (K = 2) and select the minority cluster to be
representative of anomalies, and, for OC-SVM, we set the parameter ν = 10%, which corresponds to
the average expected percentage of anomalous examples present in the Yahoo!’s data and we used ’rbf’
kernel with coefficient set uniformly across features.

Figure 3. Anomaly detection in Yahoo!’s data using KMeans, OC-SVM, FC-AE, Conv-AE, CVAE,
and BiGAN. It should be noted that FC-AE and BiGAN performances are absolute zero in the case of
A2 data, since they both detect all of data in the testing set as nominal.

Across the four data sets, CVAE achieves 66.4% precision and 68.4% recall on average, which is
very close to Conv-AE, especially in recall (75.5% precision and 68.8% recall). CVAE outperforms
classic methods such as KMeans and OC-SVM, with an on-average 48.2 percentage point (pp) higher
precision and 29.2 pp higher recall. Moreover, CVAE outperforms other deep learning-based anomaly
detection approaches (FC-AE and BiGAN) on average by 43.8 pp (precision) and 60.2 pp (recall).
As mentioned before, since the anomalies in the Yahoo! data are point anomalies, models with high
variance such as Conv-AE and the CVAE with a small value of β perform better. In the next section,
we showcase the performance of these methods on a different case study, where a model with higher
bias performs better.
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4.2. Anomaly Detection in FOQA Data

In this section, we introduce an anomaly detection case study based on FOQA data. In this case
study, we are interested in identifying anomalies during take-offs of commercial flights, due to a
drop in airspeed over a certain threshold. Subject matter experts have identified that, if the speed of
an aircraft drops more than 20 knots in the first 60 s after take-off, an adverse event could ensue.
To objectively measure the performance of the anomaly detection algorithm, we are relying on
this specific safety incident. This is not necessarily the only type of anomaly in the data set and
the true number of operationally significant safety anomalies are unknown; however, our objective
is to measure the effectiveness of the algorithm and are using this particular safety incident as one
measure of the algorithm’s performance. As a result, we have pre-processed FOQA data to set
up training/validation/testing data sets for benchmarking machine learning models. Data consist
of ∼27 K nominal and ∼700 anomalous samples. Each data sample is a multivariate time series of
16 features measuring the roll attitude, altitude information, pitch attitude, speed information, and yaw
attitude. It should be noted that FOQA data contain hundreds of features, and the 16 features used in
our study were selected due to their relevance to the take-off phase of flight based on the guidance of
subject matter experts. Flights that experienced a drop in airspeed of more than 20 knots were given a
label of 1; other flights were labeled as 0. Figure 4 visualizes three instances: both the green and blue
lines represent nominal samples, while the orange line represents an anomalous sample. It can be seen
that the pattern of a nominal example (e.g., blue line) can be very close and similar to an anomalous
one (e.g., orange line).

Figure 4. Computer airspeed during the first 60 s of take-off for three samples.

Although data labels were used to differentiate nominal and anomalous flights, our intent
is to assess whether a machine learning model can identify rarely occurring anomalous events in
an unsupervised setting without prior knowledge of the significance or the characteristics of the
event. The architecture of the CVAE (and Conv-AE) is deliberately based on the different groups of
features outlined above. CVAE sends each group into its own encoder (as illustrated in Figure 2) and
concatenates the outcome of each encoding before passing the information to the shared latent space.
After that, each group has its own decoder to reconstruct the inputs by sampling from the shared latent
space. This grouping is done purely based on domain expert knowledge of the flight dynamics of the
aircraft and the corresponding observed variables, without any correlation analysis, so that learning
proceeds in an unsupervised fashion. For all of the deep generative models (i.e., CVAE, Conv-AE,
FC-AE, and BiGAN), we fix the dimensionality of the latent space to 10 dimensions. For KMeans,
we cluster the data into two clusters (K = 2) and select the minority cluster to be representative of
anomalies, and, for OC-SVM, we set the parameter ν = 2.5%, which corresponds to the expected
percentage of anomalous examples present in the training data and we used ’rbf’ kernel with coefficient
set uniformly across features. We also fix the hyperparameter β for CVAE to a larger value of 0.1 in
this example. As we noted before, the anomalies in the FOQA data are not point anomalies and the
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entire data contained in a 60-s window (or a significant portion thereof) are needed to identify an
anomalous example. As a result, we expect higher values of β to perform better, since they increase
the amount of bias in the model, forcing the algorithm to not over-fit to anomalous training data.
CVAE model is implemented in Python and using Keras library. Training of the CVAE (for 100 epochs)
takes about 16.5 min and uses about 4.7 GB of memory on NASA’s Pleiades Supercomputer’s Skylake
GPU-enhanced node (https://www.nas.nasa.gov/hecc/resources/pleiades.html) and testing on a
single data point is in real-time.

Figure 5 shows the performance of CVAE on this challenging case study, compared to the
alternative methods. As is illustrated, CVAE outperforms all of the alternative methods both in
precision and recall.

First, we want to emphasize the difference between CVAE and Conv-AE. As mentioned before,
Conv-AE is similar to a CVAE with a small value of β, and, in the Yahoo! data, we saw that the
performance of the two was very similar. However, in this case study, because anomalies happen over
a window of data, we see that CVAE with β = 0.1 outperforms Conv-AE. The flexibility of balancing
the bias/variance trade-off by tuning the hyperparameter β is the main advantage of using CVAE
in place of regular autoencoders. On average, CVAE has a 23 pp higher precision and 7.2 pp higher
recall compared to Conv-AE. Moreover, CVAE outperforms other deep learning-based approaches
(e.g., BiGAN and FC-AE) with a 18.9 pp higher precision and 31 pp higher recall on average, and classic
approaches (e.g., KMeans and OC-SVM) with a 21.3 pp higher precision and 21 pp higher recall.

Figure 5. Validating the performance of CVAE on the FOQA data against Conv-AE, FC-AE, BiGAN,
OC-SVM, and KMeans.

As mentioned above, we expect higher values of the hyperparameter β to perform better when
dealing with anomaly detection examples where anomalies occur over the span of a time window.
To further validate this conjecture, we illustrate CVAE’s performance in terms of precision and recall
on the testing data on a wider range of values of hyperparameter β (Figure 6). Our intuition was
partially correct, which illustrates an important finding. Although β = 0.1 performs better than smaller
values, higher values of β do not improve performance. We conclude that β = 0.1 is a sweet spot
for balancing the bias/variance trade-off of the model. This is significant because it emphasizes the
importance of tuning hyperparameter β (which is the penalty imposed on the KL-divergence in the
loss function in Equation (12)), depending on the data set and research question. As was illustrated
in two examples (Yahoo! and FOQA data), depending on the domain and the nature of anomalies,

https://www.nas.nasa.gov/hecc/resources/pleiades.html
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a regular autoencoder, a variational autoencoder, or a model in-between the two, can demonstrate
superior anomaly-detection performance. CVAE, as introduced in this study, allows flexibility in
setting up the autoencoder model based on the problem at hand.

Figure 6. CVAE’s performance on the FOQA case study with different values of hyperparameter β.

In many recent studies on anomaly detection using deep generative models [24,29,33,34],
researchers rely on only training the models with nominal data (anomalies are not present during
training and validation and only appear during testing), which can significantly improve model
performance. To showcase this phenomenon, we trained CVAE on a training data set that only
contains nominal examples and then test it on a testing data set of mixed nominal and anomalous
examples. The ratio of anomalous to nominal samples in the testing data are still the same as before;
the only difference is that we removed anomalous examples from the training and validation data
sets. Figure 7 compares the performance of CVAE when trained with only nominal examples or mixed
nominal/anomalous examples. In the case of mixed training data, we used the same setting as before
(β = 0.1), while in the case of only nominal training data, we decreased the value of hyperparameter β

to 0.001 to achieve a closer fit to the training data. This is because we are aware that the training data
do not contain any anomalies and CVAE can be allowed to closely fit to the nominal patterns in the
training data. As expected, removing anomalies from the training data significantly improved CVAE’s
performance, resulting in a 36.8 pp higher precision and 27.3 pp higher recall.
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Figure 7. CVAE’s performance when trained only on nominal data or a mixture of
nominal/anomalous data.

These results show a promising first step in developing and deploying an unsupervised and
scalable machine learning algorithm based upon recent advancements in deep generative models—an
algorithm that is able to identify anomalies in high-dimensional flight time series with reasonable
accuracy and a minimal number of false negatives (i.e., missed anomalies).

5. Conclusions

In order to improve and automate identification of unknown vulnerabilities in flight operations,
we have developed an unsupervised machine learning approach for identifying operationally
significant anomalies in high-dimensional heterogeneous aviation time-series. The proposed approach
constructs models based on observed operations and identifies operationally significant safety
anomalies. This algorithm is demonstrated to have improved performance as compared to existing
anomaly detection methods used in the aviation domain. This translates to increased visibility of
previously undetected vulnerabilities that if gone unmonitored and unaddressed may lead to a more
serious incident or accident. The majority of approaches presented in the aerospace literature either rely
on rule-based thresholding or supervised learning approaches. Although the supervised approaches
show a good performance, creating labels for aviation data requires a huge amount of effort and is
largely impractical. Our approach builds upon recent advancements in deep generative models to
develop the Convolutional Variational Auto-Encoder (CVAE), which is an unsupervised approach for
anomaly detection in high-dimensional heterogeneous time-series data (Figure 1). It is important to
note that there is a significant cost to missing each unknown incident and any improvement upon the
detection rates helps to increase awareness and consequently safety. Having an unsupervised method
that does not require valuable subject matter expert’s feedback can assist in this process and is a key
aspect of being proactive to reduce incident and accident levels in anticipation of growing air traffic
demands in the future.

We validate CVAE in relation to several classic approaches (e.g., KMeans clustering and one-class
support vector machines) as well as deep learning-based approaches (e.g., autoencoder, generative
adversarial networks), used in the literature for anomaly detection in various data sets. Validating
CVAE on Yahoo!’s benchmark time series anomaly detection database, we show that our model
outperforms both classic approaches (∼48 pp higher precision, and ∼29 pp higher recall) and deep
learning based approaches (on average ∼44 pp higher precision and ∼60 pp higher recall) (Figure 3).
Moreover, we illustrated the effect of hyperparameter β in the CVAE model on the performance of
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anomaly detection and illustrated the advantage of CVAE over autoencoders as well as conventional
variational autoencoders (Figure 6).

The application of CVAE to anomaly detection in Flight Operational Quality Assurance (FOQA)
shows promise for further development of this line of work for anomaly detection in high-dimensional
heterogeneous time series. Specifically, by designing a case study of anomaly detection in the first 60 s
of the take-off of commercial flights, we show that CVAE outperforms all baseline models (on average
∼20 pp higher precision and ∼26 pp higher recall) (Figure 5). Performance significantly improves
when CVAE is only trained on nominal data as illustrated in Figure 7 (on average ∼37 pp higher
precision and ∼27 pp higher recall).

Future Work: The next steps will potentially focus on developing an architecture to process
different types of heterogeneous time series data, such as binary channels or categorical features in the
FOQA data. One possible approach may be to map multiple inputs into a state space representation to
capture the changes in the time series modes. In addition, exploring techniques to visualize and explain
the behavior in the latent space as it relates to the original input parameters and the anomalies identified
is another area of research that can add understanding and interpretability to the anomaly detection
model. Finally, the scaling and practical deployment of the algorithm on more complex operationally
significant real-world data sets would need to be tested and validated before the algorithm can be
integrated into an existing vulnerability discovery program.
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Abbreviations

The following abbreviations are used in this manuscript:

NAS National Airspace System
CVAE Convolutional Variational Auto-Encoder
FOQA Flight Operational Quality Assurance
NTSB National Transportation Safety Board
FAA Federal Aviation Administration
ASIAS Aviation Safety Information and Sharing
IG Inspector General
OC-SVM Once-Class Support Vector Machine
BiGAN Bidirectional Generative Adversarial Networks
VI Variational Inference
MCMC Markov Chain Monte Carlo
KL Kullback–Leibler
FC-AE Fully Connected Auto-Encoder
Conv-AE Convolutional Auto-Encoder

Appendix A

In this section, we report the architecture of the fully connected autoencoder (FC-AE) and the
bidirectional generative adversarial network (BiGAN) for the interested reader. FC-AE encoder is
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comprised of a Time Distributed Dense layer with one neuron to mix different features of each
windowed data instance, followed by three Dense layers with 100 neurons, followed by transition to
the latent space (which is a Dense layer with the number of neurons equal to the dimension of the
latent space). The decoder is similar and starts with three Dense layers with 100 neurons followed by a
Time Distributed Dense layer with neurons equal to the number of features to reconstruct each feature.
The BiGAN architecture is similar to that of [26]; the only differences are adjustments to the shapes
and sizes of inputs and outputs and replacements of 2D convolutions by 1D convolutions, since the
original model was developed for imagery data. Figure A1 shows the architecture of the discriminator
as an example.

Figure A1. Network architecture of the discriminator in BiGAN.
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