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Abstract: Predicting Remaining Useful Life (RUL) of systems has played an important role in various
fields of reliability engineering analysis, including in aircraft engines. RUL prediction is critically
an important part of Prognostics and Health Management (PHM), which is the reliability science
that is aimed at increasing the reliability of the system and, in turn, reducing the maintenance cost.
The majority of the PHM models proposed during the past few years have shown a significant
increase in the amount of data-driven deployments. While more complex data-driven models are
often associated with higher accuracy, there is a corresponding need to reduce model complexity.
One possible way to reduce the complexity of the model is to use the features (attributes or variables)
selection and dimensionality reduction methods prior to the model training process. In this work,
the effectiveness of multiple filter and wrapper feature selection methods (correlation analysis,
relief forward/backward selection, and others), along with Principal Component Analysis (PCA)
as a dimensionality reduction method, was investigated. A basis algorithm of deep learning,
Feedforward Artificial Neural Network (FFNN), was used as a benchmark modeling algorithm.
All those approaches can also be applied to the prognostics of an aircraft gas turbine engines. In this
paper, the aircraft gas turbine engines data from NASA Ames prognostics data repository was used
to test the effectiveness of the filter and wrapper feature selection methods not only for the vanilla
FFNN model but also for Deep Neural Network (DNN) model. The findings show that applying
feature selection methods helps to improve overall model accuracy and significantly reduced the
complexity of the models.

Keywords: data-driven; machine learning; deep learning; DNN; feature selection; Prognostic and
Health Management; aircraft gas turbine engines; C-MAPSS

1. Introduction

Modern computational capability has become more powerful over the past decades. This has
induced a new trend of employing various data-driven models in many fields. Despite the fact that
modern computers can complete complex tasks, researchers are still searching for solutions to reduce
the computational time and complexity of the data-driven models to increase the likelihood that the
models can be employed in real-time operation.

The same challenge has also applied to a certain type of aerospace data, which in this case, is
the estimation of Remaining Useful Life (RUL) of the aircraft gas turbine engines. The main purpose
of this work is to prove the theory that a particular group or a set of prognostics features (attributes
or variables) from the aircraft gas turbine engines data can be selected prior to the training phase of
Artificial Neural Network (ANN) modeling in order to reduce the complexity of the model. The same
assumption also is believed to be applicable to the Deep Neural Network (DNN) model. It might
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also be applied to other complex deep learning models, i.e., Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), and their variations as well.

In order to validate the aforementioned theory, the prognostics of aircraft gas turbine engines
dataset or Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset derived from
NASA Ames Prognostics Center of Excellence (PCoE) [1] was used to develop preliminary vanilla
ANN models with selected features from different feature selection methods. Furthermore, to prove
that similar assumptions can also be deployed to other deep learning algorithms, the Deep Neural
Network or DNN models have also been developed based on some selected features derived from
the ANN validation models. The final goal was to determine which feature selection method was the
most suitable for the deep learning model in general to predict prognostics state or Remaining Useful
Life for aircraft gas turbine engines data. End results from various future selection methods were
compared against the one that is using original features. The ANN and DNN models with selected
features were studied and compared based on their performance.

Based on the aforementioned goal, the summary of the main contributions of this work are:

1. Extract meaningful features for neural network-based and deep learning data-driven models
from the C-MAPSS dataset.

2. Suggest the novel neural network-based feature selection method for aircraft gas turbine engines
RUL prediction.

3. Develop deep neural network models from selected features.
4. Show how the developed methodology can improve the RUL prediction model by comparing its

performance/error and complexity to the model derived from original features.

1.1. Neural Network for RUL Prediction

Prognostic and Health Management (PHM) is aimed at improving reliability and reducing the cost
of maintenance of the system’s elements [2]. Remaining Useful Life (RUL) in PHM is defined as the
amount of time left before systems or elements cannot perform as their intended function. Therefore,
RUL prognostics are used to evaluate the equipment’s life status in order to plan future maintenance [3].
With enough condition monitoring data, data-driven machine learning methods can be used to learn the
degradation patterns directly from data in order to generate predictive prognostics models. Data-driven
model using machine learning has an advantage over physics-based [4] and traditional data-driven
statistical-based models [5]. For example, machine learning models can be implemented without
prior degradation knowledge [6]. Neural network algorithms have particularly been receiving more
attention compared to other machine learning algorithms as they have outperformed other algorithms
as well as their ability to approximate high dimensional non-linear regression function directly from
raw data [7].

The Artificial Neural Networks (ANN) model is fundamentally based on biological neural
networks. Sigmoid functions are applied to the nodes of ANN to connect and sum the total weights of
the neural network. A sigmoid function is a Gaussian spheroid function, which can be expressed as:

Y(x) = e−(
||X−c||2

2σ2 ) (1)

The hidden neurons in ANN measure the distance between the input vector x and the centroid c
from the data cluster. The measured values are the output of the ANN. In Equation (1), the σ parameter
represents the radius of the hypersphere determined by iteratively selecting the optimum width.
The weights of the neural network are updated at the neural nodes using error back-propagation,
which is a stochastic gradient descent technique. Then the weights of each individual neural node
are fed forward to the next layer. This technique is often referred to as Feedforward Neural Network
(FFNN). This is how ANN “learns” the data pattern through its weights [8].
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In 2006, Geoffrey Hinton suggested the early design of deep learning algorithms based on the
aforementioned FFNN [9]. The vanilla FFNN generally consists of only the hidden layer with a sigmoid
activation function described in Equation (1). Multiple configurations of deep learning algorithms,
such as Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), etc., have been widely used as data-driven modeling algorithms. Most of them have
outperformed every other well-known data-driven algorithms in the past.

One aspect to keep in mind before employing any deep learning algorithm is that each deep
learning algorithm might be suitable for different tasks. This heavily depends upon the different data
characteristics and type of target models. The deep learning algorithms also include different types of
activation functions and optimizers. These are the key differences between deep learning algorithms
and vanilla ANN or FFNN that have been proposed in the early years [10].

In this work, we only employed DNN with auto-encoder as a modeling algorithm. All encoded
and decoded processes happen inside the hidden layers of the network through parameterized
function [9,10]. The construction of DNN with auto-encoder is briefly illustrated in Figure 1. Unlike
the ANN that uses sigmoid function as an activation function, our DNN layers used Rectified Linear
Units (ReLU) as activation function. The ReLu function can be simply expressed as:

f (x) = x+ = max(0, x) (2)

where x is the input to a neuron and + represents the positive part of its arguments. The ReLU
function has been demonstrated to achieve better general regression tasks training for deeper networks
compared to other activation functions such as the logistic sigmoid and the hyperbolic tangent
(tanh) [10]. Therefore, the ReLU function has been chosen to use for modeling Remaining Useful
Life (RUL) prediction for our PHM data while the ANN with sigmoid function has been used as a
validation algorithm for feature selection methods.
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The estimation of the RUL or “health state” of a system or its components is one of the main tasks
for prognostics analysis. The RUL estimations often involve the prediction of the life span based on
time or cycles, which is also known as the regression task. In PHM, the RUL is determined using
the historical data collected from the system’s sensors or signals. The ANN-based or deep learning
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data-driven models have been proven to work relatively well with these types of PHM tasks [11].
However, one of the challenges is to reduce the complexity of the neural network prior to the training
states. This might possibly be done by reducing the input training data. One possible way that can
help in reducing the complexity of the model is to select only meaningful features or attributes from
the raw dataset before model training.

1.2. Related Works

Multiple deep learning algorithms have been used to generate data-driven models to predict RUL
for C-MAPSS aircraft gas turbine engines data. It can be observed from the literatures [12–20] that
the most suitable deep learning algorithms for training the high accuracy C-MAPSS models is the
Long-Short Term Memory Recurrent Neural Network (LSTM). The hybrid deep neural network layers
with LSTM is also an ongoing investigation and experiment on the C-MAPSS dataset. This approach
believes to achieve the higher accuracy among other algorithms that have been employed. The most
important drawback of the hybrid models is the high complexity of the model architectures. These
models can also have limitless variations and architecture structures. It is best to reduce the complexity
of the model as much as possible and one way to achieve that is to limit the number of input nodes.
This is the area that feature selection methods can be brought in.

There are many publications on applying ANN-based or deep learning algorithms to C-MAPSS
aircraft gas turbine engines data. However, all previous works have never introduced the feature
selection approaches into their model architectures. Also, the usefulness of any particular feature
selection methods have not been addressed in any prior works.

The next paragraph concludes the contribution of past publications for such an approach.
We specifically only included the works that employed deep neural network algorithms for prognostics
of C-MAPSS aircraft gas turbine engines data modeling here. It might be worth to note that there are
other research works that used other data-driven algorithms or machine learning algorithms, which
are not mentioned here.

Chen Xiongzi, et al., (2011) conducted a comprehensive survey of the three main data-driven
methods for aircraft gas turbine engines, namely particle filtering methods, neural network, and
relevant vector machine methods [12]. Mei Yuan, et al., (2016) applied RNN network methods for
fault diagnosis and estimation of remaining useful life of engines [13]. Faisal Khan, et al., (2018)
used particle filter algorithms to generate the arbitrary input data points before training their models
with neural networks. Unlike, vanilla neural network algorithm, their models employed radial
basic function (RBF) as activation function instead of original sigmoid function [14]. Xiang Li, et al.,
(2018) applied the Convolutional Neural Network (CNN) as a time window approach to generate
a feature extraction model of engine data [15]. Ansi Zhang et al., (2018) proposed a supervised
domain adaptation approach by exploiting labeled data from the target domain aims to fine-tune a
bi-directional Long-Short Term Memory Recurrent Neural Network (LSTM) previously trained on the
source domain [16]. Zhengmin Kong et al., (2019) also very recently developed the models based on
CNN. They employed CNN as part of the network layers in their experiment and proposed the hybrid
models by combining the CNN layers with LSTM layers. Their approaches have proven to achieve
highest accuracy over the other standard methods [17]. Other works previously published [18–20]
mostly focused on adopting the LSTM network and proposing new models without addressing
the complexity reduction in their approaches. While each work proposed the different network
architectures and the performances of the models have been improved over time, what they failed
to address is whether the complexity reduction in ANN-based models can play a role in improving
the complexity of the model. This work aims to address the issue of a selection approach to reduce
learning times.
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The rest of the paper is organized as follows: Section 2 covers the methodology outlining all
methods and approaches used for the defined problem. Section 3 describes the experimental setup
with detail of data description and comparing final results from all models. Section 4 discusses and
compares results from all modela. Lastly, a final conclusion and possible future works highlight are
discussed in Section 5.

2. Methodology

In this section, all essential details of auto-encoder deep neural network used in our experiment
will be discussed. The problem definition, and all notations will also be clearly defined, as well as the
illustration of how our proposed deep neural network architecture can be applied for RUL aircraft gas
turbine engines prediction with feature selection and neural network modeling framework.

2.1. Problem Definition

Starting with the raw data, which is denoted as, DS =
{(

xi
S, yi

S

)}Ns

i=1
, the data contains Ns training

sample where xi
S ∈ XS is a feature with a length of Ti and qS is the number of features, in which,

xi
S ==

{
xi

t

}Ti

t=1
∈ RqS×Ti . In addition, yi

S ∈ YS is denoted as Remaining Useful Life (RUL) also with

the length Ti (feature space and RUL space are within the same length) with
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xi
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i=1

where xi
T
∈ XT and

XT ∈ RqT×Ti with no labels. The source and target domain, DS and DT , are assumed to possibly have
a different probability distribution, P(XS) , P(XT ). The primary goal is to define a function g that
can derive or learn from the source data that can approximate the corresponding RUL for the target
domain at the testing time, such, yi

T
≈ g

(
xi
T

)
, with the preliminary assumption that mapping between

input (x) and output (y) is somehow similar across all domains.

2.2. Deep Neural Network Architecture

While there are existing deep learning algorithms that have been proposed to accommodate for
PHM of aircraft gas turbine engines data modeling [12–20], this work focuses on using a deep neural
network with auto-encoder with a specific use case and specifications that fit into problem definition
previously identified.

The DNN used in this work focused on the feedforward architecture by the H2O package in Python
API [21]. H2O is based on multi-layer feedforward neural networks for predictive modeling [22].
The following are some of the H2O DNN features used for this experiment.

• Supervised training protocol for regression tasks
• A multi-threaded and distributed parallel computation that can be run on a single or a

multi-node cluster
• Automatic, per-neuron, adaptive learning rate for fast convergence
• Optional specification of the learning rate, annealing, and momentum options
• Regularization options to prevent model overfitting
• Elegant and intuitive web interface (Flow)
• Grid search for hyperparameter optimization and model selection
• Automatic early stopping based on the convergence of user-specified metric to a

user-specified tolerance
• Model check-pointing for reduced run times and model tuning
• Automatic pre- and post-processing for categorical numerical data
• Additional expert parameters for model tuning
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• Deep auto-encoders for unsupervised feature learning.

In the proposed DNN model, deep neural network layers are used to extract the temporal features
from the time length, Ti. The hidden state units of the neural consist of, the hidden state vector
ht−1 ∈ Rh, input vector (as defined in problem definition), xi

t ∈ Rq, and the activation function, f .
All operations in DNN layers can be written as:

it = f
(
Wtxi

t + W′t ht−1 + bi
)

(3)

ot = f
(
Woxi

t + W′oht−1 + bo
)

(4)

where i and o represent input and output states. W and W′ are matrices of updated weights and
weights from the hidden state, and b is the bias vector.

Unlike in vanilla ANN, in the proposed DNN, the activation function f is the Rectifier Linear
function [23] instead of the sigmoid function. The DNN activation function can be represented as;

f (α) = max(0, α) ∈ R+ (5)

where, in this case, α represent the state functions (Equations (3) and (4)) that firing into the input neural.
Another important aspect of the DNN model architecture is the loss function, denoted by,L. For this

work, the Huber loss function was selected because it [24] has proven to work best in terms of accurately
projecting the RUL, yi

S ∈ YS, of the source domain, DS. The Huber loss function can be described as;
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where, 𝜃𝑓 is the space representation of the target input that mapped through the feature extraction 

layers into a new space. In addition, 𝜃𝑦  is the domain regression space generated by logistic 

repressor [24], and, �̂�𝑡
𝑖  is RUL prediction from the source domain. 

The objective in training DNN is to minimize the prediction loss, ℒ𝑦
𝑖 , which can be described by; 

min
𝜃𝑓,𝜃𝑦

[
1

𝑁𝑠
∑ ℒ𝑦

𝑖 (𝜃𝑓, 𝜃𝑦)
𝑁𝑠
𝑖=1 ]  (7) 

The DNN model used in this work is depicted in Figure 2. This DNN model architecture is 

trained to predict for each input, 𝑥𝑖, real value 𝑦𝑖 and its domain label 𝑑𝑖 for the source domain and 

only domain label for the target domain. The first part of the DNN architecture is the feature extractor, 

𝑔𝑓, that decomposes the inputs and maps them into the hidden state, ℎ𝑡−1  ∈  ℝ
ℎ. The model then 

embeds the output space as a feature space 𝑓 of the deeper layers and repeats this process as needed. 

As previously detailed, this vector space parameter that is the result of feature mapping is, 𝜃𝑓 i.e., 

𝑓 =  𝑔𝑓(𝜃𝑓) . This feature space 𝑓  is first mapped to a real-value 𝓎𝑡
𝑖  variable by the function, 

𝑔𝑦(𝑓; 𝜃𝑦), which is composed of fully-connected neural network layers with parameter, 𝜃𝑦 . The 

dropout layer with a rate of 0.4 was applied to avoid the overfitting issue [25]. 

Another goal is to find the feature space that is domain invariant, i.e., finding a feature space 𝑓 

in which 𝑃(𝑋𝑆)  and 𝑃(𝑋𝒯)  are similar. This is one of the challenges in training, which can be 

improved by applying the “feature selection” prior to training (detailed in the further section). 

Another objective is to minimize the weights of feature extractor in the direction of the regression 

loss, ℒ𝑦
𝑖 . In more detail, the model loss function can be used to derive the final learning function, 𝑔, 

through parameter 𝜃 , which means the RUL prediction result (described in Equation (6)), �̂�𝑡
𝑖 =

 𝑔𝑦(𝑔𝑓(𝜃𝑓); 𝜃𝑦). 

The way the DNN algorithm update its learning weights, 𝜃, is through the gradient descent 

update [26] in the form of; 

𝜃𝑓 ← 𝜃𝑓 −  𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑓
) (8) 

𝜃𝑦 ← 𝜃𝑦 −  𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑦
) (9) 

Usually, the Stochastic Continuous Greedy (SCG) estimate is used to update the Equations (8) 

and (9). The learning rate, 𝜆, represents the learning steps taken by the SCG as training processes. 

where, θ f is the space representation of the target input that mapped through the feature extraction
layers into a new space. In addition, θy is the domain regression space generated by logistic

repressor [24], and,
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The way the DNN algorithm update its learning weights, 𝜃, is through the gradient descent 

update [26] in the form of; 

𝜃𝑓 ← 𝜃𝑓 −  𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑓
) (8) 

𝜃𝑦 ← 𝜃𝑦 −  𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑦
) (9) 

Usually, the Stochastic Continuous Greedy (SCG) estimate is used to update the Equations (8) 

and (9). The learning rate, 𝜆, represents the learning steps taken by the SCG as training processes. 

is RUL prediction from the source domain.
The objective in training DNN is to minimize the prediction loss, Li

y, which can be described by;

min
θ f ,θy

[ 1
Ns

∑Ns

i=1
L

i
y

(
θ f , θy

)]
(7)

The DNN model used in this work is depicted in Figure 2. This DNN model architecture is
trained to predict for each input, xi, real value yi and its domain label di for the source domain and
only domain label for the target domain. The first part of the DNN architecture is the feature extractor,
g f , that decomposes the inputs and maps them into the hidden state, ht−1 ∈ Rh. The model then
embeds the output space as a feature space f of the deeper layers and repeats this process as needed.
As previously detailed, this vector space parameter that is the result of feature mapping is, θ f i.e.,

f = g f
(
θ f

)
. This feature space f is first mapped to a real-value
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Usually, the Stochastic Continuous Greedy (SCG) estimate is used to update the Equations (8) 

and (9). The learning rate, 𝜆, represents the learning steps taken by the SCG as training processes. 

variable by the function, gy
(

f ;θy
)
,

which is composed of fully-connected neural network layers with parameter, θy. The dropout layer
with a rate of 0.4 was applied to avoid the overfitting issue [25].



Aerospace 2020, 7, 132 7 of 32Aerospace 2020, 7, x FOR PEER REVIEW    7 of 33 

 

 

Figure 2. Proposed Deep Neural Networks Model Architecture. 

2.3. Feature Selection Methods for Neural Network Architectures 

In prognostic applications, feature extraction occurs after receiving raw data from sensors. The 

feature extraction usually involves signal processing and analysis in the time or frequency domain. 

The purpose is to transform raw signals into more informative data that well‐represents the system 

[27]. In other words, feature extraction is the process of translating sensor signals into data. In contrast, 

the purpose of feature selection is to select a particular set of features in the dataset that is believed 

to be more relevant for modeling. These feature selection processes always execute after the feature 

extraction and occur  in between pre‐processing and the training or pre‐training phase of the data 

modeling framework. 

Three  common  feature  selection  strategies  have  been  discussed  in  the  literature:  (1)  filter 

approach, (2) wrapper approach, and (3) embedded approach. This paper will only discuss the filter 

and wrapper  approaches.  Figure  3  shows  the  processes  flow  and  role  difference  role  of  feature 

extraction and feature selection in the data modeling process. 

 

Figure 3. Role of feature extraction and feature selection in the prognostics modeling process. 

Filter methods employ statistical, correlation, and information theory to identify the importance 

of the features. The performance measurement metrics of filter methods usually use the local criteria 

that do not directly relate to model performance [28]. 

There are currently multiple baseline filter methods popularly employed for feature selection 

processes. However, the result from the experiments showed that only the correlation‐based methods 

were suitable for the case study data. This is due to the fact that correlation‐based methods evaluate 

the feature with a direct correlation to the target variable. In other words, the correlation‐based filter 

methods make selections based on the modeling objectives, which can imply that these methods are 

more suitable to the data with the target variable. The correlation‐based filter methods included in 

this work is Pearson correlation [29,30]. Additionally, the result from other statistical‐based methods, 

namely  Relief  algorithm,  Deviation  selection,  SVM  selection,  and  PCA  selection  [31], was  also 

included to provide a complete comparison. 

Figure 2. Proposed Deep Neural Networks Model Architecture.

Another goal is to find the feature space that is domain invariant, i.e., finding a feature space f in
which P(XS) and P(XT ) are similar. This is one of the challenges in training, which can be improved
by applying the “feature selection” prior to training (detailed in the further section). Another objective
is to minimize the weights of feature extractor in the direction of the regression loss, Li

y. In more
detail, the model loss function can be used to derive the final learning function, g, through parameter

θ, which means the RUL prediction result (described in Equation (6)),
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The way the DNN algorithm update its learning weights, θ, is through the gradient descent

update [26] in the form of;

θ f ← θ f − λ

∂Li
y

∂θ f

 (8)

θy ← θy − λ

∂Li
y

∂θy

 (9)

Usually, the Stochastic Continuous Greedy (SCG) estimate is used to update the
Equations (8) and (9). The learning rate, λ, represents the learning steps taken by the SCG as
training processes.

2.3. Feature Selection Methods for Neural Network Architectures

In prognostic applications, feature extraction occurs after receiving raw data from sensors.
The feature extraction usually involves signal processing and analysis in the time or frequency domain.
The purpose is to transform raw signals into more informative data that well-represents the system [27].
In other words, feature extraction is the process of translating sensor signals into data. In contrast,
the purpose of feature selection is to select a particular set of features in the dataset that is believed
to be more relevant for modeling. These feature selection processes always execute after the feature
extraction and occur in between pre-processing and the training or pre-training phase of the data
modeling framework.

Three common feature selection strategies have been discussed in the literature: (1) filter approach,
(2) wrapper approach, and (3) embedded approach. This paper will only discuss the filter and wrapper
approaches. Figure 3 shows the processes flow and role difference role of feature extraction and feature
selection in the data modeling process.
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Filter methods employ statistical, correlation, and information theory to identify the importance
of the features. The performance measurement metrics of filter methods usually use the local criteria
that do not directly relate to model performance [28].

There are currently multiple baseline filter methods popularly employed for feature selection
processes. However, the result from the experiments showed that only the correlation-based methods
were suitable for the case study data. This is due to the fact that correlation-based methods evaluate
the feature with a direct correlation to the target variable. In other words, the correlation-based filter
methods make selections based on the modeling objectives, which can imply that these methods are
more suitable to the data with the target variable. The correlation-based filter methods included in
this work is Pearson correlation [29,30]. Additionally, the result from other statistical-based methods,
namely Relief algorithm, Deviation selection, SVM selection, and PCA selection [31], was also included
to provide a complete comparison.

Wrapper methods use a data-driven algorithm that performs the modeling for the dataset to
select the set of features that yield the highest modeling performance [32]. Wrapper methods are
typically more computationally intensive compared to filter methods. There are four main baseline
wrapper methods [32]: (1) forward selection, (2) backward elimination, (3) brute force selection, and
(4) evolutionary selection.

Forward selection and backward elimination are search algorithms with different starting and
stopping conditions. The forward selection starts with an empty selection set of features, then adds an
attribute in each searching round. Only the attribute that provides the highest increase in performance
is retained. Afterwards, another new searching cycle is started with the modified set of selected
features. The searching of forward selection stops when the added attribute in the next round does not
further improve the model performance.

In contrast, the backward elimination method performs in the reverse process. Backward selection
starts with a set of all attributes, and then the searching processes continue to eliminate attributes
until the next set of eliminated attributes does not provide any further improvements of modeling
performance. The brute force selection method uses search algorithms that try all combinations of
attributes. Evolutionary selection employs a genetic algorithm to select the best set of features based on
the fittest function measurement [33]. Because of computational and time limitations, the brute force
selection could not be included in this experiment. Only forward selection, backward elimination, and
evolutionary selection were implemented [34].

2.4. Neural Network Data-Driven Modeling Framework

In general, the modeling framework for this experiment is similar to a data-driven modeling
framework that was developed from a cross-industry standard process for data mining (CRISP-DM) [35].
The standard construction consists of five phases: (1) definition states phase, (2) preprocessing phase,
(3) training phase, (4) testing phase, and (5) evaluating phase [36]. In addition to the standard
construction, the feature engineering phase and pre-training phase might be important prior to the
training phase.

The feature engineering phase was introduced in “Features selection procedure for prognostics:
An approach based on predictability” [34] and the pre-training phase was introduced in “The difficulty
of training deep architectures and the effect of unsupervised pre-training” [37] to overcome issues in
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training deep learning models, while it also helped to improve some aspects of model performance.
The details of these two additional phases have also been detailed by others [34,37].

As mentioned in Section 2.1, one of the challenges of training the deep learning model is to seek
for a feature space f in which P(XS) and P(XT ) are similar. Selecting only the meaningful feature is
believed to help reduce the dissimilarity in the feature space that effect the predictability of the model.
This is also the way to reduce the complexity of the model architecture and might also improve the
prediction accuracy of the deep learning models. One possible framework that incorporates the feature
engineering phase and pre-training phase into the CRISP-DM standard is illustrated in Figure 4.Aerospace 2020, 7, x FOR PEER REVIEW    9 of 33 
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3. Experimental Setup and Results

The first part of the experiment was designed to compare the effectiveness of using different
feature selection methods and filtering for ANN modeling of the prognostics dataset. The aircraft gas
turbine engines dataset with 21 attributes was fed into different filter and wrapper feature selection
methods to identify particular sets of features prior to the model training phase. The selected sets of
features were then used as training features or training attributes for the ANN model. The second part
was to test the feature selected using ANN modeling with the DNN architecture. The results from
different sets of features were compared in order to determine the most suitable set of selected features.
Finally, the final-best DNN model for predicting RUL of aircraft gas turbine engines was determined.

3.1. C-MAPSS Aircraft Engines Data

Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) is a simulation tool used to
generate the turbofan engine degradation run-to-failure test dataset. This test dataset was derived
from the NASA Ames prognostics data repository [1]. The C-MAPSS dataset is one of the most popular
benchmark datasets used in the prognostics and diagnostics research community. This dataset provides
a set of editable input parameters to simulate various operational conditions for aircraft gas turbine
engines [38]. The operational conditions include sea-level temperature, Mach number, and altitude.
The C-MAPSS dataset includes four sub-datasets described in Table 1.

Table 1. Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset description [38].

Description C-MAPSS

FD001 FD002 FD003 FD004

Number of training engines 100 260 100 248

Number of testing engines 100 259 100 248

Operational conditions 1 6 1 6

Fault modes 1 1 2 2

Each sub-dataset FD001, FD002, FD003, and FD004 contains a number of training engines with
run-to-failure information and a number of testing engines with information terminating before failure
is observed. As for operating conditions, each dataset can have one or six operational conditions based
on altitude (0–42,000 feet), throttle resolver angle (20–100◦), and Mach (0–0.84). As for fault mode, each
dataset can have one mode or two modes, which are, HPC degradation and Fan degradation.

Sub-dataset FD002 and FD004 are generated with six operational conditions, which are believed
to be a better representation of general aircraft gas turbine engines operation compared to FD001 and
FD003, which could be generated from only one operational condition. Therefore, either data from
FD002 or FD004 can be selected for a complete experiment. In this study, the data from FD002 set
were selected as a training dataset. As our current model validation set-up (which will be described in
Section 3.2), the wrapper methods required roughly 2 to 3 weeks to complete the run. We also keep the
consistency of the amount of data points used in feature selection validations and model trainings–in
both ANN feature selection validation and DNN model training. Our experiments have been designed
this way in order to clearly demonstrate the effectiveness of the feature selection methods used for
neural network-based algorithms.

There are 21 features included in the C-MAPSS dataset for every sub-dataset. These attributes
represent the sensor signals from the different parts of the aircraft gas turbine engines, as illustrated in
Figure 5 [39]. Short descriptions of the features and the plots of all 21 sensor signals of sub-dataset
FD002 are illustrated in Figure 6.
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It has been suggested by multiple literature references to normalize the raw signal before
performing modeling and analysis [13–15]. Figure 7 shows the data signals before and after applying
z-normalization:

x̃i j
t =

xi j
t −min

(
x j

)
max

(
x j

)
−min

(
x j

) (10)

where, xi j
t denotes the original i-th data point of j-th feature at time t and x j is the vector of all inputs of

the j-th feature. Each attribute value was normalized individually and scaled down to the same range
across all data points.

From the dataset, aircraft gas turbine engines start with various initial wear levels, but all are
considered to be at “healthy state” at the start of each record. The engines begin to degrade at a point
in time at higher operation cycles until they can no longer function normally. This is considered as
the time when the engine system is being at the “unhealthy state”. The training datasets have been
collected over the time of run-to-failure information to cover entire life until the engines fail.

It is also reasonable to estimate RUL as a constant value when the engines operate in normal
conditions [38]. Therefore, a piece-wise linear degradation model can be used to define the observed
RUL value in the training datasets. That is, after an initial period with constant RUL values, it can be
assumed that the RUL targets decrease linearly.
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Figure 8 illustrates the RUL curves of all unseen or test datasets containing testing engines from
FD002 and FD004 dataset. Figure 9 show the example of RUL curves from one degradation engine
from FD002 and FD004 dataset. The same degradation behavior is also applied to the training set.
These RUL curves represent the health state or prognostic of the aircraft gas turbine engines over cycles
until the end-of-life, or the point that the aircraft gas turbine engines can no longer operate normally.
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The degradation behavior of the aircraft gas turbine engines can be observed clearer from Figure 9.
We presume that the RUL is a constant cycle until it gets to the critical point when the performance of
the engine starts to degrade. In the degradation phase, the RUL is represented by a linear function.
Hence, the entire RUL curve is identified as a piece-wise linear degradation function. The critical point,
Rth, is the point where the aircraft engines started to degrade. The critical points of the aircraft gas
turbine engines were predefined based on the condition described by the data source–NASA Ames
prognostics data repository [1].Aerospace 2020, 7, x FOR PEER REVIEW    13 of 33 
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To measure and evaluate the performance of the models with selected features, root mean square
error (RMSE) and the scoring algorithm as suggested in [39] were used.

RMSE is commonly used as a performance indicator for regression models. The following is the
formula of RMSE:

RMSE =

√√
1
n

n∑
i=1

[xi − xi]
2 (11)

where, n is the number of prediction datasets, xi is the real value, and xi is the prediction value. In this
case, the x parameters refer to the data points in RUL curve while xi is the actual RUL value and xi is
the RUL value predicted by our models.

The scoring algorithm is as described in the formula below:

s =


n∑

i=1
e−(

d
a1
)
− 1 f or d < 0

n∑
i=1

e−(
d

a2
)
− 1 f or d ≥ 0

(12)

where, s is the computed score, n is number of units under test (UTT), d = t̂RUL − t̂RUL or Estimated
RUL—True RUL, while a1 = 10 and a2 = 13. It can also be explained that the difference between ai
is the difference between predicted and observed RUL values and s is summed over all examples.
From the formula, the scoring matric penalizes positive errors more than negative errors as these have
a higher impact on maintenance policies. Also, note that the lower score means better prediction
performance of the model [39].
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3.2. Training Procedure and Hyperparameters Selection

For training, the data from input sensors, operational setting, and labeled RUL value from the
source data, and only sensors and settings from the target dataset, were used. The raw data were
normalized, and the feature selection was applied before the start of all models training. For the
training process, the training dataset (as a source) from dataset FD002 were used. The FD002 and FD004
test dataset were used to validate the models and calculate prediction errors (RMSE and Score). As for
wrapper methods, we used ANN as a validation algorithm. The cross-validation within the FD002
training data was employed for measuring the performance of the wrapper algorithms. The set-up
parameters for ANN validation were fine-tuned based on the best model that was derived from
complete attributes (21 features) modeling;

• 5 Folds Cross-Validation
• 1000 Training cycles
• 0.001 Learning rate
• 0.9 Momentum
• Linear sampling.

For the DNN hyperparameters selection, the model parameters in H2O DNN algorithm varied as
described in Table 2. The grid search to identify the range of the learning rate, λ, was performed after
fine-tuning the remaining parameters manually. Additionally, the training sample per iteration was set
to auto-tuning, and batch size was set to 1 for all variations.

Table 2. Hyperparameters values evaluated in the proposed Deep Neural Network (DNN) model.

Hyperparameters Range

Epoch {100, 1000, 5000, 7000, 10,000}

Training sample per iteration AUTO

Batch size 1

Leaning rate annealing {10−10, 10−8, 10−5, 10−1}

Momentum {0.1, 0.2, 0.3, 0.5, 0.6, 0.8, 0.99}

L1: Regularization that constraint the absolute value {10−20, 10−15, 10−10, 10−5, 10−1, 0}

L2: Regularization that constraint the sum of square weights {10−20, 10−15, 10−10, 10−5, 10−1, 0}

Max w2: Maximum sum of square of incoming weight into the neuron {0, 10, 100, 10,000,∞}

The best-case scenario is the combination of following hyperparameters; Epoch = 5000, Learning
rate = 10−8, Momentum = 0.99, L1 = 10−5, L2 = 0, and Max w2 set to infinity. These are all
hyperparameters employed in the final DNN model proposed.
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3.3. Experimental Setup and Results

All experiments were implemented on an Intel® Core i7 10th generation i7–10510U 4 cores
processor with 8 MB Cache, 1.8 GHz clock speed, and up to 4.9 GHz boost speed with 16 GB RAM and
Intel® UHD integrated graphic. The DNN architecture was implemented using Python 3.6 with H2O
library/package [21]. The experimental results presented in this section will be broken down into three
parts: (1) Feature selected using feature selection methods, (2) Results and models from ANN with the
selected feature, and (3) Proposed DNN model. All RMSE and all performance measurements of DNN
models reported in this paper are the average results from 20 trials.

3.3.1. Feature Selection for Aircraft Engine Dataset

All possible feature selection methods were performed with the C-MAPSS dataset. Filter methods
include; Deviation selection, PCA selection, Relief algorithm selection, selection, SVM selection, and
Pearson correlation selection. For wrapper methods, only three methods were implemented, which
include; forward selection, backward elimination, and evolutionary selection.

Table 3 shows the ranking of attributes based on coefficients and weights calculated from each
filter feature selection method. It is important to note that the ranking of the attributes based on
different methods is dependent upon the statistical measures or weights obtained from each method.

Table 3. Attribute values from different filter methods.

Pearson Correlation Relief Algorithm SVM PCA Deviation

Attributes Weight Attribute Weight Attribute Weight Attribute Weight Attribute Weight

farB −0.0648807 P15 2.55555 × 10−5 epr 28.062965 htBleed 0.24226001 PCNfR_dmd 1.00002156
Ps30 −0.0426395 Nf_dmd 4.29878 × 10−13 T2 24.031467 T30 0.24219398 farB 1.00000884
T50 −0.0377657 farB −1.76803 × 10−13 Nf_dmd 15.921074 Ne 0.24213648 P15 1.00000751
BPR −0.0320325 T2 −3.5083 × 10−13 Nf 15.293535 T50 0.24212279 epr 1.00000215
NRc −0.0308729 P2 −1.41209 × 10−12 T24 11.169562 T24 0.23799320 P2 1.00000079

htBleed −0.0254014 PCNfR_dmd −3.58802 × 10−12 W31 9.070028 epr 0.23251894 T2 1.00000049
T30 −0.0253007 phi −8.18383 × 10−7 W32 8.806654 Ps30 0.23247642 Ne 1.00000022
Ne −0.0133643 Nf −1.94057 × 10−6 PCNfR_dmd 6.597514 phi 0.22942893 T50 1.00000016
T24 −0.0063673 NRF −2.22812 × 10−6 NRF 5.849870 P30 0.22931342 Ps30 1.00000013
P2 −0.0031016 P30 −3.43389 × 10−6 P30 5.529144 W31 0.22654883 W32 1.00000013

P15 −0.0028634 T24 −3.2525 × 10−5 phi 5.262733 W32 0.22654313 T24 1.00000011
T2 −0.0023212 W31 −6.1066 × 10−5 Ne 0.026252 P15 0.21870245 T30 1.00000000
phi −0.0004811 W32 −6.76249 × 10−5 P15 −0.151776 Nf 0.21427293 P30 0.99999998
P30 −0.0003329 epr −9.125 × 10−5 P2 −0.726430 Nf_dmd 0.21420247 NRF 0.99999993
epr 0.0013847 Ne −0.00017538 farB −16.274719 T2 0.21253812 BPR 0.99999985
Nf 0.0026742 BPR −0.000324083 T30 −24.291950 P2 0.20884536 NRc 0.99999984

W32 0.0029798 NRc −0.000344686 htBleed −24.530502 farB 0.20473956 phi 0.99999978
Nf_dmd 0.0030117 Ps30 −0.000364589 NRc −32.369914 NRc 0.18353047 Nf 0.99999973

W31 0.0030517 T50 −0.000397835 T50 −40.853420 NRF 0.14637480 W31 0.99999957
NRF 0.0044269 T30 −0.000422547 Ps30 −53.894591 PCNfR_dmd 0.14634719 htBleed 0.99999829

PCNfR_dmd 0.0048232 htBleed −0.000613424 BPR −65.865476 BPR −0.21428742 Nf_dmd 0.99998466

For the Pearson correlation, the attributes were not selected if the coefficient was less than
−0.01 [29,30]. For PCA, the features have been selected based on weight (selected if weight is more than
0.2) and the PCA matrix [31]. For the Relief algorithm, the attributes were not selected if the calculated
weight was below zero [31]. For deviation selection, the feature will be selected if the weights are
higher than 1 [31]. It is important to note that the weights of the attributes calculated using the Relief
algorithm were unacceptably low (less than 10−12) and there were very large gaps between calculated
weights. Similar results were observed with other filter selection methods, including the SVM. It was
found that by using the filter methods that provided statistically low weight as for selecting features,
the models trained from those features were unable to provide usable prediction results.
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The following are the features selected based on these two filtering methods. In addition to the
feature weights from Pearson correlation selection and PCA selection in Table 3, the Pearson correlation
matrix and PCA matrix are also provided in Appendices A and B.

• Pearson correlation; 8 attributes: T30, T50, Ne, Ps30, NRc, BPR, farB, and htBleed.
• Relief algorithm; 2 attributes: P15 and Nf_dmd.
• SVM selection; 11 attributes: T2, T24, P30, Nf, epr, phi, NRF, Nf_dmd, PCNfR_dmd, W31, and W32.
• PCA selection; 17 attributes: T2, T24, T30, T50, P2, P15, P30, Nf, Ne, epr, Ps30, phi, farB, htBleed,

Nf_dmd, W31, and W32.
• Deviation selection; 11 attributes: T2, T24, T50, P2, P15, Ne, epr, Ps30, farB, PCNfR_dmd, and W32.

In reference to the wrapper methods, below are the sets of features selected from each method.
It is important to note that for the wrapper methods, ANN validation with the modeling set-up,
as mentioned in Section 3.2 was used. Figure 10 shows the validation process using ANN for
evolutionary selection.

Unlike forward selection and backward elimination methods, which are both based on search
algorithms [32], the setting of Evolutionary selection is based on genetic algorithms [40]. However,
instead of using fitness function from genetic theory, the evolutionary selection method used ANN
validation as fitness measurement. The parameters set-up in our evolutionary selection experiment
are; population size = 10, maximum number of generation = 200, using tournament selection with
0.25 size, initial probability for attributes (features) to be switched = 0.5, crossover probability = 0.5
with uniform crossover, and mutation probability = 1
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It is also important to note that, in this case, the brute force algorithm was not used. The brute
force algorithm is the selection algorithm that can derive the best features set from the data. However,
with limited computational capability, it cannot be used in real-time. Therefore, we did not include the
Brute force algorithm in this experiment.

• Backward elimination; validate RMSE 46.429 from 19 attributes; T2, T30, P2, P15, P30, Nf, epr,
Ps30, phi, NRF, NRc, BPR, farB, htBleed, Nf_dmd, PNCfR_dmd, W31, and W32.

• Evolutionary selection; validate RMSE 46.451 from 14 attributes; T2, T30, T50, P2, Nf, Ne, epr,
Ps30, NRc, BPR, farB, htBleed, W31, and W32.

• Forward selection methods; validate RMSE 46.480 from 11 attributes; T2, T30, T50, P2, P15, Ps30,
NRc, BPR, farB, htBleed, and Nf_dmd.

3.3.2. DNN Models and Results

Table 4 summarizes RMSE and prediction score results from all DNN models. The complete RUL
best fit prediction curves for testing data of all feature selection methods are illustrated in Figure 11
for FD002 test data, and in Figure 12 for FD004 test data, respectively. The blue curves represent the
actual RUL from the dataset, and the red lines/dots are the prediction points from our feature selection
DNN models. For illustration purposes, Figures 13 and 14 include the prediction curve from one
engine of each testing data FD002 and FD004 in order to demonstrate how DNN predicts RUL of one
degradation cycle. Additionally, Table 5 includes all DNN models and all prediction error values
measured from the DNN models using FD002 test dataset, i.e., absolute error, relative error, relative
error lenient, relative error strict, normalized absolute error, root relative squared error, squared error,
correlation, squared correlation, prediction average, spearman rho, and Kendall tau. The number of
hidden nodes in the DNN layers was identified based on the best models fine-tuned from one-layer
ANN models for each feature selection method. We used the same number of hidden nodes from the
best ANN models to construct the DNN model layers. Note that we only presented the DNN models
from feature selection methods that provided usable prediction results. Therefore, the results from
Relief algorithms and SVM selection are not presented here.

Table 4. Best root mean square error (RMSE) and Prediction Score results of RUL prediction from all
DNN models.

Methods
RMSE Score

FD002 FD004 FD002 FD004

Original data 45.439 45.302 645,121 427,968

SVM Unusable
Relief algorithm

Backward elimination 45.121 45.436 645,132 211,129
Deviation 45.374 45.630 740,936 256,776

Evolutionary Selection 44.717 44.953 518,025 355,458 Best Overall
Forward selection 45.242 46.505 1,353,749 423,997

PCA 45.368 45.108 1,450,397 406,872
Pearson correlation 45.272 46.216 502,579 338,400
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Figure 11. (a–g) All RUL prediction curves for FD002.
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Table 5. The best DNN Models for FD002 test data.

Feature Selection
Method Model Output Weights Errors

Original
(All 21 Attributes)

Layer
—–

Unit
—-

Type
———–

Layer 2: −0.389707
Layer 3: −0.954436
Layer 4: −0.798112
Layer 5: 1.135641

root_mean_squared_error: 45.439 +/− 0.000
absolute_error: 37.062 +/− 26.289
relative_error: 285.29% +/− 1071.56%
relative_error_lenient: 40.87% +/− 26.92%
relative_error_strict: 290.30% +/− 1070.51%
normalized_absolute_error: 0.933
root_relative_squared_error: 0.963
squared_error: 2064.669 +/− 2549.829
correlation: 0.426
squared_correlation: 0.182
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.406
kendall_tau: 0.28

1
2
3
4

5

21
12
12
12

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

Backward Elimination

Layer
—–

Unit
—-

Type
———–

Layer 2: −0.383010
Layer 3: −0.791862
Layer 4: −0.706631
Layer 5: 1.064392

root_mean_squared_error: 45.121 +/− 0.000
absolute_error: 36.707 +/− 26.240
relative_error: 275.51% +/− 1043.67%
relative_error_lenient: 40.75% +/− 26.64%
relative_error_strict: 281.59% +/− 1042.46%
normalized_absolute_error: 0.924
root_relative_squared_error: 0.956
squared_error: 2035.929 +/− 2509.247
correlation: 0.417
squared_correlation: 0.174
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.399
kendall_tau: 0.278

1
2
3
4

5

19
11
11
11

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

Deviation Selection

Layer
—–

Unit
—-

Type
———–

Layer 2: −0.274669
Layer 3: −0.962801
Layer 4: −0.156934
Layer 5: 0.528834

root_mean_squared_error: 45.374 +/− 0.000
absolute_error: 37.420 +/− 25.662
relative_error: 283.25% +/− 1026.67%
relative_error_lenient: 41.82% +/− 26.69%
relative_error_strict: 290.19% +/− 1025.24%
normalized_absolute_error: 0.942
root_relative_squared_error: 0.962
squared_error: 2058.794 +/− 2489.328
correlation: 0.383
squared_correlation: 0.147
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.375
kendall_tau: 0.261

1
2
3
4

5

11
7
7
7

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

Evolutionary Selection *

Layer
—–

Unit
—-

Type
———–

Layer 2: −0.820539
Layer 3: −0.729643
Layer 4: −1.375567
Layer 5: 1.658891

root_mean_squared_error: 44.717 +/− 0.000
absolute_error: 36.402 +/− 25.971
relative_error: 271.60% +/− 1022.51%
relative_error_lenient: 40.89% +/− 26.50%
relative_error_strict: 278.38% +/− 1021.18%
normalized_absolute_error: 0.917
root_relative_squared_error: 0.948
squared_error: 1999.604 +/− 2499.212
correlation: 0.415
squared_correlation: 0.172
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.401
kendall_tau: 0.280

1
2
3
4

5

14
9
9
9

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

Forward Selection

Layer
—–

Unit
—-

Type
———–

Layer 2: −0.598193
Layer 3: −1.333539
Layer 4: −1.583420
Layer 5: 0.341112

root_mean_squared_error: 45.242 +/− 0.000
absolute_error: 36.817 +/− 26.294
relative_error: 275.71% +/− 1038.01%
relative_error_lenient: 41.12% +/− 26.56%
relative_error_strict: 282.81% +/− 1036.64%
normalized_absolute_error: 0.927
root_relative_squared_error: 0.959
squared_error: 2046.830 +/− 2564.139
correlation: 0.403
squared_correlation: 0.163
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.390
kendall_tau: 0.272

1
2
3
4

5

11
7
7
7

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear
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Table 5. Cont.

Feature Selection
Method Model Output Weights Errors

PCA Selection

Layer
—–

Unit
—-

Type
———–

Layer 2: −0.022651
Layer 3: −1.327223
Layer 4: −1.541491
Layer 5: 1.298059

root_mean_squared_error: 45.368 +/− 0.000
absolute_error: 36.694 +/− 26.680
relative_error: 264.95% +/− 1016.32%
relative_error_lenient: 41.31% +/− 26.37%
relative_error_strict: 275.07% +/− 1014.64%
normalized_absolute_error: 0.924
root_relative_squared_error: 0.962
squared_error: 2058.300 +/− 2623.562
correlation: 0.390
squared_correlation: 0.152
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.382
kendall_tau: 0.266

1
2
3
4

5

17
10
10
10

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

Backward Elimination

Layer
—–

Unit
—-

Type
———–

Layer 2: −0.853966
Layer 3: −1.340343
Layer 4: −0.972141
Layer 5: 0.786599

root_mean_squared_error: 45.272 +/− 0.000
absolute_error: 37.002 +/− 26.084
relative_error: 269.63% +/− 1010.61%
relative_error_lenient: 41.23% +/− 26.36%
relative_error_strict: 277.67% +/− 1009.11%
normalized_absolute_error: 0.932
root_relative_squared_error: 0.960
squared_error: 2049.533 +/− 2474.691
correlation: 0.382
squared_correlation: 0.146
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.364
kendall_tau: 0.253

1
2
3
4

5

8
6
6
6

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

* Note: Complete model layers for the Proposed Evolutionary Selection DNN model will be described in detail in
Appendix C.

Due to the fluctuations in the prediction results from the DNN algorithm, we ran our experiments
(training and testing) 100 times for each model. The result from Table 4 are the best prediction results.
The fluctuations across 100 iterations for FD002 and FD004 are presented in Figure 15. In addition to
the best prediction, we include the mean RMSE and error distributions from the 100 times testing as
illustrated in Table 6 and Figure 16. These fluctuations in prediction errors are commonly found in most
deep learning algorithms due to the random initial training weights assignment and the amplification
effect from the optimizer function in deeper networks. The fluctuations in the prediction result can be
more obvious when models are more complex and take a large number of input attributes. We will
discuss more on this topic in Section 4.
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Table 6. Mean RMSE from all DNN models.

Average RMSE

Original Data BW Elimination Deviation Evo Selection FW Selection PCA Pearson

FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004

48.398 50.541 47.907 50.331 48.160 50.081 47.452 49.650 48.434 50.708 48.072 49.737 49.203 52.111

4. Discussion

As mentioned in the related works (Section 1.2), there have been a number of efforts in developing
deep learning models for a C-MAPSS aircraft gas turbine engines dataset [12–20]. Currently, the deep
learning model with the highest accuracy was proposed by Zhengmin Kong et al. [17]. Their deep
learning architecture consists of CNN and LSTM-RNN combined layers and can achieve 16.13 RMSE,
while our best Evolutionary DNN model can achieve 44.71 RMSE. This indicates that the performance of
our DNN models is poorer than the modern hybrid deep learning models developed in the recent years.

However, to the best of our knowledge, no work has addressed the complexity of the models and
the computational burden for model training. All hybrid deep neural network layers are generally
overly complex and require exponentially more computational time and resources compared to our
proposed Evolutionary DNN. All proposed models in recent years also took all features from the
C-MAPSS dataset and disregard the features performance benchmark. Different from those models,
our proposed approach applies the feature selection prior to the model training phase to help reduce
the number of input attributes, and to improve the model complexity as a result. The reduction in
complexity when using less input features is more evident for the high complexity hybrid deep neural
network layers.
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Additionally, as illustrated in Figures 15 and 16, prediction errors fluctuations can be noticed
when training deep learning models. This effect has occurred not only in DNN but also in other types
of network layers, such as LSTM-RNN, CNN, and other modern hybrid layers. Based on the results
demonstrated in Table 4 and Figures 12–16, the key observations of such an effect are as follows:

(1) Utilizing fewer features to train the model has shown to lower the error distribution range,
compared to using more features. This is due to that the initial random weights assigned to the
hidden nodes are smaller when using less feature in model training. In other words, the models
are more robust and reliable when using less features. Same observation is also applied for the
fluctuation of the prediction errors, in that the prediction results are more stable when using less
features in model training.

(2) In terms of model performance and accuracy, although using selected features does not
always guarantee better results, the feature selection methods still help in terms of reducing
a computational burden while offering better prediction performance. In our experiment, the
Evolutionary selection can achieve both better performance and complexity reduction.

We emphasize that our current goal is not to improve on model performance compared against
other existing works; rather, we aim to provide baseline results and demonstrate the significant effect of
using feature selections on deep learning models, which have never been addressed before. We believe
that the end results can be further improved when applying our feature selection results in the modern
hybrid deep neural network architectures.

For our experimental results in general, as mentioned, the best accuracy based on the RMSE
results in Table 4 were generated from the Evolutionary method. The complexity of the model has also
been significantly improved using a reduced set of features, from 21 attributes to only 14 attributes.

When considering the complexity and computational time, the filter methods were less complex
and faster to run because they do not require to train-and-test multiples of ANN model validation in
the process. In this study, when performing the selection process, most of the filter methods required
only 5–10 min while wrapper methods required 10 h to 10 days to complete.

It is also important to note that the curve fitting and pattern recognition have been vastly improved,
as can be seen when comparing the RUL prediction curves in Figures 11–14. In greater detail, the DNN
model from most of the selected features can reasonably capture the trend of both before and after
aircraft gas turbine engines’ degradation intervals.

In summary, our Evolutionary DNN model architecture performs best as a simplified deep neural
network data-driven model for C-MAPSS aircraft gas turbine engines data. The feature selection
phase (as described in the modeling framework in Figure 4) must be included as a standard in the
modeling framework for such a PHM dataset. This is one way to potentially improve the overall
performance for RUL prediction for the prognostics of aircraft gas turbine engines data as well as other
prognostic datasets.

5. Conclusions and Future Work

Even though we already included the deep neural network algorithms and proposed new DNN
model architecture in this work, the features selected must still be tested with other new deep learning
algorithms and methods. As demonstrated in the related works [12–20], their RNN, LSTM, and
CNN have been proven to draw more accurate RUL prediction when compared to shallow DNN
models. However, further improvements can be achieved by applying new algorithms to the selected
features. One of the aspects that can improve such selected features is the reduction in the complexity
of the model. Reducing input features when employing more complex deep learning algorithms can
significantly reduce the model training time, possibly, from days to hours. This work aims to be a
baseline for using selected features to generate a data-driven neural network model for the prognostic
of aircraft gas turbine engines data. More complex deep learning algorithms; however, still need to
be performed and tested for the effectiveness of such a feature selection technique. Additionally, it
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is also possible to use the dimensionality reduction technique such as, PCA, to transform the data
from selected features to reduce dimensionality, which can possibly improve prediction accuracy and
complexity. These are the key aspects that should be tested and experimented with in the future.

Lastly, we also believe that our studies will be a great benefit to aviation communities. We aim to
raise the awareness and discussion on how each aircraft gas turbine engines feature can significantly
help improve the overall life-span of the engines. Although, we only provided the insights based on
data science perspective, we strongly believe that more study in aviation communities will be further
investigated based on the results achieved in this work.
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Appendix A

Table A1. Pearson Correlation Matrix.

Attributes T2 T24 T30 T50 P2 P15 P30 Nf Nc epr Ps30 phi NRF NRc BPR farB htBleed Nf_dmd PCNfR_dmd W31 W32 RUL

T2 1.0000 0.9441 0.8709 0.8979 0.9864 0.9864 0.9731 0.5725 0.8618 0.8266 0.7060 0.9729 0.1643 0.3528 −0.5426 0.7936 0.8732 0.5720 0.1642 0.9777 0.9777 −0.0023

T24 0.9441 1.0000 0.9822 0.9810 0.9158 0.9441 0.9686 0.8106 0.9785 0.9051 0.8957 0.9688 0.4801 0.6241 −0.7779 0.8050 0.9830 0.8103 0.4800 0.9624 0.9624 −0.0064

T30 0.8709 0.9822 1.0000 0.9896 0.8429 0.8848 0.9290 0.8957 0.9978 0.9290 0.9607 0.9295 0.6209 0.7520 −0.8759 0.8047 0.9987 0.8954 0.6208 0.9171 0.9171 −0.0253

T50 0.8979 0.9810 0.9896 1.0000 0.8841 0.9196 0.9567 0.8439 0.9873 0.9616 0.9368 0.9571 0.5447 0.7156 −0.8467 0.8591 0.9902 0.8436 0.5446 0.9464 0.9464 −0.0378

P2 0.9864 0.9158 0.8429 0.8841 1.0000 0.9963 0.9798 0.5242 0.8329 0.8438 0.6736 0.9795 0.1136 0.3305 −0.5253 0.8241 0.8455 0.5237 0.1135 0.9857 0.9857 −0.0031

P15 0.9864 0.9441 0.8848 0.9196 0.9963 1.0000 0.9933 0.5944 0.8762 0.8782 0.7339 0.9931 0.1981 0.4075 −0.5955 0.8403 0.8871 0.5940 0.1980 0.9964 0.9964 −0.0029

P30 0.9731 0.9686 0.9290 0.9567 0.9798 0.9933 1.0000 0.6791 0.9226 0.9187 0.8054 1.0000 0.3070 0.5081 −0.6842 0.8577 0.9309 0.6787 0.3069 0.9991 0.9991 −0.0003

Nf 0.5725 0.8106 0.8957 0.8439 0.5242 0.5944 0.6791 1.0000 0.9033 0.7829 0.9726 0.6801 0.9028 0.9245 −0.9712 0.5913 0.8937 1.0000 0.9028 0.6559 0.6558 0.0027

Nc 0.8618 0.9785 0.9978 0.9873 0.8329 0.8762 0.9226 0.9033 1.0000 0.9291 0.9643 0.9231 0.6349 0.7711 −0.8855 0.7996 0.9979 0.9030 0.6347 0.9100 0.9100 −0.0134

epr 0.8266 0.9051 0.9290 0.9616 0.8438 0.8782 0.9187 0.7829 0.9291 1.0000 0.8924 0.9192 0.5087 0.7271 −0.8475 0.9141 0.9297 0.7827 0.5086 0.9092 0.9091 0.0014

Ps30 0.7060 0.8957 0.9607 0.9368 0.6736 0.7339 0.8054 0.9726 0.9643 0.8924 1.0000 0.8062 0.8001 0.8931 −0.9654 0.7326 0.9597 0.9724 0.8000 0.7848 0.7847 −0.0426

phi 0.9729 0.9688 0.9295 0.9571 0.9795 0.9931 1.0000 0.6801 0.9231 0.9192 0.8062 1.0000 0.3084 0.5094 −0.6853 0.8579 0.9314 0.6797 0.3083 0.9991 0.9991 −0.0005

NRF 0.1643 0.4801 0.6209 0.5447 0.1136 0.1981 0.3070 0.9028 0.6349 0.5087 0.8001 0.3084 1.0000 0.9277 −0.8842 0.2952 0.6173 0.9031 1.0000 0.2766 0.2765 0.0044

NRc 0.3528 0.6241 0.7520 0.7156 0.3305 0.4075 0.5081 0.9245 0.7711 0.7271 0.8931 0.5094 0.9277 1.0000 −0.9574 0.5425 0.7496 0.9245 0.9275 0.4792 0.4792 −0.0309

BPR −0.5426 −0.7779 −0.8759 −0.8467 −0.5253 −0.5955 −0.6842 −0.9712 −0.8855 −0.8475 −0.9654 −0.6853 −0.8842 −0.9574 1.0000 −0.6644 −0.8742 −0.9712 −0.8842 −0.6601 −0.6601 −0.0320

farB 0.7936 0.8050 0.8047 0.8591 0.8241 0.8403 0.8577 0.5913 0.7996 0.9141 0.7326 0.8579 0.2952 0.5425 −0.6644 1.0000 0.8060 0.5910 0.2950 0.8554 0.8553 −0.0649

htBleed 0.8732 0.9830 0.9987 0.9902 0.8455 0.8871 0.9309 0.8937 0.9979 0.9297 0.9597 0.9314 0.6173 0.7496 −0.8742 0.8060 1.0000 0.8934 0.6172 0.9191 0.9190 −0.0254

Nf_dmd 0.5720 0.8103 0.8954 0.8436 0.5237 0.5940 0.6787 1.0000 0.9030 0.7827 0.9724 0.6797 0.9031 0.9245 −0.9712 0.5910 0.8934 1.0000 0.9030 0.6554 0.6554 0.0030

PCNfR_dmd 0.1642 0.4800 0.6208 0.5446 0.1135 0.1980 0.3069 0.9028 0.6347 0.5086 0.8000 0.3083 1.0000 0.9275 −0.8842 0.2950 0.6172 0.9030 1.0000 0.2765 0.2764 0.0048

W31 0.9777 0.9624 0.9171 0.9464 0.9857 0.9964 0.9991 0.6559 0.9100 0.9092 0.7848 0.9991 0.2766 0.4792 −0.6601 0.8554 0.9191 0.6554 0.2765 1.0000 0.9999 0.0031

W32 0.9777 0.9624 0.9171 0.9464 0.9857 0.9964 0.9991 0.6558 0.9100 0.9091 0.7847 0.9991 0.2765 0.4792 −0.6601 0.8553 0.9190 0.6554 0.2764 0.9999 1.0000 0.0030

RUL −0.0023 −0.0064 −0.0253 −0.0378 −0.0031 −0.0029 −0.0003 0.0027 −0.0134 0.0014 −0.0426 −0.0005 0.0044 −0.0309 −0.0320 −0.0649 −0.0254 0.0030 0.0048 0.0031 0.0030 1.0000
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Appendix B

Table A2. Principle Components (PC) Matrix.

Eignvector

Component Standard
Deviation

Proportion
Of Variance

Cumulative
Variance T2 T24 T30 T50 P2 P15 P30 Nf Nc epr Ps30 phi NRF NRc BPR farB htBleed Nf_dmd PCNfR_dmd W31 W32

PC 1 4.1098 0.8043 0.8043 0.2125 0.2380 0.2422 0.2421 0.2088 0.2187 0.2293 0.2143 0.2421 0.2325 0.2325 0.2294 0.1464 0.1835 −0.2143 0.2047 0.2423 0.2142 0.1463 0.2265 0.2265

PC 2 1.8911 0.1703 0.9746 0.2432 0.0759 −0.0129 0.0338 0.2694 0.2294 0.1739 −0.2437 −0.0234 0.0343 −0.1505 0.1731 −0.4207 −0.3244 0.2381 0.1294 −0.0105 −0.2440 −0.4208 0.1900 0.1900

PC 3 0.6210 0.0184 0.9930 −0.2203 −0.2194 −0.1148 0.0276 −0.0668 −0.0637 −0.0351 −0.1583 −0.1055 0.4065 −0.0113 −0.0345 −0.0745 0.2675 −0.1636 0.7255 −0.1142 −0.1582 −0.0747 −0.0391 −0.0391

PC 4 0.2765 0.0036 0.9966 −0.1973 −0.1956 −0.1354 −0.0125 0.1133 0.1197 0.1552 −0.1492 −0.0729 0.3738 −0.0685 0.1558 −0.0679 0.3512 −0.2851 −0.6037 −0.1303 −0.1498 −0.0681 0.1400 0.1399

PC 5 0.1898 0.0017 0.9983 0.2407 0.1279 0.1338 0.2365 −0.1105 −0.1263 −0.1444 −0.1089 0.2504 0.0171 0.1765 −0.1436 −0.2556 0.5771 0.3024 −0.1262 0.1371 −0.1126 −0.2598 −0.1894 −0.1890

PC 6 0.1429 0.0010 0.9993 −0.1080 −0.0508 −0.1018 −0.2787 0.1666 0.1661 0.1402 −0.0006 0.0850 −0.5969 −0.2325 0.1398 0.0629 0.5242 0.1348 0.1816 −0.0949 −0.0067 0.0564 0.1473 0.1473

PC 7 0.0912 0.0004 0.9997 0.3962 0.2324 −0.0820 −0.3642 −0.0725 −0.1049 −0.1372 0.1574 0.2384 0.2671 −0.5964 −0.1412 −0.0471 0.0686 −0.2038 0.0105 −0.0991 0.1585 −0.0485 0.0028 0.0024

PC 8 0.0467 0.0001 0.9998 0.2674 0.1477 −0.3715 0.0978 −0.0681 −0.0160 0.1226 −0.0583 0.0358 −0.3458 0.2701 0.1267 −0.1464 −0.0277 −0.6182 0.0391 −0.1879 −0.0548 −0.1362 −0.1777 −0.1775

PC 9 0.0363 0.0001 0.9999 0.0132 −0.0133 0.7894 −0.0969 −0.0175 −0.0065 0.0249 −0.0527 −0.0336 −0.0869 0.0295 0.0252 −0.0552 0.0009 −0.1860 0.0047 −0.5529 −0.0523 −0.0533 −0.0472 −0.0457

PC 10 0.0328 0.0001 0.9999 0.0008 −0.0389 0.1788 −0.7296 −0.0113 −0.0056 0.0201 −0.0967 −0.0508 0.0283 0.3284 0.0208 −0.1045 0.0016 −0.1610 0.0012 0.5025 −0.0962 −0.1026 −0.0400 −0.0441

PC 11 0.0311 0.0000 1.0000 0.1051 0.1076 −0.2848 −0.3377 0.0413 0.0245 −0.0107 0.1014 0.1245 0.2238 0.5163 −0.0125 0.0465 0.0011 0.3575 −0.0016 −0.5287 0.1028 0.0463 0.0864 0.0873

PC 12 0.0138 0.0000 1.0000 −0.2578 −0.2810 −0.0020 0.0108 0.0167 −0.0099 −0.0864 −0.1056 0.8618 −0.0568 0.0304 −0.0848 −0.0164 −0.2225 −0.1099 −0.0024 −0.0025 −0.1110 −0.0253 0.0644 0.0496

PC 13 0.0118 0.0000 1.0000 0.0477 −0.0185 0.0025 0.0839 −0.0086 −0.1363 −0.4283 0.0260 −0.1718 −0.1710 0.1638 −0.4312 −0.1047 0.0539 −0.2109 −0.0039 0.0099 0.0176 −0.1249 0.4655 0.4744

PC 14 0.0101 0.0000 1.0000 −0.0021 −0.0067 −0.0005 −0.0023 0.0098 0.0070 −0.0020 0.0012 0.0090 0.0009 0.0001 −0.0028 0.0001 −0.0025 −0.0016 0.0000 0.0020 0.0007 −0.0008 −0.7132 0.7008

PC 15 0.0071 0.0000 1.0000 0.5000 −0.7791 0.0160 0.0235 −0.1718 −0.1149 0.1418 0.1483 −0.0349 −0.0279 0.0250 0.1270 −0.0272 0.0099 0.0680 0.0015 0.0178 0.1666 −0.0003 0.0504 0.0501

PC 16 0.0058 0.0000 1.0000 0.0583 −0.2380 −0.0142 0.0054 0.6356 0.4221 −0.2979 0.1703 −0.0600 0.0165 0.0288 −0.2753 −0.0146 0.0194 −0.0802 −0.0018 −0.0146 0.1399 −0.0673 −0.2421 −0.2634

PC 17 0.0025 0.0000 1.0000 0.0239 −0.0042 0.0006 −0.0014 −0.0321 0.0275 −0.7104 −0.0225 0.0000 0.0017 −0.0024 0.7009 0.0127 −0.0002 0.0038 0.0001 −0.0002 −0.0181 0.0232 0.0068 0.0081

PC 18 0.0011 0.0000 1.0000 −0.0506 0.0059 0.0006 0.0011 0.0861 −0.0696 −0.0029 −0.4001 0.0033 −0.0050 0.0004 −0.0007 −0.5777 0.0057 −0.0026 0.0000 0.0008 0.4897 0.5014 −0.0056 −0.0055

PC 19 0.0008 0.0000 1.0000 −0.2540 0.0089 0.0007 0.0033 0.4119 −0.6623 0.1074 0.3333 −0.0010 −0.0155 0.0051 0.1922 −0.1498 −0.0006 −0.0017 −0.0002 0.0011 0.2199 −0.3095 −0.0178 −0.0180

PC 20 0.0004 0.0000 1.0000 0.3279 −0.0012 0.0002 0.0002 0.4451 −0.4099 −0.0213 −0.4508 0.0004 0.0104 0.0000 −0.0349 0.3864 0.0000 −0.0001 0.0002 0.0002 −0.3040 0.2821 0.0029 0.0029

PC 21 0.0002 0.0000 1.0000 0.0385 −0.0005 0.0000 0.0000 0.0661 −0.0567 −0.0051 0.4972 0.0001 0.0022 −0.0001 −0.0091 −0.4057 0.0000 0.0000 0.0000 0.0000 −0.5855 0.4860 0.0009 0.0010
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