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Abstract: The modern trend of developing highly automated aircraft is characterized by a transition
from traditional methods and technical solutions to innovative approaches in order to control the
system, inceptor and display design. This paper deals with the development and comparison of flight
control system algorithms based on inverse dynamics, H-infinity and traditional feedback methods.
The integration of a controller based on inverse dynamics with a novel type of sidestick, shaping the
pilot output signal such that it is proportional to the control force (force sensing control—FSC), is
studied. The inverse dynamics-based controller is chosen, as it provides a variance of error that is up
to 2.3 times less than that of the feedback gains and up to 1.5 times less than that of the H-infinity
controller in a pitch tracking task. The synergetic effect arising from the proposed integration is also
evaluated. The evaluation of the effectiveness of the methods is carried out through mathematical
modeling of the pilot–aircraft system and ground-based simulations on a helicopter mathematical
model in a pitch tracking task.

Keywords: pilot–aircraft system; H-infinity; inverse dynamics; ground-based simulation; sidestick

1. Introduction

Modern computation capabilities and the widespread use of high augmentation in
the flight control systems of aerospace vehicles have been accompanied by research of
new approaches to control algorithm design, making use of the available technology. The
inverse dynamics technique is one of those control algorithms developed in recent years
that make it possible to considerably change the dynamics of an aircraft, making the control
problem easier to solve.

Over the years, this technique has been used in a variety of applications both in
fixed-wing aircraft [1,2] and in rotorcraft [3,4].

Robustness is one of the requirements in flight control system designs. Inverse dy-
namics is very demanding toward this requirement, as they are sensitive to changes in
the mathematical models of the controlled element or of the processes affecting the con-
trolled element, such as winds and disturbances. When these uncertainties are present,
the inverse dynamics-based controller used in the feedforward loop cannot correct for
tracking errors [5]. In [6,7], the author established the boundaries of controlled element
uncertainties that would be acceptable when using inverse dynamics. Inverse dynamics
would be effective only if the size of the uncertainties in the nominal plant is smaller than
the size of the nominal plant divided by its condition number. Here, the size of the plant
and the size of the uncertainties are both measured as the 2-norm of their transfer functions.
Moreover, the condition number of the plant is the product of the size of the plant and the
size of its inverse. The method developed in [6] allows the use of inverse dynamics only
when these boundaries are observed. This makes the technique applicable only to a limited
number of control problems.
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Inverse dynamics in general can be applied to both linear and nonlinear control prob-
lems. As a nonlinear control technique, inverse dynamics is used to make an appropriate
coordinate transformation of a nonlinear controlled element [8] so that any linear control
technique can be applied to the resulting linear controlled element. This is illustrated in [5]
and [9], where nonlinear dynamics inversion is used in the inner loop and a PID-type con-
troller is used in the outer loop to achieve both reference tracking and robustness against
modeling uncertainties and disturbances. The same two-loop approach is used in [10],
where the inner loop uses the inverse dynamics technique to linearize the nonlinear plant,
and the outer loop uses an H∞-based controller to provide robustness. Flight controllers
based on inverse dynamics principles can also be designed using machine learning princi-
ples as in [11], where inverse dynamics is approximated using a nonlinear regression neural
network and used in the same fashion as feedback linearization to allow the application of
a PI controller.

As a linear control technique, the inverse dynamics method has mostly been used in the
feedforward control loop to support feedback controllers. In this form, its integration with
reference model techniques has been studied in [12]. Here, the desired dynamics of the whole
system, that is, the controlled element plus the control system, are computed via the use of
reference models. The desired computed dynamics are then applied to the inverse dynamics
in order to calculate the actuator positions needed to achieve the required performance.

This method, however, still requires an exact model of the controlled aircraft. There-
fore, a PID-type compensator must be added in order to provide robustness against
modeling uncertainties and disturbances as in [3].

Inverse dynamics as a linear control method has also been used in [13] to decouple the
dynamics of the controlled element and achieve good tracking performance, and robustness
is provided by a reference model and its inverse. This method, however, uses several loops
in the control algorithm, making it difficult and expensive to implement.

In [14], a detailed account of the linear inverse dynamics approach for the improve-
ment of helicopter flying qualities is given, and robustness is achieved using a PI controller.

Another popular approach to the design of flight control systems is the H-infinity
method, which appeared in the seminal works of Zames [15]. This approach takes advan-
tage of singular values to synthesize an optimal controller that minimizes a cost function
representing robustness and performance of the system. The H-infinity method has been
used extensively for flight control as in [16], where linear H-infinity-based controllers are
used with a gain scheduling method extended for dynamical systems in order to take
advantage of the robustness of H-infinity in nonlinear control.

The H-infinity technique has also been applied to all sorts of rotorcraft control prob-
lems. In [17], the technique is applied to a two-degree-of-freedom helicopter using a
sensitivity minimization approach, which consists in minimizing the sensitivity of the
system to external disturbances, which can also be additive uncertainties. In [18], the same
sensitivity minimization approach of the H-infinity implementation is used to robustly
stabilize a helicopter with a suspended load. One of the problems with this approach,
however, is that there is no systematic way of choosing the weight matrices that generalize
to all control problems.

Another approach used to apply the H-infinity optimization is loop shaping [19–21].
The basic idea of this technique is to specify the design requirements in terms of singular
values of the open-loop system. Weight matrices are then used to achieve the open-loop
requirements before applying the H-infinity optimization procedure to find a controller
that satisfies the said requirements.

Inverse dynamics and H-infinity techniques have been used together in [22,23]. In both
of these cases, they are used in different control loops where inverse dynamics eliminates
the need for gain scheduling, and the H-infinity controller designed with additional shaping
filters provides reference tracking and robustness.

This paper presents a linear approach where the inverse dynamics technique is used
with a PI controller to provide good tracking performances and robustness to uncertainties
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and disturbances. A second approach is presented, where the H-infinity optimization
technique is used in its loop-shaping implementation along with an inverse dynamics-
based filter to form a controller that inherits the performance of the inverse dynamics
technique and the robustness of the H-infinity technique.

Additionally, a comparative analysis was carried out assessing the effectiveness of the
traditional feedback gains controller, the inverse dynamics controller and the H-infinity-
based controller. The analysis was conducted via mathematical modeling of the pilot–
aircraft system to study the integration of the human pilot in the control loop and via
ground-based simulations to study the feasibility of the proposed control algorithms and
the impact of a real human pilot.

This analysis revealed the issue of high actuator rate demands that arises when using
inverse dynamics. This issue can lead to certain undesirable effects, such as pilot-induced
oscillations (PIO). This paper presents a nonlinear prefilter used as a solution to this problem
in order to insure a safe operation of the actuators and the safety of the entire system.

Besides the analysis introduced above, an additional investigative study was carried
out with different inceptors and types of pilot output signals with the goal of defining the
best way of their integration with the proposed techniques.

2. Inverse Dynamics Design Procedure
2.1. Inverse Dynamics Potentialitites

The control algorithms designed following the inverse dynamics method as developed
in [13] are as shown in Figure 1, where Wc(s) is a linearized model of the flying vehicle that
is being controlled.

Figure 1. Using inverse dynamics.

Inverse dynamics is used in the feedforward loop to improve tracking performance
and, as such, requires a stable system [24]. Stability is therefore provided by a set of
feedback gains K, and the element K1/s(s)= Ks

Ts+1
s provides robustness to the system [14].

The controlled element with stabilizing gains and the robustness element form the system
G, which is then used with inverse dynamics.

In Figure 1, δ is the vector of signals from the pilot’s inceptors. In the case of a
helicopter, these signals come from the longitudinal and lateral cyclic stick, collective stick
and pedals; G−1(s) is the inverse dynamics and

.
y is the vector of angular rates (pitch rate,

roll rate and yaw rate) and climb rate (q, p, r and w, respectively).

The proposed algorithms bring the frequency response
.
y (jω)
δ(jω)

closer to the gain
response in a wide frequency range and decouple the control axes, which is the main
motivation for using inverse dynamics as given in [13].

When the controlled element dynamics are y(jω)
δ(jω)

, the frequency response is then close
to the integral element.

In Figure 1, the element F(s), as shown in [14], equalizes the order of the numerator
and that of the denominator, therefore making the system feasible.

The frequency response of the system presented in Figure 1 can be seen in Figure 2,
showing the characteristics described above. As it can be seen, for the pitch channel, the
inverse dynamics brings the controlled element close to the integral element in almost
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the entire frequency range. This is seen in contrast to the characteristics provided by the
feedback gains only.

Figure 2. Inverse dynamics vs. feedback.

2.2. Inverse Dynamics Computation

The inverse dynamics is computed analytically, following the technique given in [24].
This technique starts with a dynamical system given in state space form. The system G
used in this paper contains nonlinear elements, such as time delays and nonlinear actuators.
Therefore, it needs to be linearized and represented in state space form before calculating
the inverse dynamics. This is conducted using the Jacobian linearization method given
in [25], resulting in matrices A, B, C and D.

Using the matrices obtained above, the state space representation can be constructed
as shown by Equations (1) and (2).

sX(s) = AX(s) + BU(s) (1)

.
Y (s) = CX(s) + DU(s) (2)

where X is the state vector, U is the input vector, D is the feedforward matrix, and C is the
matrix relating the state vector X to the output vector Y of the system G.

The transfer function representation can then be derived by re-writing (1) in terms
of X(s) as shown in Equation (3) and substituting it in (2) to obtain Equation (4), with the
feedforward matrix D being a zero matrix:

X(s) = (sI − A)−1 BU(s) (3)

.
Y (s) = C(sI−A)−1BU(s) (4)

The relationship between the state space representation and the matrix of transfer
functions can then be written as

.
Y (s)
U(s)

= C(sI−A)−1B (5)

Equation (5) results in a matrix of transfer functions, where each element gij connects
the input i to the output j. Each of these transfer functions is then inverted individually

such that for a transfer function gij =
.

yj
ui

, the inverse dynamics is given by gij
∗ = ui.

yj
.
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3. H-Infinity Design Procedure

The H∞ technique, in all its formulations, is a frequency domain design technique.
The approach presented in this paper is based on the shaping of the open loop such

that the closed-loop system will allow good reference tracking at low frequencies and
disturbance rejection at high frequencies.

3.1. H∞ Optimization

The objective is to compute a stable feedback controller H(s) that stabilizes the vehicle
and maintains good performance even in the presence of uncertainties.

This goal can be expressed in the H∞ optimization framework such that the problem
becomes that of finding a controller H(s) satisfying the condition given in Equation (6).
This is a stability condition for feedback systems as given in [26].

‖
[

H
I

]
(I−GsH)−1M−1‖∞ ≤

1
εmax

≡ ϕmin (6)

where, H is the H∞ controller, I is an identity matrix, Gs is the shaped plant as seen in
Section 3.2, and M is one of the elements resulting from the left factorization of Gs [27].
It can be computed in a simplified manner using the solution to the Riccati equations as
shown below, and εmax is the maximum stability margin calculated as

ε−1
max= ϕmin = (1 + λmax(XZ))1/2 (7)

where, λmax finds the maximum eigenvalues, and X and Z are the solutions to the general-
ized algebraic Riccati equations shown in Equation (8).{

(A− BS−1DT C)
T

X + X(A− BS−1DT C)− XBS−1BTX + CT(I−DS−1DT)C = 0
(A− BD TR−1 C)Z + Z(A− BD TR−1 C)T−ZCTR−1CZ + B(I−D TR−1 D)BT= 0

(8)

where,
S = I + DTD
R = I + DDT (9)

and
M = R−1/2+R−1/2C(sI−A− IC)−1E (10)

E = −
(

ZCT+BDT
)

R−1 (11)

A, B, C and D are the state space matrices of the shaped system Gs, which is the
mathematical model of the vehicle augmented with predefined filters as shown in the next
subsection.

3.2. Shaped System Gs(s)

The system Gs (s) is formed by adding two shaping filters, W1 (s) and W2 (s), as shown
in Equation (12) and in Figure 3.

Gs(s)= W2(s) ·G(s)∗ ·W1(s) (12)

where G∗(s) is the vehicle model with stabilizing gains, which is equivalent to G(s) without
the K1/s(s)= Ks

Ts+1
s element.

The problem now is to find or compute the shaping filters such that W1(s) provides
good tracking performance and W2(s) provides disturbance attenuation.
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Figure 3. Shaped system.

Disturbances are almost always in the higher frequency range. Therefore, W2 is chosen
to be a first-order low-pass filter of the form

W2 =
K1

Ts + 1
(13)

As discussed previously with inverse dynamics, we need the frequency response of
.
y (jω)
δ(jω)

to be equivalent to the gain response.
The frequency response of the shaped system Gs should then be close to the integral

K3
s , which will result in a closed loop whose response is equivalent to a gain in the low

frequency range.
The choice of W1 can then be motivated as follows:

Gs =
K3
s if and only if G∗ ·W1 = K3

s
W1 = K3

s ·G
∗ −1 (14)

where G∗ −1 is the inverse dynamics of G∗. It is also worth noting that Equation (14) is
valid only in the frequency range lower than the cutoff frequency of W2.

The peculiarity that can be seen here is that the inverse dynamics becomes included
in the H-infinity controller. This integration was not explicit. It was, rather, an emergent
feature of the frequency response requirement, and it allows the H-infinity controller to
decouple the control axes of the vehicle and to provide good tracking performance while
the H-infinity controller itself has the robustness features.

3.3. Dynamic Controller H(s)

After shaping the mathematical model of the vehicle, the matrices A, B, C and D of the
shaped system and the solutions to the Riccati equations are used to compute the controller
H(s) in state space form as shown in Equation (15).

H(s) =

[
A + BW +ϕ2(LT)

−1
ZCT(C + DW) ϕ2(LT)

−1
ZCT

BTX −DT

]
(15)

where
L =

(
1−ϕ2I + XZ

)
W = −S−1

(
DTC + BTX

) (16)

The optimal overall stability margin ϕ is calculated as given in Equation (7). The
value of this margin may differ from the classical SISO stability margins, as it is calculated
using the eigenvalues of the coupled MIMO system. If the maximum eigenvalues are
complex numbers, this results in a complex ϕ, which in turn will introduce a singularity
as it is used to calculate the controller H(s). When this happens, it is necessary to modify
the parameters of the shaped system used such that the maximum eigenvalues are not
complex. This process is conducted iteratively, with some engineering intuition, as there is
no formal way to tune the system.

It is also worth noting that Equation (16) uses ϕ and not ϕmin, because a controller
can be computed for any value of ϕ > ϕmin. However, we have to keep in mind that ϕ is
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inversely proportional to the stability margin and, therefore, with an increase in its value,
the stability margin consequently decreases, and from the basics of control theory, it follows
that tracking performance increases. Therefore, there is a fundamental tradeoff between the
stability margin and performance, and this can be tuned by changing the value of ϕ used.

3.4. H∞ Controller Implementation

The previous section computed the controller H(s) that will provide robust stability to
the system. The final feedback controller is obtained as the product of H(s) and the shaping
filters as shown in Figure 4.

H∞ = W1 ·H ·W2 (17)

Figure 4. Controller implementation.

3.5. H∞ Design Summary

The design of the H∞ controller can be summarized as follows:

1. Find the stabilizing gains for the nominal system via classical methods or pole place-
ment and obtain the system G∗;

2. Compute the inverse dynamics G∗ −1;
3. Define the shaping filter W1 using inverse dynamics for reference tracking and W2

using a low-pass filter for high-frequency noise or disturbance rejection and build the
shaped system Gs;

4. Calculate the controller H:

• Solve the algebraic Riccati equations of the shaped system Gs;
• Calculate the optimal εmax and ϕmin using the solutions to the Riccati equations;
• Compute the controller H;
• Construct the final dynamic feedback controller such that H∞(s) = W1(s) H(s) W2(s).

4. Research Plan

The controllers designed above were evaluated for a pitch angle tracking task with
the dynamical model of a helicopter. Here, pilot actions can be represented as a single-loop
compensatory system as shown in Figure 5. Another point to note is that the pilot signals
δ (from the longitudinal cyclic) can be either proportional to the inceptor displacement
(deflection) or proportional to the force applied on the inceptor.

Figure 5. Pilot–aircraft system.
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The effectiveness of the proposed algorithms was studied using ground-based simula-
tion and mathematical modeling of the pilot–aircraft system.

4.1. Mathematical Modeling of the Pilot–Aircraft System

Mathematical modeling was carried out using a modified structural model of the pilot
developed in [28] and shown in Figure 6.

Figure 6. Modified pilot structural model.

where i is the input signal, e is the error signal, x is the stick deflection (displacement),
F is the force applied on the stick by the pilot, y is the output of the pilot vehicle system,
and Wc is the controlled element dynamics;

Wvis= KL
TL jω
TI jω e−τ jω is the model of visual information perception and compensation;

Wkin =
Kn(jω)2

Tn2(jω)2+2Tn(jω)+1
is the model of proprioceptive information perception and

compensation;
WNM = 1

(T N∗ jω+1)
1

(T N
2(jω)2+2ζN jω+1)

is the neuromuscular system model;

WFS = KFS
(jω)2+2ζFSωFS jω+ωFS

2)
is the inceptor model; and

ne is the pilot noise (remnant) characterized by the spectral density Snene= Kneπ
σe

2+TL
2σ .

e
2

1+TL
2ω2 ,

where σe
2 and σ .

e
2 are the variance of error and its derivative, respectively; Kne= 0.01;

and Wc
∗ is the controlled element, which is the mathematical model of the vehicle and

the control system. The parameter vector of the structural model a = (TL, KL, TN, KN) is
calculated by running the minimization criterion I = min (σe

2), where the variance of error
σe

2 is determined as given in [29].

The structural model shown in Figure 6 allows the study of a pilot–aircraft system
for two types of pilot output signals: the displacement signal, performing the so-called
“displacement sensing control (DSC)”, and the signal proportional to the force applied by
the pilot, performing the so-called “force sensing control (FSC)” [30].

4.2. Ground-Based Simulations

The effectiveness of inverse dynamics and the H∞ controller were also studied using
a ground-based simulator equipped with a collimated visual system and the Moog control
loading system (see Figure 7), as well as a workstation for the flying qualities studies.

An image of the compensatory display was shown on the screen of the central col-
limator. The vertical motion of the indicator on this display allowed us to perform a
compensatory pitch tracking task. The Moog system equipped with force and displace-
ment sensors made it possible to evaluate the effectiveness of the DSC and FSC types of
pilot output.

The experiments involved two operators and one licensed pilot. They all had sufficient
experience in ground-based simulations. The compensatory pitch tracking task was carried
out with a polyharmonic input signal i(t) = ∑15

k=1 Akcosωkt, which appeared as a random
signal to the operators. Its amplitude Ak and orthogonal frequenciesωk = K 2π

T , where T is
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the duration of the trials, were selected from the requirements of correspondence between
the power distributions of the polyharmonic signal and a random signal characterized by
the spectral density Sii =

K2

(ω 2+0.52)
2 , σi

2= 4 cm2.

Figure 7. Ground-based simulator.

The Fourier coefficient technique [31] was used for the calculation of the main pilot–
vehicle system characteristics:

• Pilot Wp(jω), open-loop WOL(jω) and closed-loop Φ(jω) describe functions;
• Pilot remnant spectral density Snene(ω);
• Variance of error σ2

e and its components σ2
ei

, which is the variance of error corre-
lated with the input signal, and σ2

en , which is the variance of error correlated with
the remnant.

The experiments were carried out with two types of inceptors: a center stick and
a sidestick.

At least three trials were executed for each variable (controlled element dynamics,
type of inceptor and pilot output), and the obtained results were averaged. The duration of
each trial was equal to 144 s.

The following controlled element dynamics WC
∗ were used in the experiments:

WC
∗= Wfb: dynamics of a controlled element whose control system consists of simple

feedback gains only.
WC

∗= Winv: dynamics of a controlled element whose control system includes feed-
back gains and inverse dynamics with a PI controller and filters F(s).

WC
∗= WHinf: dynamics of a controlled element whose control system is based on the

H-infinity technique.

5. Investigation Results

The results of the ground-based simulations carried out for the three types of flight
control systems—based on the use of traditional feedback gains only (WC

∗= Wfb), the
inverse dynamics principle (WC

∗= Winv) and the H-infinity technique (WC
∗= Winf)—are

shown in Figure 8. The analysis of these results demonstrates that the use of inverse
dynamics makes it possible to decrease the variance of error by a factor of 2.3 in comparison
with feedback gains and by a factor of 1.5 in comparison with the H-infinity controller.

Qualitatively, similar results were also obtained in the mathematical modeling of the
feedback- and inverse dynamics-based controller systems [14].
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Figure 8. Experimental results.

5.1. Time Response and Actuator Constraints

More intricacies of the inverse dynamics-based controller and H-infinity can be seen
via the time response to a step input command in Figure 9. The helicopter model is used
here without an actuator. It can be seen that the controller based on inverse dynamics has a
faster rise time compared to the controller based on H-infinity. The slower rise time can
also be seen in Figure 8, where the frequency response of the controlled element with an
H-infinity controller has a phase drop that is more pronounced. All of this explains the
high error variance of the H∞-based controller.

Figure 9. Controller comparison in pitch rate tracking.

Another set of experiments was completed with a nonlinear actuator, where the
actuator gain was set to 50, the rate limit set to 15 deg/s and the actuator deflection limit
set to 25 deg. The results are shown in Figure 10. With the limitations set, it is easy to see
that the inverse dynamics controller still provides a variance of error lower than that of the
H-infinity controller by a factor of 1.25.
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Figure 10. Inverse dynamics vs. H-infinity with actuator constraints and high gain.

To simulate a worse actuator, the gain was reduced to 10, and the actuator limits were
kept the same. As can be seen in Figure 11, in this setting, the performance is almost the
same for both the inverse dynamics and the H-infinity controller.Aerospace 2021, 8, x FOR PEER REVIEW 12 of 18 
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Figure 11. Inverse dynamics vs. H-infinity with actuator constraints and low gain.

Even though the frequency response characteristics are almost the same, it is seen
that the H-infinity controller has a quicker phase drop at high frequencies, which intro-
duces some delays. This can be seen reflected in the variance of error. Additionally, the
implementation of an H-infinity controller is more complicated and requires extensive
tuning. This tuning is reflected in choosing the parameters of the shaped system such that
the maximum eigenvalues of the solutions to the Riccati equations are not complex. For
this research, an automated cron job was run to evaluate several parameters and save the
parameters that did not result in complex maximum eigenvalues, effectively creating a
parameter space from which to choose parameters. This can also be carried out manually
(see Section 3.3.).

5.2. Robustness

Since inverse dynamics is used in a feedforward control loop, it suffers from a lack
of robustness. A simple PI controller was found to provide robustness by maintaining
relatively good performance in the presence of modeling uncertainties. The results of the
mathematical modeling shown in Figure 12 were obtained for the case when uncertainties
were simulated by reducing all the coefficients of matrix B by 25% and increasing all the
coefficients of matrix A by 50% of their nominal values.
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Figure 12. Results of mathematical modeling with uncertainties.

To further examine the issue of robustness, ground-based experiments were also
carried out for both the inverse dynamics and the H-infinity controllers. As seen in
Figure 13, it was found that a simple PI controller added to the inverse dynamics controller
was much more successful in providing robustness than the H-infinity controller.

Figure 13. Results of experiments with uncertainties.

Based on the experimental results shown above, it can be seen that the controller synthe-
sized with inverse dynamics and a proportional-integral element was a much better controller
by all metrics. It was therefore chosen as the default controller for the rest of this paper.

5.3. Flying Qualities Evaluation

Both the pilot describing function and the frequency response of the closed-loop
system were calculated. This allowed us to calculate the parameters of the tentatively
called “new MAI criterion for flying qualities prediction” [32]. This criterion is used as it is
shown to have a high percentage of correct prediction of flying qualities levels.

This criterion is defined in terms of the following parameters:

• The bandwidth of the pilot–vehicle closed-loop system (ωBW) corresponds to the
frequency at which the phase response of the closed-loop system is equal to −90 deg.

• The pilot compensation parameter (∆ϕmax = ϕp
∣∣
WC
− ϕp

∣∣
W∗C

) is calculated in the
entire frequency range as the maximum difference between the pilot phase response of
the investigated dynamics (WC) and that of the dynamics (W∗C), which do not require
any pilot phase compensation (phase response corresponding to a time delay element
(Wp = Kpe−jωτ)).
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The values of these parameters, calculated through mathematical modeling of the
pilot–aircraft system for the controlled element dynamics where the controller is based on
simple feedback gains and where it is based on inverse dynamics, are given in Figure 14.

Figure 14. New MAI criterion.

The results shown in Figure 14 demonstrate that the use of inverse dynamics improves
the flying qualities, making them correspond to the first level.

In the case where the control system is based on feedback gains only, the flying
qualities belong to the second level.

The evaluation of flying qualities using the Bandwidth / Time Delay criterion from
ADS-33E-RPF for the same dynamics did not reveal the fact that the investigated dynamics
belong to different levels.

More experiments were carried out to evaluate the effects of inverse dynamics with
different types of inceptors (center stick and sidestick) on the pilot–aircraft system charac-
teristics. The research demonstrated that for both the center stick and sidestick, the pilot
lead compensation is lower for the DSC type of pilot output. As an example, Figure 15
demonstrates the pilot frequency response obtained for the sidestick with both the DSC
and FSC types of pilot output.

Figure 15. Pilot describing functions for DSC and FSC pilot output.

In addition, the use of a sidestick demonstrated a decrease in the variance of error
σ2

e in the case where the DSC type of pilot output and a traditional type of flight control
system (WC

∗= Wfb) were used.
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The variance of error σ2
e decreases by a factor of 1.1 to 1.3 (see Figure 16). The same

consistencies were obtained in [28] for different aircraft dynamics configurations.

Figure 16. Variance of error.

The experiments conducted for inverse dynamics with the same type of inceptor and
pilot output demonstrated a decrease in the variance of error by an additional factor of 1.8.
When the FSC type of pilot output was used, the variance of error decreased even more, by
an additional factor of 1.55. These results are shown in Figure 16.

The shortcoming of the FSC type of sidestick is the relatively higher rates of inceptor
deflections in comparison with the DSC type of sidestick (see Figure 17).

Figure 17. Rate
.
δ(t) of the control signal. (a) DSC, (b) FSC.

This can cause errors in tracking tasks and increase the probability of PIO. This
shortcoming can be eliminated with the help of a prefilter. The effect of an added non-
linear prefilter is shown in Figure 18.

Figure 18. Effect of a non-linear prefilter. (a) function demonstration of nonlinear prefilter, (b) DSC,
(c) FSC.
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6. Discussion

This paper went through the development of control algorithms based on the inverse
dynamics technique and the H-infinity technique for flight control. During the development
of the latter, a filter based on the inverse dynamics was introduced in order to provide better
performances to the H-infinity-based controller. One thing that stood out was that even though
theoretically this technique seems easy and straight forward, its implementation was rather
difficult, as singularities appeared in the application of the algorithms for certain parameters.
Moreover, this required additional optimization loops to find the right parameters.

A comparative study was carried out between the traditional feedback gains, the
inverse dynamics controller and the H-infinity-based controller. This study revealed
that both the H-infinity controller and the inverse dynamics controller provided much
better performances compared to the traditional feedback gains, with the variance of error
decreasing by a factor of up to 2.3 times. At the same time, the inverse dynamics controller
proved to be better than the H-infinity controller, even with degraded actuators. This
is mostly because the H-infinity-based controller has a sensitive fundamental tradeoff
between performances and robustness.

The lack of robustness of the inverse dynamics controller was solved by introducing a
PI controller, which came as an addition to the good performances of the inverse dynamics
without degrading them. This gave an upper hand to this controller.

To evaluate the robustness characteristics, uncertainties were introduced in the math-
ematical model of the vehicle used by changing the coefficients of both the state matrix
and input matrix. Moreover, ground-based simulations showed that the inverse dynam-
ics equipped with a PI controller were much better at handling uncertainties than the
H-infinity controller, with the variance of error decreasing by a factor of up to 2.

Different control sticks and different control signals were also investigated to find
their best integration with the control algorithms. This investigation revealed that using a
sidestick, along with force sensing control (FSC), which sends control signals proportional
to the force applied on the stick by the pilot, provides much better performance than any
other combination, with the variance of error decreasing by up to 3.9 times in comparison
with the traditional feedback gains.

One problem that arises when using inverse dynamics is the high actuator rates that
are increased even more when the FSC type of output is used. This problem was solved by
introducing a nonlinear prefilter between the pilot signals and the flight control system. This
allowed a considerable decrease in the actuator rates, while maintaining good performances.

Another aspect considered in this paper is flying qualities requirements. To estimate
the flying qualities provided by the controllers developed, the new Mai criterion was used.
This criterion revealed that the inverse dynamics controller provides flying qualities of
level 1 in all the flight conditions.

7. Conclusions

Control techniques were developed by using the inverse dynamics and H-infinity
principles and were compared to a fight control system based on the use of feedback gains
only. The proposed algorithms are general control design techniques that can be applied to
both fixed-wing aircrafts and rotorcrafts. In this work, the effectiveness of the techniques is
studied using a helicopter.

The implementation of inverse dynamics and the need for robustness required the
installation of filters F(s), to make the inverse dynamics proper, and PI controllers in the
flight control system.

The experimental investigations demonstrated a higher efficiency when using inverse
dynamics in comparison with H-infinity, which is also more efficient than feedback gains
only. Comparative studies also showed that an H-infinity controller with an inverse dy-
namics filter provides performance close to that of an inverse dynamics controller when the
actuator is degraded. However, the difficulty and complexity of implementing and tuning
the H-infinity controller makes it much less appealing compared to the inverse dynamics-
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based one. Therefore, for this study, the inverse dynamics-based controller was chosen for
further experimentation. These investigations showed that its integration with a sidestick
and the force sensing control type of pilot output makes it possible to increase performances
in comparison to the traditional flight control system with feedbacks, a center stick and the
DSC type of pilot output. Additionally, the technique developed in this paper allowed us to
decrease the pilot phase delay in the high-frequency range. The high actuator rate demand
of the sidestick with FSC, which can be seen as a shortcoming, can be eliminated by using a
nonlinear prefilter between the pilot commands and the control system.
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