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Abstract: To meet the control requirements of high precision and high robustness for peg-in-hole
assembly tasks, an optimized control method for a peg-in-hole assembly task of a space manipulator
is proposed to reduce the system disturbance caused by the change contact status during the assembly
process. The first step is to build an equivalent stiffness model, which considers the structure and
control characteristics of the space manipulator. Flexibility indices along the assembly direction are
then created. On completion of the flexibility indices, the assembly configuration of the manipulator
is optimized with the gain of the joint controller. After that, based on the sliding mode impedance
control law, the disturbance of contact force is compensated using a zero-sum optimal control
compensation strategy. Finally, the correctness and effectiveness of the control method are verified
through simulation experiments. The results of the simulation experiments show that the contact
force of the space manipulator can be precisely controlled by the method proposed in this paper.
Compared with existing methods, the sudden change of contact force and the disturbing force of
the base are reduced by 90% and 54%, respectively. A control method of the space manipulator for
a peg-in-hole assembly task considering the equivalent stiffness optimization is proposed, which
effectively reduces the influence of disturbance caused by contact collision and improves the control
robustness of peg-in-hole assembly tasks.

Keywords: peg-in-hole assembly task; space manipulator; equivalent stiffness; impedance control;
zero-sum optimal

1. Introduction

Deep space exploration and on-orbit service are major research projects in China’s
space exploration. The development of related technologies will directly affect the im-
plementation of China’s future space exploration plans and the deployment of related
space strategies. During deep space exploration and on-orbit services, there are a lot of
heavy and complex space assembly tasks to be completed, such as the dismantling and
reorganization of abandoned satellites on-orbit and the construction of space solar power
plants [1], the construction of the survey telescope [2], the construction of the Ultra-Large
Aperture On-orbit Assembly Space Telescope [3,4], and the automated construction of
the remote exploration base [5,6]. These tasks inevitably require space manipulators to
complete inserting and screwing actions, which all belong to the peg-in-hole assembly
task. As a typical inserting task, the peg-in-hole assembly task is representative of on-orbit
operation tasks such as space unit replacement and equipment installation. Therefore, it is
of great significance to study the peg-in-hole assembly technology of space manipulators.

When a space manipulator interacts with the environment, a small planning error
may cause the object gripped by the manipulator to break away from the contact surface or
produce excessive contact force. Unfortunately, there are usually errors in the position data
during the assembly process. For example, the pose obtained by computer vision may have
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an error of ±6 mm [7,8]. The author once studied the pose estimation based on 3D point
cloud in an area of 1 m2, and the maximum error was about 8 mm. To solve this problem,
on the one hand, a hole search operation is required to find the specific position of the hole
before the plug-in process (Figure 1). On the other hand, a compliance control method is
needed to adjust the relationship between the position of the end of the manipulator and
the contact force.
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The compliance control method mainly includes hybrid position-force control and the
impedance control method [9]. Chen [10] proposed a peg-in-hole assembly algorithm for
robotic astronauts based on hybrid position-force control. Wu [11] studied the precision
peg-in-hole assembly method of industrial manipulators based on hybrid position-force
control. These algorithms are not of interest in this study because they switch between
force and position control and need to identify the environmental parameters in real time
to adjust the direction of the force. As a result, it is difficult to actualize fully compliant
behavior. On the other hand, the impedance control [12] is successful when the manipulator
is in free space and also when it is in contact with the environment. Thus, it can also be used
in cases of unknown environments. Although the sensorless force controller has various
advantages, its accuracy has difficulty meeting the requirements of assembly tasks [13,14],
so this paper does not pay attention to these methods.

At the end of the hole search operation and the beginning of the plug-in process,
the contact state of the assembly changes. It results in a sudden change in the contact
force at the manipulator’s end, further causing disturbance of the base. It is likely to
cause the vibration of the spacecraft structure and the instability of the attitude and orbit
control system. More seriously, it may even damage the force sensor and other precision
instruments due to the contact force amplitude exceeding the range and further damaging
the space manipulator. Therefore, how to reduce the sudden change of contact force and
suppress the disturbance of the base has become the key to the success of the peg-in-hole
assembly task.

Restricted by launch conditions, the space manipulator exhibits significant flexibility
due to its lightweight features. The flexibility of its joints and links is mapped to the
operating space through the kinematics model of the manipulator, resulting in weak
equivalent stiffness at the end of the space manipulator, which changes continuously with
the change of configuration. This provides ideas for suppressing the sudden change of
contact force and the disturbance of the base caused by it. That is, the manipulator can
obtain better flexibility by optimizing the equivalent stiffness of the end so as to suppress
the disturbance at the moment of contact collision and enhance the system’s robustness.
Qu et al. integrated the stiffness model of each influencing factor into the overall stiffness
model of the manipulator through the principle of superposition [15]. Hui et al. used the
equivalent stiffness model to compensate for the deformation of the manipulator in the
process of controlling the cutting force to improve the trajectory accuracy [16]. Jiao et al.
proposed an optimization method based on the optimal equivalent stiffness, which can
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avoid the singularity and the limit of joint angles while obtaining an operating posture with
better equivalent stiffness [17]. Lin et al. established the equivalent stiffness map of the
end of the manipulator in the workspace to select the optimal position and determine the
posture of the end through the deformation estimation index [18]. Qu et al. designed the
fitness function based on the semi-axial length of the equivalent stiffness ellipsoid and used
the Genetic Algorithm to optimize the pose of the 7-DOF redundant manipulator [19]. Tian
et al. used the Rayleigh quotient to evaluate the stiffness performance of the manipulator
and obtained the optimal configuration of the entire workspace with the Genetic Algorithm
method [20]. However, there are specific problems with the build of equivalent stiffness
model in the above studies. One of these is that they only considered the joint flexibility of
the manipulator from the perspective of the structure’s inherent stiffness. Another is that
they used the configuration as a decision variable for relevant analysis and optimization.
For space manipulators performing assembly tasks, a compliance controller is required to
obtain appropriate contact force. Control gain is an essential factor that causes the weak
equivalent stiffness and the changing characteristics with the configuration of the end of
the manipulator. Therefore, the effect of the control gain on the equivalent stiffness cannot
be ignored.

During the process of peg-in-hole tasks, the sudden change in contact force can
be regarded as the disturbance of the environment to the space manipulator system.
By optimizing the equivalent stiffness of the space manipulator, the disturbance can
be reduced to control the sudden contact force within the sensor range. However, the
actual value of the contact force still has a significant sudden change compared with
the expected value, which does not meet the accuracy requirements of the contact force
control during peg-in-hole assembly. In the previous research on compliance control,
Christian [21,22] proposed a control strategy that unified impedance control and admittance
control based on a hybrid systems framework to improve the stability and performance
characteristics of interaction controllers. CAESAR [23] was LWR3′s consistent continuation
in the development of a force/torque-controlled robot system, which allowed the required
stiffness setting range to be reduced to zero. Li et al. proposed a fuzzy sliding mode
impedance controller to solve the problem of low robustness due to the uncertainty and
disturbance of the manipulator or the environment [24]; Xiao realized autonomous peg-
in-hole assembly by designing fuzzy rules to adjust impedance control parameters, but
it requires professionals to refine and summarize the experience of adjusting parameters
based on a large number of experiments [25]. Duan et al. designed an adaptive variable
impedance model to achieve the trajectory tracking of the dual manipulator subject to
external disturbance [26]; based on the collision model and the extended Kalman filter to
estimate the environmental stiffness online, Roveda [27] proposed a discrete controller to
realize the gain of the adaptive controller. Sadeghian et al. proposed a disturbance observer
based on task error detection and conducted a disturbance force detection experiment on
the KUKA LWR4 lightweight manipulator [28]; Jia et al. realized the impedance control of
unknown disturbance in the nullspace of robotic astronauts by designing a disturbance
observer [29]. Dong et al. designed a decentralized robust zero-sum optimal controller for
a double-joint reconfigurable robot to realize disturbance compensation in an uncertain
environment [30], inspiring this paper’s research. However, the decentralized control
system compensates for disturbance in the joint space of the double-joint reconfigurable
robot. So, its results cannot be directly applied to the peg-in-hole assembly in on-orbit
operation tasks.

To sum up, the above research mainly has the following shortcomings: (1) Some
researchers only considered the structural flexibility in the modeling and analysis of
the equivalent stiffness of the manipulators but did not consider the influencing factors
of the control method, which leads to the insufficient model of the equivalent stiffness.
(2) Other researchers tuned the control parameters by estimating the environment stiffness
in their work but did not consider the structural stiffness of the manipulator. However, the
structural stiffness of the space manipulator may be much smaller than the environmental
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stiffness. (3) The existing research on impedance control have limitations when applied
to space assembly tasks: The controller based on the hybrid systems framework needs to
switch the control law frequently; designing fuzzy rules requires researchers to generalize
on the basis of a large number of experiments; the stiffness estimation based on the extended
Kalman filter leads to insufficient control accuracy; and controllers based on disturbance
observers require accurate dynamics models.

Aiming at the above problems, in order to ensure the accuracy and robustness of the
peg-in-hole assembly control, a control method of a space manipulator for peg-in-hole
assembly tasks considering equivalent stiffness optimization is proposed in this paper. This
method can reduce the sudden change in contact force and suppress the disturbing force of
the base by determining the appropriate manipulator’s configuration and control gain. It
improves the accuracy and robustness of peg-in-hole assembly control.

The research in this paper possesses the following traits:

• By combining the structure and control characteristics of the space manipulator, the
controller parameters and configuration are introduced into the equivalent stiffness
optimization process of the manipulator.

• By combining the advantages of the sliding mode control method, an impedance control
law based on the result of equivalent stiffness optimization is deigned, and the zero-
sum game is introduced to compensate for the interference caused by contact collision.

The rest of the paper is composed of five chapters. In the second chapter, the stiffness
model of space manipulator is built. In the third chapter, the stiffness optimization method
for peg-in-hole assembly is presented. In the fourth chapter, the sliding mode impedance
control based on disturbance compensation is designed. In the fifth chapter, the simulation
experiment and analysis are carried out. Finally, the conclusions are drawn.

2. Stiffness Modeling of Space Manipulator
2.1. Kinematics and Dynamics Model

In this section, a brief review of the kinematics and dynamics model of space ma-
nipulators is presented. The kinematics equations and dynamics equations of the space
manipulator studied in this paper have general forms. Equations (1)–(3) are the position-
level kinematics equation, the velocity-level kinematics equation, and the Cartesian space
dynamics equation of the space manipulator, respectively:

i
nT = i

i+1T · · · n−1
n T =

[
ni oi ai pi

0 0 0 1

]
, (1)

.
X = Jθ(q)

.
q, (2)

Fj = Mx(q)
..
X + Cx(q,

.
q)

.
X + Fe − de, (3)

where i
i+1T ∈ R4×4 is the transformation matrix of two adjacent coordinate systems; ni, oi,

ai, pi ∈ R3×1 are functions of joint angle q ∈ Rn×1; n is the number of joints; Jθ(q) ∈ R6×n

(abbreviated as Jθ) is the Jacobian matrix for the space manipulator; Fj is the generalized
operating force vector; Mx(q), Cx(q,

.
q) are the Cartesian space inertia term and the Coriolis

force term; Fe is the end contact force in the Cartesian space of the space manipulator; and
de is the contact force disturbance term.

2.2. Equivalent Stiffness Model

Once the kinematics and dynamics models are obtained, the equivalent stiffness
model can be created. The equivalent stiffness of the space manipulator is affected by the
structural stiffness (joint stiffness and link stiffness) and control stiffness. The stiffness can
be expressed as the inverse matrix of flexibility. For the joint flexibility, the differential
motion vector of the link coordinate system can be obtained by calculating the bending and
torsion deformation caused by the external load of the joint. For the flexibility of the link,
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the differential motion vector of the link coordinate system can be obtained by calculating
the stretching, bending, and torsion deformation of the link. By analyzing the differential
motion of the joint and link subjected to external forces, the flexible deformation of the end
of the manipulator can be obtained. Then, the flexibility matrix can be obtained. For the
control flexibility, it can be obtained by the joint controller gain and the Jacobian matrix.

2.2.1. Joint Flexibility

When the joint i is subjected to an external load, it will produce bending deformation
and torsion deformation. The differential motion of the link coordinate system caused
by deformation is shown in Figure 2. The amount of deformation can be calculated by
Equation (4) as follows: 

τθi = KTi∆θJi
ταi = KBi∆αJi
τβi = KBi∆βJi

(4)

where ∆θJi is the joint angle error caused by the torsional deformation of joint i, KTi is the
torsional stiffness coefficient of joint i, τθi is the torque received by the joint i, ∆αJi and ∆βJi
are the differential rotation caused by the bending deformation of joint i, KBi is the bending
stiffness coefficient of the joint i, and ταi and τβi are the bending moment of the joint i.
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It can be seen from the differential motion that the end deformation DJθ caused by the
torsion of the space manipulator joint and the end deformation DJα and DJβ caused by the
bending can be expressed as: 

DJθ = Jθ(q)∆θJ
DJα = Jα(q)∆αJ
DJβ = Jβ(q)∆βJ

(5)

where Jα(q), Jβ(q) ∈ R6×n represents the Jacobian matrix that maps the bending defor-
mation of the joint space to the operation space, which can be abbreviated as Jα and Jβ,
respectively. The joins of the manipulator in this paper are all rotating joints, hence, the i-th
column of Jα and Jβ can be expressed as:

Jαi =



(pi × ni)x
(pi × oi)x
(pi × ai)x

nix
oix
aix

, Jβi =



(pi × ni)y
(pi × oi)y
(pi × ai)y

niy
oiy
aiy


.
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According to the duality principle, the static equivalent joint torque can be obtained
from the external force Fe at the manipulator’s end:

τθ = Jθ
T Fe

τα = Jα
T Fe

τβ = Jβ
T Fe

. (6)

From Equations (4)–(6), the deformation of the end of the space manipulator caused
by joint deformation can be obtained as:

DJθ = JθKT
−1 Jθ

TFe
DJα = JαKB

−1 Jα
TFe

DJβ = JβKB
−1 Jβ

TFe

, (7)

where KT, KB ∈ Rn×n are the diagonal matrices formed by KTi and KBi, respectively. Since
the stiffness of each joint is not zero, these two matrices have inverse matrices.

When the joint deformation is minimal, the total deformation of the end can be
expressed by Equation:

DJ = DJθ + DJα + DJβ = CJFe, (8)

where CJ = JθKT
−1 Jθ

T + JαKB
−1 Jα

T + JβKB
−1 Jβ

T, where CJ ∈ R6×6 represents the flexibility
of the joint at the end of the space manipulator.

2.2.2. Link Flexibility

When force analysis is carried out on a link i, it is regarded as a cantilever beam with a
fixed head and a free end. A coordinate system OeiXeiYeiZei is established at the end of the
link. The origin of the coordinate system is at the intersection of the end section and the
axis. Before the deformation of the link, each coordinate axis of OeiXeiYeiZei is in the same
direction with OiXiYiZi. As shown in Figure 3, the components of the force on the end
of the link along the X, Y, and Z directions of OeiXeiYeiZei are fxi, fyi, and fzi, respectively,
and the components of the torque on the end of the link along three axes are τxi, τyi, and
τzi, respectively.
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The differential motion vector dLi of the coordinate system Oei
′Xei

′Yei
′Zei
′ after de-

formation can be derived based on the analysis of the extension, bending, and torsion
deformation of the link caused by the external force and torque as follows:

dLi =



∆xLi
∆yLi
∆zLi
∆αLi
∆βLi
∆θLi

 =



li
EAi

0 0 0 0 0

0 li3

3EIi
0 0 0 li2

2EIi

0 0 li3

3EIi
0 −li2

2EIi
0

0 0 0 li
GIi p

0 0

0 0 −li2

2EIi
0 li

EIi
0

0 li2

2EIi
0 0 0 li

EIi





fxi
fyi
fzi
τxi
τyi
τzi

, (9)

where li is the length of the link i and EAi, EIi, and GIi p are the tensile stiffness, bending
stiffness, and torsional stiffness of the link, respectively.

It can be seen from the differential motion that the six-dimensional deformation caused
by the stretching, bending, and torsion of the link can be expressed as:

DLx = Jx(q)∆xL
DLy = Jy(q)∆yL
DLz = Jz(q)∆zL
DLθ = Jθ(q)∆θL
DLα = Jα(q)∆αL
DLβ = Jβ(q)∆βL

, (10)

where Jx(q), Jy(q), Jz(q) ∈ R6×n represent the Jacobian matrix where the deformation of
the link is mapped from the joint space to the Cartesian space, abbreviated as Jx, Jy, and Jz,
and the i-th column can be expressed as:

Jxi =



nix
oix
aix
0
0
0

, Jyi =



niy
oiy
aiy
0
0
0

, Jzi =



niz
oiz
aiz
0
0
0

.

Under static conditions, according to the duality principle, the equivalent force of
the link can be obtained from the external force Fe at the end of the space manipulator
as follows: 

fx = Jx
TFe

fy = Jy
TFe

fz = Jz
TFe

τx = Jθ
TFe

τy = Jα
TFe

τz = Jβ
TFe

. (11)

According to Equations (9)–(11), the deformation of the terminal of the space manipu-
lator caused by the deformation of links can be obtained as:

DLx = JxKx f x Jx
TFe

DLy = Jy

(
Ky f y Jy

T + Kyτθ Jθ
T
)

Fe

DLz = Jz

(
Kz f z Jz

T + Kzτβ Jβ
T
)

Fe

DLα = JαKατα Jα
TFe

DLβ = Jβ

(
Kβ f z Jz

T + Kβτβ Jβ
T
)

Fe

DLθ = Jθ

(
Kθ f y Jy

T + Kθτθ Jθ
T
)

Fe

, (12)
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where Kx f x = diag( li
EAi

)
n×n

, Ky f y = Kz f z = diag( li3

3EIi
)

n×n
, Kyτθ = −Kzτβ = Kβ f z =

Kθ f y = diag( li2

2EIi
)

n×n
, Kατα = diag( li

GIi p
)

n×n
, and Kβτβ = Kθτθ = diag( li

EIi
)

n×n
.

When the link deformation is minimal, the total deformation at the end can be ex-
pressed as:

DL = DLx + DLy + DLz + DLθ + DLα + DLβ = CLFe, (13)

where CL ∈ R6×6 indicates the flexibility of the links at the end of the space manipulator,
and its expression is shown as in Equation (14):

CL = JxKx f x Jx
T + Jy

(
Ky f y Jy

T + Kyτθ Jθ
T
)
+ Jz

(
Kz f z Jz

T + Kzτβ Jβ
T
)
+ JαKατα Jα

T+

Jβ

(
Kβ f z Jz

T + Kβτβ Jβ
T
)
+ Jθ

(
Kθ f y Jy

T + Kθτθ Jθ
T
) (14)

2.2.3. Control Flexibility

It is defined that the control gain of the i-th joint is ki and KC= diag(k1, k2, · · · , kn).
The error of each joint caused by the joint torque τj can be obtained by Equation (15):

τj = KC∆q. (15)

Thus, the pose error of the end of the manipulator generated by external influence
Fe is:

DC = JθKC
−1 Jθ

TFe = CCFe, (16)

where CC ∈ R6×6 represents the control flexibility at the end of the space manipulator.
In summary, the total deformation DA at the end of the space manipulator is:

DA = DJ + DL + DC = CAFe, (17)

where CA = CJ +CL +CC denotes the flexibility matrix of the end of the space manipulator,
revealing the linear relationship between the external force Fe and the endpoint deformation
DA. The inverse matrix CA

−1 of CA represents the equivalent stiffness matrix at the end of
the space manipulator.

The above is the equivalent stiffness model with more comprehensive factors. The
analysis and optimization will be carried out in the next section.

3. Stiffness Optimization Method for Peg-in-Hole Assembly

Before optimizing the stiffness of the space manipulator, the corresponding evaluation
index must be established.

3.1. Task Direction Flexibility

The aforementioned space manipulator end flexibility matrix CA is divided into four
3× 3 sub-matrices as follows:

CA =

[
C f f Cτ f
C f τ Cττ

]
, (18)

where C f f denotes the position error under the action of unit force, that is, the position
flexibility; Cττ represents the attitude error under the unit torque, that is, the attitude
flexibility; Cτ f and C f τ denote the attitude coupling error under the action of a unit force.

The positional flexibility ellipsoid is designed as:

m2

λ1
2 +

n2

λ22 +
k2

λ32 = 1, (19)

where λ1, λ2, and λ3 are the singular values of the matrix C f f . Rm,n,k ∈ R3×1 is defined
along the Z-axis of the space manipulator tool coordinate system to satisfy Equation (19) as
the task direction flexibility of the peg-in-hole assembly. ‖Rm,n,k‖2 denotes the end position
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error under unit force in the task direction. It can be found that the larger the ‖Rm,n,k‖2, the
smaller the contact force generated by the unit error of the end of the space manipulator.
Thus, ‖Rm,n,k‖2 can be optimized to suppress the sudden change in the contact force during
the assembly process.

3.2. Optimization

For the peg-in-hole assembly task with determining the target pose, it is necessary to
select the appropriate controller gain and configuration in the joint space to optimize the
equivalent stiffness of the space manipulator. The optimization problem can be described
as follows:

f (q, KC) = ‖Rm,n,k‖2 → max. (20)

The Particle Swarm Optimization algorithm is used to solve the optimization problem
described by Equation (20). For a manipulator with n degrees of freedom, the dimension of
the search space is Dim = 2n. The decision variables of the algorithm can be designed as:

Θ =
[
qT kT

]T
. (21)

where k = [k1 k2 · · · ki · · · kn]
T.

If xj
i and vj

i are used to denote the position and velocity of the i-th particle at step

j, pj
i and pj

s are used to denote the individual historical optimal solution and the group
historical optimal solution of the i-th particle at step j, respectively. Then, the velocity and
position update formula can be obtained by the following equation:

vtemp
i = ωvj

i + c1λ
(

pj
i − xj

i

)
+ c2η

(
pj

s − xj
i

)
, (22)

where ω is called the inertia factor, which denotes the degree of dependence of the particle
on the initial value, that is, the ability to explore the global solution space; c1 denotes the
cognitive factor; λ is randomly distributed on the interval [0, 1]; c2 denotes the social factor;
and η is randomly distributed on the interval [0, 1]. c1 and λ jointly determine the degree
of dependence of the particle on the individual historical optimal solution. c2 and η jointly
determine the degree of dependence of the particles on the optimal solution of the group.

This paper optimizes the configuration in the null space (Jθ has a null space mapping

matrix N(Jθ) = E− Jθ
+ Jθ at n ≥ 7). It is assumed that the block matrix vtemp

i =

[
.
qT

ite

.
k

T
ite

]T
.

Equation (23) is used to map
.
qite to the null space of the space manipulator as follows:

.
qin = N(Jθ)

.
qite , (23)

where E denotes identity matrix of order n. Thus, the particle swarm velocity and position
update formula is:  vj+1

i =

[
.
qT

in

.
k

T
ite

]T

xj+1
i = xj

i + ξvj+1
i

, (24)

where ξ is the constraint factor, which denotes the degree of inheritance of the speed of the
current step update by the particles. The above parameters can be adjusted according to
the different needs of the specific optimization problem.

During the optimization process, the velocity and position of the particles are continu-
ously updated according to Equation (24). When the speed of each particle is zero and the
position does not change or the algorithm reaches the maximum number of iterations, the
calculation is terminated. The historical optimal solution of the group at this time is the
final value of the decision vector. The decision vector is equally divided into two groups to
obtain the optimized configuration and controller gain.
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4. Sliding Mode Impedance Control Based on Disturbance Compensation
4.1. Sliding Mode Impedance Control

The impedance model is designed as follows:

Mm
..
Xd + Bm

.
Xd + KmXd + Fd = Mm

..
Xe + Bm

.
Xe + KmXe + Fe, (25)

where Xe,
.

Xe, and
..
Xe denote the actual pose, velocity, and acceleration of the space ma-

nipulator in the working space, respectively; Xd,
.

Xd, and
..
Xd denote the desired trajectory,

desired speed, and acceleration of the space manipulator in the workspace, respectively;
Mm, Bm, and Km are the mass, damping, and stiffness coefficients, respectively; and
Km = CA

−1. The impedance control law can be designed according to Equation (25):

Ff = Mm
..
ex + Bm

.
ex + Kmex + kp f (Fd − Fe), (26)

where ex = Xe − Xd.
The sliding mode function is designed as follows:{ .

XR =
.

Xd + Λex

s =
.

Xr −
.

Xe =
.
ex + Λex

, (27)

where Λ is a positive definite diagonal matrix. Equation (26) is introduced into the slid-
ing mode control mode, and the sliding mode control mode is designed considering
Equation (3) as:

Fr = Mx
..
Xr + Cx

.
Xr + Ks + ηtanh

s
ε
+ Ff , (28)

where K > 0 and ε > 0.

4.2. Disturbance Compensation

If the disturbance de caused by the sudden change of contact force is regarded as
an input of a control system, then the robust control problem can be transformed into a
two-person zero-sum optimal control problem. Φ is assumed as:

Φ(s, u, de) = sTAs + uTBu− γ2dT
e de. (29)

where A and B are symmetric positive definite constant matrices, and γ is a known normal
number. The continuously differentiable performance index is defined as:

L(s, u, de) =
∫ ∞

0
Φ(s, u, de)dτ. (30)

Based on performance indicators, the local Hamiltonian equation is defined as:

H(s, u, de,∇L) = Φ(s, u, de) +∇LT .
s, (31)

where ∇L = (∂L(s, u, de)/∂s).
The goal of the zero-sum game is to find a set of optimal control sequences, u∗ and

de
∗, that satisfy the relationship of Equation (32):

L(s, u∗, de) ≤ L∗(s, u∗, de
∗) ≤ L(s, u, de

∗). (32)

When u and de execute their respective optimal control sequences, it can be considered
that the saddle point of the two-person zero-sum game problem is obtained. At this time,
the local optimal performance index is:

L∗(s, u∗, de
∗) = min

u
max

de

∫ ∞

0
Φ(s, u, de)dτ = max

de
min

u

∫ ∞

0
Φ(s, u, de)dτ. (33)
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According to Equations (31) and (33), the HJI equation can be obtained as:

Φ(s, u∗, de
∗) +∇L∗T .

s = 0. (34)

The solution u∗ and de
∗, satisfying Equation (34), should have the following form [31]:

u∗ = −1
2

B−1∇L∗, de
∗ =

1
2γ2∇L∗. (35)

The BP neural network is used to approximate the performance index, and the hyper-
bolic tangent function is selected as the activation function. The ideal neural network can
be expressed as:

L(s, u, de) = wc
Ttanh(s, u, de) + εc, (36)

where wc denotes the unknown neural network weight, and εc denotes the neural network
approximation error. Thus, the gradient of the performance index can be expressed as:

∇L(s, u, de) = wc
T∇tanh(s, u, de) +∇εc. (37)

Equation (37) is substituted into Equation (31), which is then:

H(s, u, de,∇L) = Φ +
.
sTwc

T∇tanh(s, u, de)− eH , (38)

where eH is the approximation error. Thus, the output of the actual neural network is:

L̂(s, u, de) = ŵT
c tanh(s, u, de), (39)

where ŵc is the estimated value of the weight wc. Thus, the approximation to the Hamilto-
nian equation is:

Ĥ
(
s, u, de,∇L̂

)
= Φ +

.
sTŵc

T∇tanh(s, u, de). (40)

The residual function is created according to the steepest gradient descent method:

Ec =
1
2
(

Ĥ − H
)2. (41)

Thus, the renewal law of ŵc can be expressed as:

ŵc = ŵc − αc
∂Ec

∂ŵc
, (42)

where αc denotes the learning rate.
Thus, u∗ can be obtained by combining Equations (35) and (39):

u∗ = −1
2

B−1ŵT
c∇tanh(s, u, de). (43)

The sliding mode control law, by substituting Equation (43) into Equation (28), can be
rewritten as:

Fr = Mx
..
Xr + Cx

.
Xr + Ks + ηtanh

s
ε
+ Ff −

1
2

B−1ŵT
c∇tanh(s, u, de). (44)

5. Test and Analysis

To validate the control method proposed in this paper, three comparative stimu-
lations on the space manipulator are designed. The first experiment used the existing
control method [29] with disturbance observers but no optimized configuration and con-
trol parameters. The second experiment used the existing impedance control method
with optimization of configuration and control parameters. The third experiment carries
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out the control algorithm proposed in this paper based on stiffness optimization and
disturbance compensation.

5.1. Subject

The subject of the three experiments is a 7-DOF space manipulator. Figure 4 shows
the space manipulator and its Denavit–Hartenberg (DH) model with a coordinate system.
Table 1 shows the kinematic parameters of the space manipulator. The mass parameters are
shown in Table 2, and the inertia tensor can be obtained from Table 2. The connecting rod is
made of aluminum. The diameters of link 3 and link 4 are 96 mm and 70 mm, respectively,
and the wall thickness is 5 mm.
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Figure 4. Space manipulator and its coordinate systems.

Table 1. Kinematic parameters of the space manipulator.

i αi (◦) αi (mm) θi (◦) di (mm)

1 −90 0 0 166.8
2 90 0 −90 183.1
3 0 544.9 0 −52
4 0 500.9 90 0
5 90 0 −90 0
6 −90 0 −90 −121.1
7 0 0 0 0

Table 2. Inertial parameters of the space manipulator.

Link Center of Mass X (m) Center of Mass Y (m) Center of Mass Z (m) Mass (kg)

Base 0 0 0.032161 1.82
Link1 0 −0.00754 0.00864 8.5
Link2 0 0.00754 0.00864 8.5
Link3 −0.45495 0 0.24168 10.8
Link4 −0.5013 0.00475 0.32914 6.3
Link5 0 0.11454 0.00521 2.13
Link6 −0.00451 −0.12413 0 2.3
Link7 0 −0.00354 −0.00771 1.9
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The base coordinate system of the space manipulator coincides with the world coordinate

system, and its initial configuration is qini1 =
[
0
◦ −90

◦
0
◦

90
◦ −90

◦ −90
◦

0
◦
]T

. The end tool
clamps a peg with a mass of 5 kg to move from xini = [0.0520 m 0.8051 m 0.6197 m 180◦ 0◦ 0◦] to
xdst = [0.0520 m 0.8051 m 0.4697 m 180◦ 0◦ 0◦]. Restricted by the accuracy of the calibration
of the vision sensor and the algorithm, there is an error of ±5 mm in xdst. The motion
trajectory of the space manipulator adopts the trapezoidal speed planning method with arc
transition, the total planning time is T = 10 s, and the planning step length is ∆T = 0.01 s.
The control frequency is 100 Hz, and the measurement frequency is 1000 Hz.

5.2. Experiments

At the beginning of the experiments, the space manipulator clamped the peg to move
linearly along the Z direction of the coordinate system. After the shaft is in contact with
the end face of the hole, it enters the hole searching stage and moves along the vortex
line, as shown in Figure 5. The contact force between the shaft and the end face of the
hole is maintained at Fd =

[
0 0 30 N 0 0 0

]
. After finding the hole, the space

manipulator moves in a straight line through the hole. The contact forces mode is obtained
according to the Hertz theory, and the simulation details of the environment are shown
in the literature [32]. An error of 5% is added to the dynamics parameters to simulate its
uncertainties. Matlab and its Robotics ToolboxCorke (Release 10) are used to simulate and
verify the proposed method.
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0 N and then abruptly reaches the peak value of 114 N. At the moment of collision, the 

Figure 5. The searching trajectory of the hole.

In experiment 1, the existing control method [29] was used, and the configura-
tion and control parameters were not optimized. The simulation results are shown in
Figures 6 and 7. It can be seen that the hole searching phase ends at about the 4th second,
and the peg loses contact with the hole and then collides. At this time, the contact force
becomes 0 N and then abruptly reaches the peak value of 114 N. At the moment of collision,
the peak disturbance force of the base comes 1086 N. In a practice project, such a large
contact force can easily exceed the 100 N range of the sensor, which will affect the accuracy
of the data and even damage the sensor. The tremendous disturbing force of the base will
also cause massive interference to the attitude and orbit control of the base spacecraft.
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Figure 7. Disturbance of the base in experiment 1.

In experiment 2, the existing impedance control method was used, and the configura-
tion and control parameters were optimized. The number of the particle population is 50,
the inertia factor is ω = 0.8, c1 = c2 = 0.5, and the maximum iteration is 100 times. The
convergence process and optimization results are shown in Figure 8. Before optimization,
the joint controller gain is KC = 5000E7 (E7 is 7 identity matrix) and the controller gain after
optimization is KC= diag(3080, 4253, 1000, 1000, 1000, 1000, 4696). The optimized configu-
ration is qini2 =

[
−4.5

◦ − 96.8
◦

0.4
◦

90.3
◦ − 90.7

◦ − 96.8
◦

4.5
◦]T. The simulation results are

shown in Figures 9 and 10. It can be seen that due to the optimization of the manipulator’s
configuration and controller gain, the peak contact force at the moment of contact collision
drops to 77 N, which is 47% lower than that in Experiment 1. The peak disturbance force
of the base is 534 N, and the decrease is 51%.
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In experiment 3, the control algorithm designed in this paper is used based on stiffness
optimization and disturbance compensation. The BP neural network structure is set to 3-6-1,
and the initial weight is randomly assigned within the range of [−10, 10]. Mm, Bm, A, and B
are all unit arrays, and γ = 1.1. The neural network is trained up to 1000 times. The initial
learning rate is αc = 0.3, and each training decrements by 0.001, and αc ≥ 0.005, kp f = 0.35,
K = 2, η = 1.2, Λ = 0.1, ε = 0.5. The simulation results are shown in Figures 11 and 12. It
can be seen that due to the compensation based on the zero-sum optimal control algorithm,
the peak value of the contact force is 38N, which is a 90% drop compared to experiment 1.
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method of the space manipulator proposed in this paper can effectively reduce the sudden
change in contact force caused by collision and can suppress the disturbing force of the
base by comparing the results of three experiments. The disturbance caused by the change
of contact status during the assembly process is reduced to meet the control requirements
of high precision and high robustness for peg-in-hole assembly tasks performed by a
space manipulator.

Table 3. The comparison between the experiments.

Experiment 1 Experiment 2 Experiment 3

Sudden change in contact force 114 N 77 N 38 N
lower than experiment 1 / 47% 90%

Peak disturbance force of the base 1086 N 534 N 500 N
lower than experiment 1 / 51% 54%

6. Conclusions

Based on the structure and control characteristics of the space manipulator, a space ma-
nipulator peg-in-hole assembly control method considering the optimization of equivalent
stiffness is proposed in this paper. Compared with the existing compliance control method,
the contributions of this paper mainly include the following points: (1) the method pro-
posed in this paper designs the sliding mode impedance control law based on establishing
and optimizing the equivalent stiffness; (2) this paper designs the optimal compensation
term for the contact disturbance; (3) the methods proposed in this paper effectively reduce
the sudden change in contact force caused by collision and can suppress the disturbing
force of the base while controlling the contact force at the end of the space manipulator,
thereby improving the accuracy and robustness of the peg-in-hole assembly control. In the
later period, the dynamic coupling characteristics of flexible base and manipulator will
be further taken into consideration for the multi-arm space robot performing the on-orbit
assembly task of large trusses, and the coordinated control method of peg-in-hole assembly
under the coupling vibration of multi-arm space robot will be studied.
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