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Abstract: Large flexible aircraft are often accompanied by large deformations during flight leading to
obvious geometric nonlinearities in response. Geometric nonlinear dynamic response simulations
based on full-order models often carry unbearable computing burden. Meanwhile, geometric
nonlinearities are caused by large flexible wings in most cases and the deformation of fuselages
is small. Analyzing the whole aircraft as a nonlinear structure will greatly increase the analysis
complexity and cost. The analysis of complicated aircraft structures can be more efficient and
simplified if subcomponents can be divided and treated. This paper aims to develop a hybrid interface
substructure synthesis method by expanding the nonlinear reduced-order model (ROM) with the
implicit condensation and expansion (ICE) approach, to estimate the dynamic transient response
for aircraft structures including geometric nonlinearities. A small number of linear modes are used
to construct a nonlinear ROM for substructures with large deformation, and linear substructures
with small deformation can also be assembled comprehensively. The method proposed is compatible
with finite element method (FEM), allowing for realistic engineering model analysis. Numerical
examples with large flexible aircraft models are calculated to validate the accuracy and efficiency of
this method contrasted with nonlinear FEM.

Keywords: geometric nonlinearities; reduced-order model; substructure synthesis method; dynamic
transient response; aircraft

1. Introduction

Geometric nonlinearities must be considered in the design process of modern, high-
performance aircraft, especially high-altitude long-endurance (HALE) aircrafts. Because
of light-weight design and substantial flexibility, the wings of HALE aircraft always have
high slenderness and produce large deformation during flight. Such large deformation
leads to vital changes in structural stiffness characteristics and aerodynamic configuration,
which obviously affect dynamic response, stability and flight performance of aircraft [1–3].
Accurate calculation of structural dynamic response has great significance in the design of
high-performance aircrafts [4].

Direct numerical simulation approach of geometric nonlinear dynamic response with
physical degrees of freedom (DoFs), such as commercial finite element method (FEM)
packages, often holds prohibitive computational burden. Especially for complex aircraft
structures, detailed FEM models of structures often tend to possess large numbers of DoFs
in order to account for extremely detailed geometric features and material distributions.
High computational burden leads to analytical difficulties on aeroelasticity or optimization,
etc. Reduced-order model (ROM) is an attractive theory for economical geometric nonlinear
dynamic response simulation. Parametric ROM is especially receiving attention, in which
the equations of motion are expressed explicitly in the form of ordinary differential equa-
tions (ODEs) including polynomial terms of coordinates. These can be directly integrated
in the time domain, or be used for further analysis by well-established approaches [5].
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Several researches of this approach have been explored in the recent past. Direct and indi-
rect methods are two broad classes of methods for addressing ROM including geometric
nonlinearities. In the category of direct methods, knowledge of the dynamic characteristics
of the full-order model are required. It is difficult to realize with the complexity of the
structures. Indirect methods are non-intrusive and applicable to model establishment
with commercial FEM software, which will be more practical. Stiffness coefficients can be
obtained from test cases including forces and deformations.

The indirect methods are divided into two categories: the enforced displacement
approach and the force-based approach. In the enforced displacement approach, constraint
forces are solved after prescribed shape of structures are given [6]. In the force-based
approach, corresponding deformations are computed after prescribed forces are applied.
Accounting for the effect of foreshortening effects requires additional procedures in these
two approaches. Membrane modes or dual modes can be included in structure modeling,
and natural frequencies are beyond the bandwidth of interest. Meanwhile, the reduction
basis becomes large [7,8]. Modal derivatives (MD) are efficient approaches to enrich the
modal basis and have become popular for recovering the foreshortening effects [9]. Hol-
lkamp and Gordon improved the force-based approach to recover the in-plane deformation
with the outer-plane deformation which is called the implicit condensation and expansion
(ICE) method [10]. Foreshortening effects were captured implicitly in the nonlinear test
cases, and high frequency modes were not needed. Response of the axial direction could
be simulated in a post-processing step [10,11]. McEwan implemented that approach to
conduct dynamic simulations of shells under intense acoustic excitations and received sat-
isfactory accuracy [12,13]. Besides the modal-based reduction techniques described above,
the data-based reduction techniques could also be used for ROM construction [14,15].
Cooper and Cestino et al. introduced the ICE method to aeroelastic analysis of large
flexible wings coupled with the double lattice method (DLM) and the results presented
the important influence of geometric nonlinearities in aircraft structures [16,17]. An et al.
considered the follower force effects of aerodynamic loads in static and dynamic aeroelastic
response analysis and the simulation results showed satisfied agreement with wind tunnel
test results [18,19]. A review of ROM methods for geometric nonlinear structures was
presented by Mignolet et al. [20].

Although the ROM method reduces the analysis complexity and cost effectiveness,
taking the complex aircraft model as a whole structural model is still unbearable, especially
in aeroelastic or optimization analysis where many iterations may be required. The sub-
structure method is widely recognized as an effective method for modeling of structures
with a large number of DoFs through dividing structures into simpler substructure compo-
nents [21]. Compared with the overall modal structure reduction method, the substructure
methods can still guarantee low model order and high calculation accuracy. Especially
for large flexible aircraft models, the major source of geometric nonlinearities is the wing
components. The fuselage and other components of aircraft maintain linearity in flight
conditions. Processing all aircraft structures as nonlinear structures will greatly increase
the computational complexity and cost. The substructure method considering geometric
nonlinear factors in subcomponents should become an important methodology for large
flexible aircraft modeling.

Belonging to the fixed interface component mode synthesis (CMS) method, Hurty
indicated that the motion of each subcomponent could be expressed by a combination of
linear modes, constraint modes and rigid-body modes [22]. Craig and Bampton improved
Hurty’s method to integrate constraint modes and rigid-body modes [23]. It is famously
known as the C-B method. Rubin combined attachment modes or flexible residual with free
interface modes which is also a typical method based on CMS techniques [24]. Craig and
Chang developed a free and hybrid interface CMS method by supplemented free interface
linear modes [25,26]. Classic substructure methods based on CMS techniques have been
proven to be effective in linear structure analysis and there are also many applications of
substructure method on concentrated nonlinear problems [27–30]. With applications in
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distributed nonlinear problems, Apiwattanalunggran extended the fixed interface CMS
method by using fixed interface nonlinear normal modes to analyze structures with weak
nonlinearities [31]. Karpel added virtual mass elements to the substructures to simulate
the effects of other substructures components [32]. They analyzed the static and dynamic
responses of large flexible structures. This method divided the wing component into
segments rather than as a whole structure in order to connect with the fuselage, so it was
more like a combination of the nonlinear CMS method and the finite segment method.
Kantor extended this method and applied it into a simple large flexible aircraft [33]. With
strip theory, geometrical nonlinear aeroelastic analysis was implemented. Joannin and
Laxalde extended the classic CMS method by nonlinear complex modes for the study of
nonlinear and mistuned cyclic structures [34,35]. Kuether presented two modal substruc-
ture methods with nonlinear normal modes and a nonlinear reduced-order model under
linearization [36]. He also studied a nonlinear substructure method combined ICE method
and C-B method with a simple beam model and gave the comparison of calculation results
based on back-bone curves [37,38]. Wu et al. developed interface reduction techniques in
the C-B method considering geometric nonlinearities and modal derivatives were used
for nonlinear displacement recovery [39]. However, existing substructure methods for
structure modeling with geometric nonlinear subcomponents is often independently based
on the fixed interface substructure techniques. Under the analysis requirement of complex
structures, especially aircraft structures, key points of each component, such as wing and
fuselage modeling, are different. Development of a hybrid interface substructure technique
considering geometric nonlinearities is essential.

This paper aims to develop a nonlinear hybrid interface substructure method in
order to solve nonlinear dynamic response analysis problems of large flexible aircraft
structures. Complex structure models can be divided into nonlinear components and linear
components. The nonlinear components are modeled with ROM by ICE method using
selected linear modes as reduced basis vectors in modal space. A series of static test cases
are applied to generate nonlinear stiffness coefficients by a regression procedure. Nonlinear
stiffness terms of ROM are approximated with polynomials. The linear components
are modeled naturally by linear modes. Each component is assembled to satisfy force
equilibrium and compatibility by CMS techniques. A set of nonlinear equations of motion
can be integrated into simulation dynamic transient responses under various inputs. The
application of the method described can be employed with a relatively detailed FEM and
largely reduces the computational burden.

The content of this paper is arranged as follows. Nonlinear ROM construction for
nonlinear components is presented in Section 2.1. Nonlinear substructure method based
on hybrid interface substructure method is introduced in Section 2.2. Numerical examples
of a large flexible aircraft are given in Section 3. Considering the characteristics of aircraft,
wing sections are modeled as nonlinear components and the fuselage section is simulated
as a linear component. The results validate the validity and efficiency contrasted with
nonlinear FEM solutions. In Section 4, we finally draw useful conclusions.

2. Theory and Methods
2.1. Nonlinear ROM Method

Construction of ROM considering geometric nonlinearities is illustrated in this section.
It can be applied not only to structure modeling with global geometric nonlinearities, but
also later for geometric nonlinear component modeling in a substructure method.

2.1.1. Structure Equations

The development of the structural ROM is based on equations derived from a Galerkin
approach to solve geometric nonlinear dynamics in a weak form [6]. The equation of motion
of the structure may often be given in a dynamic equation as:

∂ (FijSjk)

∂Xk
+ ρ0b0

i = ρ0
..
ui (1)
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where tensor S is the second Piola–Kirchhoff (P-K) stress tensor, tensor F is the deformation
gradient tensor, ρ0 is the mass density of the structure and b0 is the vector of the body
force. X denotes the position vector of the structure in the reference configuration and ui
denotes the deformed position vector. With the Galerkin approach, a truncated basis of
linear modes Φ= [Φ1,Φ2, · · · ,Φn] are chosen as the basis functions. A quadratic and cubic
polynomial form describing the nonlinear relationship and the dynamic equation in terms
of the generalized coordinates can be expressed as [18]:

Mij
..
qj + E(1)

ij qj + E(2)
ijl qjql + E(3)

ijlpqjqlqp = Fi (2)

where Mij are the terms of the reduced mass matrix, Fi are the modal components of

the external force, q1, q2, · · · , qn are general modal coordinates, E(1)
ij , E(2)

ijl and E(3)
ijlp are the

components of the tensors of the reduced stiffness. Einstein summation convention is
applied to the formulation.

When a truncated basis of the linear modes is chosen as the basis functions, Mij and

E(1)
ij can be expressed in the formulation as:{

Mij = Mi, i = j
Mij = 0, i 6= j

(3)

 E(1)
ij = Ei, i = j

E(1)
ij = 0, i 6= j

(4)

where Mi represents the modal mass term of the ith basis function, and Ei is the modal
stiffness term of the ith basis function. The formulation of the nonlinear dynamic equations
corresponding to the ith basis function can be written as:

Mi
..
qi + Eiqi + E(2)

ijl qjql + E(3)
ijlpqjqlqp = Fi (5)

The nonlinear ROM equations are obtained in modal space with far fewer degrees of
freedom than the full-order FE model. Nonlinear modal restoring forces Qi = E(2)

ijl qjql +

E(3)
ijlpqjqlqp become functions of general modal coordinates q = (q1, q2, · · · , qn).

In another way, the equations of motion can be discretized by FEM in physical space:

M
..
u + Ku + fNL(u) = F (6)

where M is the linear mass matrix and K is the linear stiffness matrix, fNL(u) indicates
the nonlinear restoring force function, u and F are displacement vector and external force
vector in physical space. The geometric nonlinear theory demonstrates that the quadratic
and cubic polynomials of displacement are accurate enough to describe the nonlinear
restoring force [40]. Introduced linear mode Φ and reduced system by:

u=Φq (7)

The low-order structure dynamic equations of Equation (6) are in the same formu-
lation as Equation (5). When given specified external forces, the time-dependent modal
coordinates can be calculated from Equation (5), and physical displacement vector u is
solved by Equation (7).
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2.1.2. Regression Analysis of Nonlinear Stiffness Coefficients

An explicit calculation of the nonlinear stiffness is not practical especially for complex
FEM models. Regression analysis is used to identify the nonlinear stiffness coefficients E(2)

ijl

and E(3)
ijlp, the static formulation of Equation (5) is:

E(2)
ijl qjql + E(3)

ijlpqjqlqp = Fi − Eiqi (8)

Evidently, if there is a set of specified static loads and corresponding structural
deformations, the unknown nonlinear stiffness terms related to the applied loads and
the structural displacement resultant can be found by using regression analysis. Corre-
sponding deformation can be calculated by commercial FEM software packages, such as
MSC.Nastran [12,13].

Considering that there are NT sets of static test load cases and corresponding deforma-
tions, the loads and deformations are transformed into modal space. To solve the unknown
nonlinear modal stiffness terms, the left side of Equation (7) can be fitted in a regression
progress. The regression problem can be presented as:

Eijl
(2)qj

1ql
1 + Eijlp

(3)qj
1ql

1qp
1 = Fi

1 − Eiqi
1

Eijl
(2)qj

2ql
2 + Eijlp

(3)qj
2ql

2qp
2 = Fi

2 − Eiqi
2

...
Eijl

(2)qj
NTql

NT + Eijlp
(3)qj

NTql
NTqp

NT = Fi
NT − Eiqi

NT

(9)

It should be noted that the superscript without bracket denotes the serial number of
test cases from 1 to NT instead of the power value.

2.1.3. Strategy for Generating Test Load Cases

Regression analysis is performed using the commercial software package on the
actual deformation and load testing after FEM analysis. The accuracy of the nonlinear
stiffness coefficients depends directly on the rationality of the selected test load cases,
which is related to the success of recovery of the nonlinear structure equations. Two factors
are important in generation of test load cases. The first is the spatial distribution of the
load over the FEM model. The second is the overall magnitude of the FEM loading [12].
With the absence of a priori information about the exact nature of the nonlinear stiffness
coefficients, a sum of a number of weighted mode shapes are often used as test load cases
in ROM [12,13,16]. For a given test load cases:

F =
NR

∑
r=1

arKΦr (10)

Here, F is a vector of discrete loads in physical nodal space, ar are scalar weighting
factors for each mode shape and NR is the number of modes selected for test load case
generation. The selected test cases cover all the possible nonlinear characteristics of
the structure investigated. The desired displacement at the points of interest can be
reached by selecting appropriate weighting factors ar. The scalar weighting factors ar can
be obtained as:

ar =
Wc

φ
(c)
r

(11)

where WC is the desired transverse displacement at location “C” in the structural model,
and φ

(c)
r is the transverse displacement of Φr at location “C”.
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2.2. Nonlinear Substructure Method with ROM

To simulate the dynamic response of complex structure by using the substructure
synthesis method, the whole structure should be divided into a limited number of substruc-
tures. The substructure synthesis method extended to consider geometric nonlinearities
is illustrated in this section. The structure can be divided into nonlinear substructure
components with fixed interface and linear substructure components with free interface.
Nonlinear components can be modeled by ROM proposed before.

2.2.1. Nonlinear Substructure Component

Considering a nonlinear substructure (nl = 1, 2, · · · , p) system, each dynamic equa-
tion of substructures in physics coordinates can be expressed as:(

mtt mtb
mbt mbb

)(nl){ ..
ut..
ub

}(nl)

+

(
ktt ktb
kbt kbb

)(nl){ ut
ub

}(nl)

+

{
gt(u)
gb(u)

}(nl)

=

{
O
Gb

}(nl)

+

{
ft
fb

}(nl) (12)

Subscript t, b represents interior and boundary coordinates, g(u) is the nonlinear
function, Gb is the boundary load vector and f is the external force vector.

It should be noted that, only the geometrical nonlinear problem is considered here, and
the nonlinear problem of interface connection of aircraft structure is not considered. The
applied ICE method, gt(u) and gb(u) can be obtained from regression analysis described

before. When given u(nl)
b = 0 as fixed interface boundary condition, the structure dynamic

equation of interior freedoms is:

mtt
(nl)ut

(nl) + ktt
(nl)ut

(nl) + gt(ut, ub = 0)(nl) = 0 (13)

Using linear modes to reduce order with ut
(nl) =Φt

(nl)qt
(nl), the low order equation is:

M̃t
(nl) ..

qt
(nl) + Ω̃t

(nl)qt
(nl) +

~
gt

(nl)
(

qt
(nl)
)
= 0 (14)

M̃t
(nl) = Φt

(nl)Tmtt
(nl)Φt

(nl) = diag(M1, M2, · · · , Mn)
(nl) (15)

Ω̃t
(nl) = Φt

(nl)Tktt
(nl)Φt

(nl) = diag(E1, E2, · · · , En)
(nl) (16)

~
gt

(nl)
(

qt
(nl)
)
= (E(2)

1jl qjql + E(3)
1jlpqjqlqp, E(2)

2jl qjql

+E(3)
2jlpqjqlqp, · · · , E(2)

njl qjql + E(3)
njlpqjqlqp)(nl)T

(17)

where Mi, Ei and Φt represent the modal mass term, modal stiffness term and mode shape
matrix corresponding to substructure with fixed interface. Static constraint modes (SCMs)
Ψb are introduced to translate displacement:{

ut
ub

}(nl)

=
(

Φt Ψb
)(nl)

{
qt
ub

}(nl)

=

(
Φtt ψtb
Obt Ibb

)(nl){ qt
ub

}(nl)

(18)

The structure dynamic equation can be reformulated as:( ∼
Mt Mtb
Mbb Mbb

)(nl){ ..
qt..
ub

}(nl)

+

( ∼
Ωt O
O Kbb

)(nl){
qt
ub

}(nl)

+

{ ∼
g t∼
gb

}(nl)

=

{
O
Gb

}(nl)

+


∼
f t∼
f b


(nl) (19)
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Mbb
(nl) = ψ

(nl)T
tb (mtt

(nl)ψtb
(nl) + mtb

(nl)) + mbt
(nl)ψtb

(nl)

+mbb
(nl)

Mtb
(nl) = Φ

(nl)T
t (mt

(nl)ψtb
(nl) + mbb

(nl))

Mbt
(nl) = Mtb

(nl)T

f̃t
(nl) = Φtt

(nl)ft
(nl)

f̃b
(nl) = ψtb

(nl)ft
(nl) + fb

(nl)

(20)

2.2.2. Linear Substructure Component

Considering a linear substructure (l = 1, 2, · · · , q) system, each substructure dynamic
equation in physics coordinates can be expressed as:(

mtt mtb
mbt mbb

)(l){ ..
ut..
ub

}(l)

+

(
ktt ktb
kbt kbb

)(l){ ut
ub

}(l)

=

{
O
Gb

}(l)

+

{
ft
fb

}(l) (21)

According to the basic assumption in the free interface CMS method [25], the displace-
ment of each substructure can be represented by combination of linear modes Φ(l) under
free-interface boundary and residual modes Ψd

(l) as follows:{
ut
ub

}(l)

=
(

Φ Ψd
)(l){ q

Gb

}(l)

(22)

Modal coordinates q(l) can represent all freedom, and not only interior freedom,
because of the free interface boundary condition. The structure dynamic equation can be
reformulated as:(

M̃ O
O Mbb

)(l){ ..
q
..
Gb

}(l)

+

(
Ω̃ O
O Kbb

)(l){
q

Gb

}(l)

=

{
f̃t
f̃b

}(l)

(23)

M̃
(l)

= Φ(l)Tmtt
(l)Φ(l)

Ω̃
(l)

= Φ(l)Tktt
(l)Φ(l)

Mbb
(l) = Ψ

(l)T
d mbb

(l)Ψd
(l)

Kbb
(l) = Ψ

(l)T
d kbb

(l)Ψd
(l)

(24)

2.2.3. Substructure Synthesis Techniques

For simplicity, it is assumed that the whole structure consists of two nonlinear sub-
structures (Sub-A and Sub-B) components and one linear substructure (Sub-C) component.
The connected relationship is shown in Figure 1.
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Figure 1. Connected relationship.

Three components dynamic equations can be presented based on Equations (19) and (21) as:

(
M̃t Mtb
Mbb Mbb

)(A){ ..
qt..
ub

}(A)

+

(
Ω̃t O
O Kbb

)(A){
qt
ub

}(A)

+

{ ~
gt~
gb

}(A)

=

{
O
Gb

}(A)

+

{
f̃t
f̃b

}(A) (25)
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(
M̃t Mtb
Mbb Mbb

)(B){ ..
qt..
ub

}(B)

+

(
Ω̃t O
O Kbb

)(B){
qt
ub

}(B)

+

{ ~
gt~
gb

}(B)

=

{
O
Gb

}(B)

+

{
f̃t
f̃b

}(B) (26)

(
M̃ O
O Mbb

)(C){ ..
q
..
Gb

}(C)

+

(
Ω̃ O
O Kbb

)(C){
q

Gb

}(C)

=

{
f̃t
f̃b

}(C)

(27)

The compatibility equations of the interface coordinates and forces can be written
as follows:

ub
(A) = ub

(C−A) = Bd
(C−A)(Φ(C)q(C) + Ψd

(C)Gb
(C)) (28)

ub
(B) = ub

(C−B) = Bd
(C−B)(Φ(C)q(C) + Ψd

(C)Gb
(C)) (29)

Gb
(A) = −B f

(C−A)Gb
(C) (30)

Gb
(B) = −B f

(C−B)Gb
(C) (31)

Here Bd
(C−A), Bd

(C−B), B f
(C−A) and B f

(C−B) are Bohr matrices for determining posi-
tion of the connection freedoms between substructures. Substituting Equations (28)–(31)
into Equations (25)–(27) and moving nonlinear terms to the right side of equations, coupling
of these equations can be given as:

_
M


..
qt

(A)

..
qt

(B)

..
q(C)
..
Gb

(C)

+
_
K


qt

(A)

qt
(B)

q(C)

Gb
(C)

 =
_
F (qt

(A), qt
(B), Gb

(C)) (32)

_
M = STMS, K = STKS,

_
F = STF (33)

M =

 M1
M2

M3

, K =

 K1
K2

K3

 (34)

F = (̃ft
(A) − ~

gt
(A), f̃b

(A) − ~
gb

(A), 0, f̃t
(B) − ~

gt(qt)
(B),

f̃b
(B) − ~

gb
(B), 0, f̃t

(C), f̃b
(C))T (35)

M1 =

 M̃t
(A) Mtb

(A)

Mbt
(A) Mbb

(A)

O


M2 =

 M̃t
(B) Mtb

(B)

Mbt
(B) Mbb

(B)

O


M3 =

(
M̃

(C)
O

O Mbb
(C)

)
(36)

K1 =

 Ω̃t
(A)

Kbb
(A) B f

(C−A)

O


K2 =

 Ω̃t
(B)

Kbb
(B) B f

(C−B)

O


K3 =

(
Ω̃

(C)
O

O Kbb
(C)

)
(37)
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S =



I
B(C−A)T

d Φ(C) B(C−A)T
d Ψd

(C)

I
I

B(C−B)T
d Φ(C) B(C−B)T

d Ψd
(C)

I
I

I


(38)

Given the specified external force, the modal coordinate response can be obtained from
Equation (32) and the physical coordinate response can be solved by Equations (18) and (22).
In this manner, the dynamic transient response of a large flexible structure with substruc-
tures is successfully simulated using the proposed method.

3. Numerical Examples

A large flexible aircraft model is presented here to demonstrate the accuracy and
efficiency of the proposed method for nonlinear dynamic transient analysis. Static analy-
sis with lateral loads on wing-tip and dynamic transient analysis with harmonic lateral
loads on wing-tip are implemented. The response analysis results are compared to nonlin-
ear FEM.

3.1. FEM Model

A large flexible aircraft model with flying wing configuration is presented in Figure 2.
Main design parameters are given in Table 1. This aircraft model is composed of a central
fuselage fusion with two side wings. The vertical tails are set at each wing tip. The FEM
model of the aircraft model is constructed with beam elements and concentrated mass
elements. Aluminum is selected as the material of the beam elements and the properties of
the material are: E = 73 Gpa, ρ = 2700 kg/m3 and µ = 0.3.
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Figure 2. Aircraft FEM model.

Table 1. Design parameters.

Item Value

Wingspan/mm 4800.0
Length of fuselage/mm 1033.0

Aspect ratio 17.1
Root chord length of wing/mm 240.0

Distance between c.g. and node/mm 326.0
Width of fuselage/mm 1200.0

Weight/kg 20.0

Low order linear mode analysis results of the aircraft model are presented in Figure 3
and Table 2. The first order of elastic mode is 1st symmetric vertical bending mode and the
frequency is 3.67 Hz which indicated that the flexibility of the model is high.
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Figure 3. Modal shape of first eight elastic modes. (a) 1st symmetric vertical bending. (b) 2nd asymmetric vertical bending.
(c) 2nd symmetric vertical bending. (d) 3rd asymmetric vertical bending. (e) 1st symmetric horizontal bending. (f) 1st
asymmetric torsion. (g) 1st symmetric torsion. (h) 3rd symmetric vertical bending.

Table 2. Elastic modes analysis results.

Order Mode Frequency/Hz

1 1st symmetric vertical bending 3.67
2 2nd asymmetric vertical bending 7.08
3 2nd symmetric vertical bending 20.31
4 3rd asymmetric vertical bending 25.31
5 1st symmetric horizontal bending 31.31
6 1st asymmetric torsion 33.64
7 1st symmetric torsion 34.37
8 3rd symmetric vertical bending 39.61

With the substructure method proposed, the aircraft model can be divided into the
fuselage substructure component, left wing substructure component and right wing sub-
structure component. Three FEM models of the substructures are presented in Figure 4.
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Low order linear modes analysis results of substructures are given in Figures 5 and 6 and
Tables 3 and 4. The boundary condition of the fuselage substructure model is free condition
and the boundary condition of the wing substructure models is root fixed condition. It
is consistent with the synthesis method described before. Due to the symmetricity of the
aircraft structure, only the right wing substructure analysis results are shown.

Table 3. Wing component mode analysis results.

Order Mode Frequency/Hz

1 1st vertical bending 3.58
2 2nd vertical bending 22.31
3 1st horizontal bending 31.97
4 1st torsion 34.95

Table 4. Fuselage component mode analysis results.

Order Mode Frequency/Hz

1 1st order mode, symmetric 49.39
2 2nd order mode, symmetric 92.26
3 3rd order mode, asymmetric 94.04
4 4th order mode, asymmetric 111.05
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component. (b) fuselage component. (c) right wing component.

Aerospace 2021, 8, 344 12 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Wing component modal shape of first four elastic modes. (a) 1st vertical bending. (b) 2nd vertical bending. (c) 

1st horizontal bending. (d) 1st torsion. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Fuselage component modal shape of first four elastic modes. (a) 1st order mode, symmetric. (b) 2nd order mode, 

symmetric. (c) 3rd order mode, asymmetric. (d) 4th order mode, asymmetric. 

Table 3. Wing component mode analysis results. 

Order Mode Frequency/Hz 

1 1st vertical bending 3.58 

2 2nd vertical bending 22.31 

3 1st horizontal bending 31.97 

4 1st torsion 34.95 

  

Figure 5. Wing component modal shape of first four elastic modes. (a) 1st vertical bending. (b) 2nd vertical bending. (c) 1st
horizontal bending. (d) 1st torsion.



Aerospace 2021, 8, 344 12 of 19

Aerospace 2021, 8, 344 12 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Wing component modal shape of first four elastic modes. (a) 1st vertical bending. (b) 2nd vertical bending. (c) 

1st horizontal bending. (d) 1st torsion. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Fuselage component modal shape of first four elastic modes. (a) 1st order mode, symmetric. (b) 2nd order mode, 

symmetric. (c) 3rd order mode, asymmetric. (d) 4th order mode, asymmetric. 

Table 3. Wing component mode analysis results. 

Order Mode Frequency/Hz 

1 1st vertical bending 3.58 

2 2nd vertical bending 22.31 
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Figure 6. Fuselage component modal shape of first four elastic modes. (a) 1st order mode, symmetric. (b) 2nd order mode,
symmetric. (c) 3rd order mode, asymmetric. (d) 4th order mode, asymmetric.

The first order mode of the wing component is 1st vertical bending mode and the
frequency is 3.58 Hz. Other low order modes also have lower frequencies. In contrast,
the first order mode of fuselage is a symmetric mode and the frequency is 49.39 Hz.
Wing substructure components are much more flexible than the fuselage substructure
component. With the geometric nonlinear problem of the aircraft model, wing components
have large deformation under the loads and the fuselage component can be analyzed as a
linear component.

3.2. ROM Model of Wing Components

The ICE technique is used for ROM conduction of the wing component including
geometric nonlinearities. The accuracy of the nonlinear component model should be
validated before complex structure modeling. The sample datasets used in these numerical
examples are generated in MSC.Nastran. The first vertical bending mode and the first
torsion mode are selected for generating test load cases with Equation (10). Applied load
on wing model structure, corresponding deformation in physical space can be calculated
directly. Choosing a series of appropriate scalar weighting factors to satisfy demand of large
deformation situations, the test datasets used include 216 samples and the distribution of
vertical deflection of the wing tip by sample numbers is shown in Figure 7.
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The maximum wingtip deflection in the samples is about 20% of the span length of
the wing model. It satisfies the requirement of nonlinear analysis of aircraft structures.
The ROM model is validated by predicting the static deformation of the wing model. In
this part, 70% (151 samples) of the 216 samples are used for training the ROM model
and the remaining 30% (65 samples) are used for validation of the model performance.
The least-square technique is used as regression method for finding nonlinear stiffness
coefficients. Figure 8 presents the validation results with remaining samples. Deflection in
the z direction of the point of the wing tip on the beam, leading edge point of the wing tip
and trailing edge point of the wing tip are used for validations. The numbers of validation
data samples have been rearranged from small actual values to big values. The prediction
results show that the predicted values reach good agreement with actual values. The
established ROM model has good performance in large deformation response simulation
of wing components.

3.3. Response Analysis Results of Aircraft

With the ROM of nonlinear wing components established, the aircraft structure model
can be assembled. Nonlinear static and dynamic responses are simulated for validations. In
nonlinear static response analysis, lateral loads along the z direction are applied on the tip
of the left and right wings. The aircraft model is fixed at the center of gravity. The response
analysis results of wing tip deflection are given in Figure 9, using the nonlinear substructure
method proposed, nonlinear FEM (full order method, Nastran SOL106) and linear analysis
method (full order, Nastran SOL101), up to the load level. It can be seen that the analysis
results of the nonlinear substructure method can reach good agreement with the nonlinear
FEM. The nonlinear substructure method has obvious advantages in computational cost
compared to the full order analysis method. In comparison, the deflection results of the
linear analysis are obviously higher than the nonlinear analysis method and the difference
gradually increases with increasing load. The linear analysis method is not suitable for
modeling the large flexible structures.

In nonlinear transient dynamic response analysis, a harmonic lateral load is applied
on the tip of the left and right wings. The boundary condition is the same as static response
analysis. The harmonic load F is given as:

F = F0 sin(2π f t) (39)

where F0 is the load amplitude and f is the load frequency. The time step of simulation is
set as 0.001 s and the total time is 3 s. Nonlinear FEM (full order method, Nastran SOL400)
and linear analysis method (full order, Nastran SOL109) are also implemented with the
same time step parameters for contrast.

Figures 10 and 11 present dynamic transient analysis results of wing tip with load
amplitude 7 N and 20 N. The load frequencies are both 2 Hz. With lower load amplitude, the
linear and nonlinear analysis results show no obvious difference. The analysis results using
the nonlinear substructure method proposed match well with results from nonlinear FEM.

When the load amplitude increases to 20 N, the geometric nonlinearities lead to an
important impact in response analysis. The linear analysis and nonlinear analysis results
are obviously different. The analysis results of nonlinear substructure method can still
reach a good agreement with nonlinear FEM. In the case of large deformation, the method
proposed in this paper shows high accuracy for dynamic response simulation.

Figures 12 and 13 give the dynamic transient response analysis results with a large
deformation when changing the load frequencies to 1 Hz and 3 Hz. The load amplitude
remains 20 N. Load frequencies are lower than the first order elastic mode frequency
and the response deformations increase with increasing load frequency. Figure 14 gives
the dynamic transient response analysis results with the load frequency changing to 7
Hz. Load frequency is much higher than the first order elastic mode frequency and the
response deformation is small. The analysis results from the nonlinear substructure method
still maintain good agreement with nonlinear FEM. It is worth noting that the difference
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between two nonlinear analysis methods does not change significantly as the response
deformation increases. With load frequencies of 1 Hz and 3 Hz, the linear analysis method
also leads to obviously different response results when considering geometric nonlinearities
as before.
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Figure 8. Prediction of wing tip deflection of wing tip point, leading edge point and trailing edge
point. (a) point of the wing tip on the beam. (b) leading edge point of the wing tip. (c) trailing edge
point of the wing tip.
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Figure 9. Static response analysis results.
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Figure 10. Dynamic transient analysis results with F0 = 7 N and f = 2 Hz.
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Figure 11. Dynamic transient analysis results with F0 = 20 N and f = 2 Hz.
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Figure 12. Dynamic transient analysis results with and F0 = 20 N and f = 1 Hz.
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Figure 13. Dynamic transient analysis results with F0 = 20 N and f = 3 Hz.
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Figure 14. Dynamic transient analysis results with F0 = 20 N and f = 7 Hz.
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High computing efficiency is an important value for low order models. The compu-
tational costs of different methods are presented in Table 5. The nonlinear substructure
method spends much less time compared to nonlinear FEM with the same computing
hardware (3.40 Ghz, Intel core i7-3770, 8.00 GB RAM). It will be a huge advantage of the
application of this method in optimization or aeroelasticity, etc. which needs massive
iterative processing.

Table 5. Computational time with different method.

Computational Term Nonlinear FEM/min Nonlinear Substructure Method/min

F0 = 20 N and f = 2 Hz 40 2.5
F0 = 20 N and f = 1 Hz 34 2.3
F0 = 20 N and f = 3 Hz 65 4.5
F0 = 20 N and f = 7 Hz 35 2.5

4. Conclusions

In this paper, a novel nonlinear hybrid interface substructure method with ROM
has been developed for dynamic transient response analysis for aircraft structure models
with large flexibility. Nonlinear ROM based on ICE techniques is an efficient method
for large flexible structure modeling. However, for complex aircraft models, only wing
components have large deformation. The analysis can be more efficient and practical if
the substructure method can be applied. The method proposed divides the structure into
nonlinear substructure components and linear substructure components. The nonlinear
substructure components are modeled with ICE techniques and the nonlinear stiffness
coefficients are approximated with polynomials. Regression analysis is used for finding
the nonlinear stiffness coefficients. The linear components are modeled naturally by linear
modes. Each component is assembled by CMS techniques and the boundary conditions of
force equilibrium and displacement compatibility are satisfied.

Numerical examples with large flexible aircraft models are presented to validate the
accuracy and efficiency compared to nonlinear FEM. Under static loads and dynamic
harmonic loads, the analysis results reveal high consistency with nonlinear FEM in both
small and large deformation conditions. Meanwhile, the computational time is much lower
than nonlinear FEM. The nonlinear substructure method proposed in this paper has high
accuracy and efficiency at the same time. It can be used well for large flexible structure
response analysis.
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