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Abstract: This paper studies the quadcopter’s mutual interference phenomenon. The flow field of
the quadcopter at different flight speeds is simulated by solving the three-dimensional unsteady
Reynolds averaged Navier-Stokes equations with sliding mesh methods. “Virtual Modes” (VMs)
are introduced to examine the mechanisms of aerodynamic interference among the quadcopter’s
components (front rotors, rear rotors, and fuselage). By comparing the aerodynamic forces of different
VMs, this work shows that mutual interference to the front rotors can be negligible, interference to
the rear rotors is due to the wake of front rotors and fuselage, and mutual interference to fuselage is
caused by front and rear rotors. Only the rear rotors’ thrust and pitch moment as well as the lift of
the fuselage are significant. At the flight speed of 5–15 m/s, the mutual interference causes 11% loss
of thrust and 35% loss of pitching moment to the rear rotors; In the cases of hovering and 25 m/s
forward flight, the interference is negligible.

Keywords: quadcopter; aerodynamics; rotor flow field; interference mechanism analysis

1. Introduction

Quadcopters have been widely used in civil and military applications [1]. These share
a need to fly at high speed in scenarios such as cargo transport, emergency rescue, etc.,
therefore, the aerodynamic performance of quadcopters needs to be carefully considered.
Previous studies of quadcopters aimed to establish aerodynamic models for flight controller
design, and the aerodynamics of rotors are usually simplified as a thrust force and a torque
for hovering and low speed flight [2,3].

Brooks et al. [2] performed a literature review of quadcopter models, showing that
none of these models take into account the variations of the rotors’ aerodynamics in re-
sponse to flight speed changes. Waqas et al. [4] and Shastry [5] derived a rotor aerodynamic
model based on blade element momentum theory. Theys et al. [6] pointed out that the
aerodynamic forces acting on a rotor become more complicated as the flight speed in-
creases. Yao et al. [7] analyzed the aerodynamic characteristics of a small quadcopter in
horizontal airflow. The interference of horizontal airflow played an important role in the
performance. Amir et al. [8] and Ye et al. [9] performed wind tunnel experiments to study
the rotors at different flow angles and showed that the rotors’ thrust changes significantly
in the forward flight, besides, additional pitch and roll moments are generated by the
rotors. Jérémie et al. [10] proposed a simple aerodynamic model suitable for the design of
the controller as supported by wind tunnel tests. Brooks et al. [11] took the quadcopter
as a whole entity to establish a dynamic model suitable for low-speed flight, based on
wind tunnel experiments. It is noted that the models described in previous studies could
achieve a high level of accuracy, nevertheless, the aerodynamics of individual components
are not included in these models. To obtain further insight into the aerodynamics model
of quadcopters, it is necessary to consider the aerodynamics of individual parts and the
interferences between these parts. The interactions among rotors and the fuselage cause
a complex flow field. In addition, rotors are operated in tilted flow in forward flight,
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making the flow field even more complicated [12]. Je et al. [13] simulated the quadcopter in
hovering and forward flight states. Their results showed that the disturbance of the rotors
is insignificant in the hovering condition, but the downwash airflow of the front rotors
has a prominent influence on the lift of the rear rotor in forward flight. Misiorowski [14]
performed more detailed simulations to study the aerodynamic interference between the
four rotors in the forward flight condition,. Devin et al. [15] used a flow method to study
the aerodynamic interactions among the four rotors and their impact on the performance.

To obtain a more comprehensive understanding of the aerodynamic interference of
quadcopters, “Virtual Mode” method with different virtual combination configurations
like “front rotors and fuselage” are utilized to analyze the mechanisms of aerodynamic
interference of the quadcopter. Moreover, mechanisms at different speeds are emphasized
in this work.

The structure of this paper is organized as follows: Section 2 introduces the method
used in the interference analysis of the quadcopter; Section 3 analyzes the mechanisms
of aerodynamic interference of the quadcopter at different speeds; Section 4 discusses
the impact of interference on the aerodynamic performance of the rotors and fuselage;
Conclusions are given in Section 5.

2. Analysis Methods
2.1. Model Simplification

This paper focuses on analyzing the interference among the components of an “X”
configuration quadcopter, and for this a simplified model is adopted, as shown in Figure 1.
The study employs commercial rotors (T-motor MF2009 [16]), from which the geometry
is obtained through a three-dimensional scanner, as shown in Figure 2. The shape of the
fuselage is obtained from a in house developed quadcopter.

Aerospace 2021, 8, x FOR PEER REVIEW 2 of 29 
 

 

cause a complex flow field. In addition, rotors are operated in tilted flow in forward flight, 

making the flow field even more complicated [12]. Je et al. [13] simulated the quadcopter 

in hovering and forward flight states. Their results showed that the disturbance of the 

rotors is insignificant in the hovering condition, but the downwash airflow of the front 

rotors has a prominent influence on the lift of the rear rotor in forward flight. Misiorowski 

[14] performed more detailed simulations to study the aerodynamic interference between 

the four rotors in the forward flight condition,. Devin et al. [15] used a flow method to 

study the aerodynamic interactions among the four rotors and their impact on the 

performance. 

To obtain a more comprehensive understanding of the aerodynamic interference of 

quadcopters, “Virtual Mode” method with different virtual combination configurations 

like “front rotors and fuselage” are utilized to analyze the mechanisms of aerodynamic 

interference of the quadcopter. Moreover, mechanisms at different speeds are emphasized 

in this work. 

The structure of this paper is organized as follows: Section 2 introduces the method 

used in the interference analysis of the quadcopter; Section 3 analyzes the mechanisms of 

aerodynamic interference of the quadcopter at different speeds; Section 4 discusses the 

impact of interference on the aerodynamic performance of the rotors and fuselage; Con-

clusions are given in Section 5. 

2. Analysis Methods 

2.1. Model Simplification 

This paper focuses on analyzing the interference among the components of an “X” 

configuration quadcopter, and for this a simplified model is adopted, as shown in Figure 

1. The study employs commercial rotors (T-motor MF2009 [16]), from which the geometry 

is obtained through a three-dimensional scanner, as shown in Figure 2. The shape of the 

fuselage is obtained from a in house developed quadcopter. 

 

 

 

Figure 1. Simplified model for numerical simulations. 

 

Figure 2. Profile of the original rotor and scanning rotor. 

  

Figure 1. Simplified model for numerical simulations.
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Figure 2. Profile of the original rotor and scanning rotor.

2.2. Definition of Nondimensionlized Aerodyamic Forces

The forces act on the rotor and fuselage is shown in Figure 3. The rotor produced
thrust (Tp), torque (Qp), hub force (Hp), sidereal force (Fyp), pitch moment (Mp

y ), and roll
moment (Mp

x ). The fuselage produce lift (L f ), drag (D f ), and pitch moment (My f ), pitch
angle is the angle between the direction of the nose and the direction of the incoming flow,
the pitch angle is negative when the nose direction is downward.
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The coefficients are defined as follows:

CT =
Tp

ρω2R4 (1)

CH =
Hp

ρω2R4 (2)

CQ =
Qp

ρω2R5 (3)

my =
Mp

y

ρω2R5 (4)

mx =
Mp

x

ρω2R5 (5)

cd =
D f

1
2 ρV2Sre f

(6)

cl =
L f

1
2 ρV2Sre f

(7)

cm =
My f

1
2 ρV2Sre f

(8)

in which, the ρ is the air density, ω is the rotor’s rotation speed, R is the rotor’s radius, V is
the incoming flow speed, Sre f is the reference area.

2.3. Simulation Conditions

The simulation conditions are shown in Table 1. These parameters are acquired from
flying experiments at fixed speeds and altitudes as the average values obtained from flight
data, as shown in Figure 4.

Table 1. Simulation conditions.

Condition No. Speed
(m/s) Pitch Angle (◦) RPM of Front Rotor

(rad/s)
RPM of Rear Rotor

(rad/s)

a 0 0.00 331.60 331.60
b 5 −2.76 321.57 341.81
c 10 −7.02 316.45 356.38
d 15 −13.07 330.66 386.86
e 20 −21.60 395.63 460.70
f 25 −33.37 556.15 620.24
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2.4. Computational Fluid Dynamics (CFD) Setup

This study performs transient incompressible RANS simulations to study the aerody-
namic interference of the quadcopter with commercial software Fluent. The realizable k-ω
SST turbulence model, pressure-based solver, second-order upwind method, and SIMPLE
method for pressure-velocity coupling are employed to solve the RANS equations. The
sliding mesh technique is utilized to deal with the rotation of the rotor.

2.4.1. Computational Domain

The geometry of quadcopter is bilaterally symmetrical and the rotating speed of the
left rotors is the same as that of the right rotors. Therefore, a half model simplification
was made in this work. The computational domain consists of the far-field region, dense
region, and two rotation domains, as shown in Figures 5 and 6. The rotation domains
encompass the rotor blades, and the dense region is encrypted at the wake of the blade and
the fuselage. The interface between the rotating area and the dense area is set as interface
boundary, and the mesh on the interface are kept with same size. The interface between the
far field area and the dense area is set as the boundary of internal plane. In the far field area,
FRONT, TOP, and R are set as the velocity inlets, and BOTTOM and REAR are set as the
pressure outlets. The symmetry of the far-field area and the dense area is set to symmetry.
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2.4.2. Grid Sensitivity Independence Verification and Time Step Verification

A grid independence study at flight speed of 10 m/s is performed to check the
computational domain with different numbers of cells, and a 10 M cells mesh was selected
for this study. Table 2 lists the results of the drag coefficient (cd) of the fuselage and the
rotor’s thrust coefficient (CT).

Table 2. Grid independence verification.

Cells cd Difference CT Difference

5 M 0.0160 24% 0.035 12.9%
10 M 0.0135 4.6% 0.032 3.2%
15 M 0.0129 – 0.031 –

The rotor rotates about 1◦ for each iteration step in the transient simulation using
sliding grids. This simulation is performed for the hovering condition. The iteration steps
of 0.5

◦
/∆t, 1

◦
/∆t, and 2

◦
/∆t are tested. The rotor’s thrust coefficient and torque coefficient

calculation results are shown in Table 3. The errors of the 0.5
◦
/∆t and 1

◦
/∆t calculation

results are within 5%. As a result, the time step of 1
◦
/∆t is selected for the simulations of the

whole quadcopter to strike a compromise between accuracy and economy of computing.

Table 3. Time step verification.

Iteration Step CT CQ

0.5
◦
/∆t 0.0329 0.0035

1
◦
/∆t 0.0324 0.0034

2
◦
/∆t 0.0283 0.0031

As shown in Figure 7, the initial simulation results show that the aerodynamic forces
on an individual rotor are periodically unsteady. Time-averaged values of aerodynamics
forces are adopted in the following discussion.

2.5. Virtual Modes Method

To study the aerodynamic interference mechanism of the quadcopter and the impact
of interference on the aerodynamic characteristics, this paper applies the principle of
superposition to analyze the interference effects and establishes eight cases with different
“Virtual Modes” (VMs), as shown in Figure 8. The number of cells for different modes is
shown in Table 4.
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Table 4. Grid size and simulation modes.

VMs Combination Number of Grids

A Whole UAV 10.37 M
B Front Rotor + Fuselage 6.79 M
C Rear Rotor + Fuselage 6.78 M
D Front Rotor + Rear Rotor 8.83 M
E Isolated Rotor 4.57 M
F Isolated Fuselage 1.36 M
G Two Rear Rotors 8.86 M

By comparing the results of different modes, it is possible to analyze the mechanism
of aerodynamic interference of the quadcopter. For instance, the proposed “Virtual Modes”
method is utilized to analyzes the aerodynamic interference of rear rotors by employing
the results of VM-A, B, C, D, and G. This is elaborated with details as follows:

ΓFR+F
RR indicates the interference acting on rear rotor due to front rotor and fuselage;

ΓF
RR indicates the interference to rear rotor caused by fuselage; ΓFR

RR indicates the interference
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to rear rotor caused by front rotor, ΓRR
RR indicates the interference to the rear rotor caused by

another rear rotor, expressions can be written as:

ΓFR+F
RR = VM-A − VM-E, (9)

ΓF
RR = VM-C − VM-E, (10)

ΓFR
RR = VM-D − VM-E, (11)

ΓRR
RR = VM-G − VM-E. (12)

To study the interference mechanism of ΓFR+F
RR , the flow field of VM-B is analyzed to

figure out how to the wake of front rotor and fuselage affect the airflow in the region where
the rear rotors are installed. The interference acting on the front rotor and fuselage can be
investigated in the same way. This is not elaborated further.

3. Mutual Interaction Mechanism Analysis

To investigate which area of rotor disk are affected, the rotor blades are divided
into 11 segments, as shown in Figure 9. The aerodynamic force and moment at each
azimuth angle could be recorded. This segmentation of rotor blade enables the study of
aerodynamics on a rotor disk plane where the rotor rotates.
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The average coefficient of sectional thrust (dCT) and the average coefficient of sectional
torque (dCQ) are defined as:

dCT =
dCT
dS

, (13)

dCQ =
dCQ

dS
, (14)

where dCT is the thrust coefficient of each section, dCQ is the torque coefficient of each
section, and dS is the vertical projected area of each section. Additionally:

∆dCT = dCW
T − dCi

T

∆dCQ = dCW
Q − dCi

Q

(15)

where the superscript i indicates the isolated rotor, and the superscript W indicates the
whole quadcopter.

This section discusses the interference mechanisms of the quadcopter in the three
typical flight conditions, namely hovering, forward flight at 10 m/s, and forward flight
at 25 m/s.

3.1. Hovering Condition
3.1.1. Aerodynamic Characteristics of Isolated Rotor

In the hovering condition, the flow field of the isolated rotor (corresponding to the
VM-E) without interference is studied as a reference. Simulation results are presented by
highlighting two tip wake vortices and a merged root vortex, as shown in Figure 10.
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Figure 10. The wake of the rotor in hovering state (iso-vortex surface based on criterion Q, colored
according to pressure).

The contours of dCi
T and dCi

Q are shown in Figure 11. This figure shows that the
sectional thrust of the rotor simply increases as its radius increases.
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Figure 11. Contours of dCi
T and dCi

Q of isolated rotor.

3.1.2. Mutual Interference Mechanism Analysis

In the hovering state, the contours of dCW
T and dCW

Q of the four rotors are shown in
Figure 12 (the upper disks represent the front rotors, and the lower disks represent the rear
rotors). And contours of ∆dCT and ∆dCQ are shown in Figure 13.
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Figure 13. Contours of ∆dCT and ∆dCQ.

It can be seen from Figure 13 that interference mainly exists in the area where the
tips of rotors are close to each other. When the rotor rotates, the adjacent blade tip vortex
induces the airflow on the outside of the blade to move upward, thereby adding upwash
speed at the tip of another blade and resulting in a thrust decrease and a torque increase.

3.2. 10 m/s forward Flight Conditionfigure
3.2.1. Aerodynamic Characteristics of Isolated Rotor

The flow field around an isolated rotor under the 10 m/s forward flight condition is
shown in Figure 14. There are two strong vortices in the downstream of the advancing and
the retreating blades. The vortex pertaining to the advancing blade is stronger than that
of the retreating one. These two vortices are formed by the superposition of the blade tip
vortex. In addition, the downwash speed on one side of the advancing blade is greater than
that on the retreating side, and the vortex on the advancing blade side tends to wash down
more than that of the retreating side. Between the two tip vortices, there is a root vortex
which is generated by the airflow passing through the root of the rotor. In addition, there
are blade tip vortex in the flow field, and these wake vortices tends to cause the airflow on
the outside of the rotor to wash up.
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Figure 14. Wake vortices of isolated rotor (colored with Cp).

The wake vortices of the rotor and the relative z-velocity contours (the z-velocity (w)
minus the far-field z-velocity (w∞), where the upward direction is represented by positive
values) are shown in Figure 15. It shows that the flow field around the rotor differs for
different azimuths. The shapes of the two super vortices (i.e., the advancing tip vortex
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and retreating tip vortex marked in Figure 14) remain unchanged for different azimuth
angles. The distance between the disks and the center of the rotor is the same as the
distance between two rotors in the quadcopter. The wake of the rotor only causes a small
interference on the rear area of disk 1, implying that the rear rotors of the quadcopter cause
tiny interferences on the front rotors. Similarly, the interferences of the rotor imposed on
disk 2 and disk 3 are small, which indicates that the interferences of the rotor on the left
and right disk areas are negligible. This study shows that the wake of the rotor mainly
interferes with disk 4, especially in the front area of disk 4. At different azimuth angles, the
rotor blade wakes maintain the same interference to the front and left and right flow fields.
The interference to most areas of the flow field behind remains unchanged, and only a part
of the area close to the rotor blades has slight changes. The interference to most areas of the
four disks remains unchanged at the different azimuth angles, and only a part of the area
on disk 4 close to the rotor has slight changes. Therefore, an approximation can be made
that the interference of the rotor to the surrounding flow field at different azimuth angles is
the same, only the interference of disk 4 needs to be considered.
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Figure 15. Velocity contours (w–w∞) of a rotor flow field at different azimuth angles, the disks
represent four regions around the rotor (figure shows that the influence on the four disks remain
unchanged for different azimuth angles).

The contours of dCi
T and dCi

Q of the isolated rotor are shown in Figure 16 (the upper
disks represent the front rotors, and the lower disks represent the rear rotors). The top
figure shows that the sectional thrust is large on the advancing side of the rotor disk, which
could be attributed to the high local speed of the blades. The azimuth corresponding to
the maximum thrust is about 30◦ due to the longitudinal change of the induced velocity
inflow distribution [17]. Therefore, the rotor tends to generate a sizeable asymmetric lift
when the rotor rotates, thereby generating pitch and roll moments. As for the contours of
torque in Figure 16b, the maximum value is observed at the azimuth angle of 0◦ due to the
maximum dynamic pressure. On the contrary, the torque is minimal at the retreating side
(when the azimuth angle is 180◦).
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3.2.2. Interference Mechanism Analysis of Rotors

At a forward speed of 10 m/s, the dCW
T and dCW

Q of the four rotors in the quadcopter
are shown in Figure 17, and the ∆dCT and ∆dCQ are shown in Figure 18. Figure 18 shows
that the mutual interference on the front rotors is small, whereas the interference on the
rear rotors is relatively complicated: In the front area (P4) of the rear rotor disk, the thrust
decreases and the torque increases; in the front-inner area (P1), the thrust increases and the
torque decreases; in the front-inner area (P2), the thrust decreases and the torque increases;
and in the rear-outer area (P3), the thrust increases and the torque decreases.
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The interference mechanism of rear rotors is analyzed through the simulation of
VM-B (Front Rotors + Fuselage), as shown in Figures 19 and 20. Figure 19 shows that
the magnitude of w in the P4 area is increased because of the downwash of front rotors.
This downwash leads to a decrease in thrust and an increase in torque of the rear rotor.
Furthermore, the velocity streamline contours of cross profile 1 and profile 2 (marked in
Figure 19) are shown in Figure 21. In the P1 area, the airflow moves inward due to the
interference of the retreating tip vortex of the front rotor. This inward airflow inhibits the
intensity of the rear rotor’s blade tip vortex. On the other side, velocity in the x-direction
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(u) in the P1 area is increased (as shown in Figure 20), which also tends to inhibit the
intensity of the rear rotor’s blade tip vortex. As a result, the rear rotor’s thrust increases
and the torque decreases in the P1 area. Figure 21 also shows that the airflow in the P2 area
moves upward because of the interference of the retreating tip vortex of the front rotor.
This upward airflow aggravates the intensity of the rear rotor’s blade tip vortex in P2 area,
as illustrated in the bottom right of Figure 21. The enhance tip vortex of rear rotors leads to
the reduction of the thrust and a slight increase of the torque in the P2 area. The airflow
in the P3 area tends to move inward as affected by the front rotor’s advancing tip vortex.
Consequently, the rear rotor’s blade tip vortex as a loss would be restrained. Therefore,
thrust increases and the torque decreases in the P3 area.
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Figure 21. Cross profile velocity streamline and velocity contour in the downstream of the rear right
rotor (watch from the back).

To identify the primary sources of aerodynamic interference imposed on rear rotors,
simulations are performed for the cases of VM-C (Fuselage + Rear Rotors), VM-D (Front
Rotors + Rear Rotors), and VM-G (Two Rear Rotors). Aerodynamic interference is obtained
by subtracting the reference value in the case of an isolated rotor, as shown in Figure 22.

As shown in Figure 22a,b, the contours of the upper disks show mutual interference
between the two rear rotors. This interference mainly occurs in the upper area of the disk
and exists in a small part of the outer area. In general, this interference is small enough to
be considered negligible. The contours of the lower disks show the mutual interference
between the fuselage and the rear rotors. Interference mainly exists in the inner area
(P1 and P2) of the rear rotors; the wake of the fuselage causes the thrust to increase and
the torque to decrease in the P1 area, and it causes the thrust to decrease and the torque to
increase in the P2 area.

As shown in Figure 22c,d, the wake of the front rotors mainly affects four areas, P1–P4,
of the rear rotors. In the P4 area, the thrust decreases and the torque increases. In the P1
area, the thrust increases, and the torque is significantly lower than that in the P4 area.
In the P2 area, the thrust decreases and the torque increases. The P1 and P2 areas are both
affected by the retreating tip vortex of the front rotor, but the final interference effect is
opposite. This is mainly because the retreating tip vortex is moved down at P2 compared to
P1. By comparing Figures 18 and 22, the interference in the P1 and P2 areas is strengthened
due to the existence of the fuselage.

In short, the interference in the P1 and P2 areas is affected by the combined action of
the retreating tip vortex of the front rotor and the fuselage wake; the interference in the P4
area mainly comes from the root vortex of the front rotor; and the P3 area is affected by the
advancing tip vortex of the front rotor.

3.2.3. Interference Mechanism Analysis of the Fuselage

According to CFD simulation results, the aerodynamic forces imposed on the fuselage
changes periodically (including a short-period change and a long-period change), about
0.4 s including five long motion periods as sample data for the following frequency analysis,
as shown in Figure 23.
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Figure 22. Contours of ∆dCT and ∆dCQ in VM-C, D, and G combinations. (a) Contours of ∆dCT of rear rotors in VM-C
(Fuselage + Rear Rotors) and VM-G (Two Rear Rotors). (b) Contours of ∆dCQ of rear rotors in VM-C (Fuselage + Rear
Rotors) and VM-G (Two Rear Rotors). (c) Contours of ∆dCT of rotors in VM-D (Front Rotors + Rear Rotors). (d) Contours of
∆dCQ of rotors in VM-D (Front Rotors + Rear Rotors).
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The coefficients of aerodynamic forces imposed on the fuselage are transformed by fast
Fourier transform (FFT), and the frequency response is shown in Figure 24. The dominant
frequency points are two and several times the front and rear rotors’ rotation frequency
(front rotor: 316.45 rad/s, rear rotor: 356.38 rad/s). In addition, there is a low frequency
(35.619 rad/s), which is the least common multiple of the rotation frequencies of the
front and rear rotors (about nine revolutions of the front rotor and 10 revolutions of the
rear rotor).
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Figure 24. Frequency response of fuselage aerodynamics.

The amplitudes of the frequencies corresponding to the front rotors are all smaller
than the amplitudes of the frequencies corresponding to the rear rotors, indicating that the
interference of the rear rotors to the fuselage varies significantly at different azimuths.

Trigonometric interpolation is employed to quantify the variations of aerodynamic forces
of the fuselage. The aerodynamic coefficients can be approximately written as follows:

cd = cd0 +
4

∑
i=1

Ai sin(ωix + Ci) , (16)

cl = cl0 +
4

∑
i=1

Ai sin(ωix + Ci) , (17)

cm = cm0 +
4

∑
i=1

Ai sin(ωix + Ci) . (18)

The values of the aerodynamic coefficients in the above formulas are shown in Table 5.
It is noted that ωi are two times and four times the rotor rotation frequency. ∗0 corresponds
to cd0, cl0, and cm0, which are the average values of cd, cl, and cm.

Table 5. Parameters of fuselage aerodynamic coefficients.

cd cl cm

A1 0.002308 0.02029 0.002308
ω1 712.2 712.2 712.2
C1 0.8705 2.269 0.8705
A2 0.001886 0.006024 0.001886
ω2 633.1 633.1 633.1
C2 −0.6846 3.088 −0.6846
A3 0.00106 0.007635 0.00106
ω3 1424 1424 1424
C3 2.801 3.064 2.801
A4 0.0007351 0.002984 0.0007351
ω4 1266.2 1266.2 1266.2
C4 1.578 −2.33 1.578
∗0 0.0118 0.0291 −6.2602 × 10-4
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As shown in Figure 25, the fourth-order sine basis function can be used to describe
the aerodynamic force experienced by the fuselage within 0.15 s (about 2 long period
motion). According to Equations (4)–(6), the aerodynamics of the fuselage can be written
as a constant term plus an interference term associated with the revolution of the front
rotors plus an interference term associated with the revolution of the rear rotors.
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Figure 25. Aerodynamic fitting results of the fuselage (red line: fitting results; black dots: CFD results).

The fuselage aerodynamic coefficients at different azimuth angles within the time
interval of 0.31~0.326 s, corresponding to about two short periods (covering an entire
revolution of the rotors), are shown in Figure 26. The aerodynamic coefficient of the fuselage
changes little most of the time. Only in the periods of 0.316–0.318 s and 0.324–0.326 s,
when the rear rotor is the relatively close to fuselage, the aerodynamic coefficients exhibit
major changes.
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Figure 27 shows two cross profile velocity contours in the S9 and S11 states marked
in Figure 26. The up-washing to the front part of the fuselage does not change drastically,
no matter whether the front rotors are close to the fuselage or far away from the fuselage.
The up-washing to the rear part of fuselage becomes more intensive when the rear rotors
are approaching the fuselage. The wash air flow on the rear rotors mainly acts on the rear
half of the fuselage, as a result, the lift increases and the nose-down moment decreases
when the tips of the rear rotors are close to the fuselage.
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3.3. 25 m/s forward Flight Condition
3.3.1. Analysis of Aerodynamic Characteristics of Isolated Rotor

The flow field of the isolated rotor without interference at 25 m/s is similar to that
at 10 m/s, as shown in Figure 28. Due to the increase of the incoming flow velocity and
flow angle, the retreating tip vortex of the blade lags more than the advancing one, and the
down-washing of the two tip vortices is more intensive as compared with the case of 10 m/s.
This can be attributed to the increase in rotor speed and the incoming vertical velocity.
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Figure 28. Vortices of isolated rotor (colored with Cp).

The contours of dCi
T and dCi

Q of the isolated rotor are shown in Figure 29. The maximum
thrust occurs at 30◦, while the torque reaches maximum at 0◦.

3.3.2. Interference Mechanism Analysis of the Rotors

At a forward speed of 25 m/s, the dCW
T and dCW

Q of the four rotors in the quadcopter
are shown in Figure 30, and ∆dCT and ∆dCQ are shown in Figure 31. At 25 m/s, the mutual
interference of the front rotors is negligible, similar to that of 10 m/s. The interference
of the rear rotors is less intensive as compared with the case of 10 m/s. In the P1 and P2
areas, the thrust and the torque are reduced at the same time. In the P3 and P4 areas, the
interference can be neglected.
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VM-B (Front Rotors + Fuselage) at 25 m/s is simulated to analyze the interference
mechanism of the rear rotors, and the flow field of VM-B is as shown in Figure 32. The
P1 and P2 areas are located in the wake of the fuselage, where the aerodynamic pressure
decreases, resulting in a decrease in thrust and torque. The wake of the front rotor is far
below the position of rear rotors as illustrated on the right side of Figure 32.
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Figure 32. Cross profile velocity streamline and velocity contour of VM-B (Front Rotors + Fuselage)
combination at 25 m/s (red shade regions correspond to the rear rotor discs).

To find the primary sources of aerodynamic interference received by the rear rotors,
simulations of VM-C (Fuselage + Rear Rotors), VM-D (Front Rotors + Rear Rotors), and
VM-G (Two Rear Rotors) are performed. The results of the isolated rotor are taken as the
reference to evaluate the interference for these VMs. Results of this analysis are expressed
as the contours in Figure 33.

As shown in Figure 33a,b, the contours of the top disks show the mutual interference
between the two rear rotors. This interference is small enough to be neglected. The contours
of the bottom disks show the mutual interference between the fuselage and the rear rotors.
The interference mainly exists in the inner area (P1 and P2) of the rear rotors; the wake
of the fuselage corresponds to the low dynamic pressure (shown in the right plots of
Figure 33), and therefore leads to the thrust and torque to decrease in the P1 and P2 areas.
As shown in Figure 33c,d, the wake of the front rotors only affects the P1 areas slightly.
In short, the interference between the fuselage and the rear rotors is more intensive than
that between the front rotors and the rear rotors. This analysis shows that the wake of the
fuselage is mainly responsible for the reduction of the thrust and torque of the rear rotors
in the P1 and P2 areas.

3.3.3. Interference Mechanism Analysis of the Fuselage

The aerodynamic coefficient of the fuselage at 25 m/s changes periodically with the
same interval in the case of 10 m/s (including a short-period change and a long-period
variation), as shown in Figure 34. The recorded aerodynamic coefficients are transformed by
FFT, and the frequency response is obtained as shown in Figure 35. The dominant frequency
points in the frequency response are two times the front and rear rotors’ rotation frequency
(front rotor: 556.154 rad/s, rear rotor: 620.24 rad/s) and their multiplier. According to
the frequency response, the aerodynamics of the fuselage can also be approximated using
Equations (16)–(18); the values of the parameters in the formulas are shown in Table 6.
All of the ωi are two times and four times the frequency of the rotor rotation speed. The
fitting results are shown in Figure 36.
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Figure 33. Contours of ∆dCT and ∆dCQ in VM-C, D, and G. (a) Contours of ∆dCT of rear rotors in VM-C (Fuselage + Rear
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VM-D (Front Rotors + Rear Rotors).
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Figure 35. Frequency response of fuselage aerodynamics.

Table 6. Parameters of fuselage aerodynamic coefficients.

cd cl cm

A1 0.003386 0.005854 0.0005346
ω1 1241 1241 1241
C1 −1.997 0.5062 −2.171
A2 0.000649 0.002034 0.0001888
ω2 2481 2481 2481
C2 −2.572 −0.3932 3.229
A3 0.001352 0.0009802 0.0001064
ω3 1116 1116 1116
C3 −2.558 0.4408 1.01
A4 0.0005038 0.0007208 6.744e-5
ω4 2233 3722 3722
C4 −2.787 −1.141 2.266
∗0 0.0322 −0.0209 −0.0025
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The fuselage aerodynamic coefficients at different azimuth angles within 0.1 s (about
two long period motions) are shown in Figure 37. It can be found that the aerodynamic
coefficients change greatly as rear rotors approaching to the fuselage. This is characterized
by a cm decrease and a cl increase. The mechanism for the variation is similar to the case of
10 m/s, as discussed in Section 3.2.3.
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4. Performance Analysis

The previous section analyzed the flow mechanisms of aerodynamic interference
among the components of a quadcopter. This section conducts a quantitative analysis of the
aerodynamics interference. The components include the front rotor, rear rotor, and fuselage.

4.1. Performance Analysis of Front Rotor

The coefficients of aerodynamics forces of an individual front rotor in different VMs
are accessed and presented in the plots in Figure 38. It is clear that performance is almost
the same for different flight speed, complying with the results of the mechanism analysis.

4.2. Performance Analysis of Rear Rotor

Figure 39 shows the relationship between the aerodynamic coefficients of an individual
rear rotor in different VMs. The drag coefficient (CH), torque coefficient (CQ), and roll
moment coefficient (mx) of the rear rotor are almost the same in different VMs, and the
interference of these aerodynamic coefficients is negligible.

In the speed region from 0 to 20 m/s, the pitch moment coefficient (my) and thrust coeffi-
cient (CT) in VM-E (Isolated Rotor) are basically the same as in VM-C (Rear Rotors + Fuselage),
and the my and CT in VM-A (Whole UAV) are basically the same as in VM-D (Front
Rotors + Rear Rotors). This indicates the interference received by the rear rotors mainly
comes from the front rotors. At the speed of 25 m/s, my and CT in VM-E are the same as in
VM-D, and my and CT in VM-A are the same as in VM-C. As a result, it is reasonable to
consider that the interference received by the rear rotors mainly comes from the fuselage
and the loss of thrust will reduce the aerodynamic efficiency of the rotor, resulting in an
increase in the power of the whole UAV.
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4.3. Performance Analysis of Fuselage

The aerodynamic forces of the fuselage in different VMs are plotted in Figure 40.
As shown in top left of Figure 40, the wake of the front rotor decreases the drag of the
fuselage, and the wake of the rear rotor increases the drag of the fuselage. Under the
combined action of the front and rear rotors, the fuselage drag is the same with that
of an isolated fuselage (the difference is less than 5% within the entire speed range).
Therefore, a model of fuselage drag can be simplified as the sole drag without aerodynamic
interference. It can be seen from top right of Figure 40 that the wake of the front and rear
rotors increase fuselage lift at the same time, and the fuselage lift exhibits a significant
change (of a 10% increase). As shown in bottom left of Figure 40, the wake of the front rotor
decreases the pitch moment of the fuselage, whereas the wake of the rear rotor increases
the pitch moment of the fuselage. In general, the fuselage’s aerodynamic pitch moment is
less than 5% of the pitching moment (about 8 N·m) of the thrust about the center of the
gravity produced by an individual rotor. Therefore, the pitching moment experienced by
the fuselage could be neglected.
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of speed.

4.4. Summary of Performance Analysis

Through the analysis of the mutual interference performance of the front rotors, rear
rotors, and fuselage, preliminary results are obtained: the interference received by the
front rotors is negligible in the steady flight condition; for the rear rotors, thrust and
pitching moment should be considered in the interference; and the fuselage needs to take
into account the interference of lift. The rest aerodynamic forces can be neglected in the
interference performance.
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5. Conclusions

This paper studies the aerodynamic mutual interference between the components
of an “X” configuration quadcopter at different flight speeds. The CFD simulations are
performed to solve the flow field of the quadcopter, and the interference mechanism of
rotors at different positions is analyzed by defining the dCQ and dCT . The following
conclusions are obtained:

(1) In the hovering mode, a rotor generates two tip vortices and one root vortex.
Mutual interference occurs in a small area where the rotors are close to each other and it
has insignificant impact on the performance of the entire quadcopter. The aerodynamic
interference among the quadcopter’s components is negligible.

(2) At the flight speed of 10 m/s, the rotor leaves two strong vortices in the downstream
of the advancing and retreating sides. The wake of the front rotor causes the adjacent air to
flow downward. This significantly affects the flow field of the rear rotor, changing the rear
rotors’ aerodynamic forces of thrust and pitching moment.

(3) The flow field of the rotor at the flight speed of 25 m/s is similar to that of
10 m/s, while the wake of the front rotor barely changes the aerodynamics of rear rotors,
because the impact of downwash of wake is eliminated by the high vertical flow velocity
associated with the high rotor rotation speed. The rear rotors are mainly affected by the
wake of fuselage.

(4) This paper analyzes the mutual interference to the fuselage at flight speeds of
10 m/s and 25 m/s. The fuselage aerodynamic forces are analyzed through FFT analysis
and then represented as the summation of constant forces and periodically changing forces.
By analyzing the results of VMs, the interference of the front rotors to the fuselage leads to
an increase in lift and pitch moment; the interference of the rear rotors to the fuselage leads
to an increase in lift and a decrease in pitch moment.

(5) The interference received by the rear rotors and the fuselage reaches the maximum
extent at flight speeds of 5–10 m/s, and the extend of interference effect decreases as the
speed increases.

(6) The performance analysis shows that an interference model of quadcopter can
be simplified. The rear rotor’s thrust, rear rotor’s pitch moment, and fuselage’s lift are
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significant enough to be considered within the steady flight speed envelope. The rest of
aerodynamic forces can be neglected.

(7) Aerodynamic efficiency of the rear rotor is decreased due to the mutual interference,
resulting in the power increase of the quadcopter in the forward flight. The wake of
front and rear rotors increases the lift of the fuselage, this effect tends to increase the
aerodynamic efficiency.

This work studies the flow mechanism of aerodynamic interference in an X config-
uration quadcopter. Recommendations are given as follows: the interference acting on
rear rotor due to the wake of front rotor should be eliminated; the effect of rotors’ wake
imposed on fuselage can be exploited. To optimize the performance of quadcopter, it might
be wise to investigate how the distance between the rotors and fuselage influences the
performance. This is left for future work.
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