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Abstract: The air traffic is mainly divided into en-route flight segments, arrival and departure
segments inside the terminal maneuvering area, and ground operations at the airport. To support
utilizing available capacity more efficiently, in our contribution we focus on the prediction of arrival
procedures, in particular, the time-to-fly from the turn onto the final approach course to the threshold.
The predictions are then used to determine advice for the controller regarding time-to-lose or time-to-
gain for optimizing the separation within a sequence of aircraft. Most prediction methods developed
so far provide only a point estimate for the time-to-fly. Complementary, we see the need to further
account for the uncertain nature of aircraft movement based on a probabilistic prediction approach.
This becomes very important in cases where the air traffic system is operated at its limits to prevent
safety-critical incidents, e.g., separation infringements due to very tight separation. Our approach is
based on the Quantile Regression Forest technique that can provide a measure of uncertainty of the
prediction not only in form of a prediction interval but also by generating a probability distribution
over the dependent variable. While the data preparation, model training, and tuning steps are
identical to classic Random Forest methods, in the prediction phase, Quantile Regression Forests
provide a quantile function to express the uncertainty of the prediction. After developing the model,
we further investigate the interpretation of the results and provide a way for deriving advice to the
controller from it. With this contribution, there is now a tool available that allows a more sophisticated
prediction of time-to-fly, depending on the specific needs of the use case and which helps to separate
arriving aircraft more efficiently.

Keywords: probabilistic prediction; final approach; time-to-fly; random forest; quantile regression

1. Introduction

Airport performance is mainly driven by the efficient use of limited resources along the
aircraft trajectories. In this context, the airport capacity is defined as the maximum amount
of aircraft movements in a given period of time and provides a defined quality of service
(delay). One of the most limited components of the airport system is the runway (system).
Air traffic controllers have to make sure that the runway utilization is maximized dependent
on the traffic mix, environmental constraints (e.g., weather or noise), operational modes
(arrivals and departures) ensuring safe operations by considering separation standards
(see [1–4]). Capacity efficient operations are becoming more important since around
1.5 million flights (accounting for 8% of the demand) will not be accommodated in 2040 [5].
Thus, the capacity gap is equivalent to eight fully-used runways, spread over 17 different
states in the European Civil Aviation Conference (ECAC) region, where 21 airports lack
capacity. The higher amount of air traffic movements will also lead to increased traffic
complexity, especially in high-density areas like the terminal maneuvering area (TMA).

The complexity in this area further increases with future, more diverse separation
standards, like re-categorisation of ICAO wake turbulence separation (RECAT-EU) [6],
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time-based separation [7], or pairwise separation [8], which all lead to enhanced combi-
natorial complexity due to an increased number of different aircraft classes to consider in
separation management.

Additionally, independent of the separation scheme applied, the closing effect plays a
dominant role in the development of inter-aircraft distance along with the final approach.
After passing the final approach fix (FAF), aircraft follow individual speed profiles while
decelerating to landing speed. Typically, the leading aircraft, which is much closer to the
threshold, is slower than the succeeding aircraft that catches up consequently. Hence,
aircraft need to be separated much wider at the beginning of the final approach leg by
adding some buffer on top of the required separation, which is consumed by the closing
effect. Ideally, the buffer is fully depleted when the preceding aircraft crosses the threshold
and the distance to the succeeding aircraft equals the required minimum separation. How-
ever, since speed profiles are not known exactly in advance, especially due to uncertainty
induced by weather effects, controllers usually apply a buffer that is larger than required by
the closing effect. Therefore, air traffic controllers require enhanced support tools that help
to overcome those challenges by providing hints on how to separate aircraft most efficiently.
Having available an aid on the radar screen that visualizes the specific separation that
is to be applied to a certain pair of aircraft, controllers do not need to remember a large
matrix of combinations in the first place. Additionally, the support tool can be enabled to
consider the compression effect and suggests an appropriate buffer. This however requires
knowledge about the aircraft’s speed profiles along the extended runway centerline and
upstream to anticipate the compression effect so that the support tool’s advisories won’t
lead to loss of separation when followed by the controller.

Naturally, the air transportation system is both a competitive and collaborative envi-
ronment, where stakeholders have to optimize their economic benefits considering various
restrictions. By giving airport stakeholders access to data from different sources, airports
will be able to make more accurate predictions about their operational progress in the
next period. In this context, data-driven predictions and machine learning techniques
could enhance airport processes to show hidden interdependencies in the complex air-
port system. The speed and extent, with which data is shared, have massively increased
over the last years aiming at a resilient air transportation system [9]. The obligation to
equip large aircraft (i.e., maximum take-off mass (MTOM) > 5.7 t and max. indicated
air speed (IAS) > 250 kn) with a Automatic Dependent Surveillance-Broadcast (ADS-B)
transponder started in Europe in June 2020 [10,11] and in the US almost all controlled air
spaces are reserved only for appropriately equipped aircraft since January 2020 [12]. It is
expected that current surveillance systems will be extended with ADS-B and future ground
stations will be fully based on this technology, which is significantly cheaper to install
and to operate. Due to the simple requirements on the receivers, ADS-B has contributed
to the development of online services that display the current air traffic in real-time with
worldwide receiver networks (depending on the local coverage), such as The OpenSky
Network (opensky-network.org) [13], Flightradar24 (flightradar24.com), or FlightAware
(flightaware.com). This technology also offers a solution for monitoring remote areas
and flights over the oceans with space-based ADS-B [14]. Furthermore, the equipment
of ground vehicles at aerodromes should enable more comprehensive monitoring of the
traffic situation on the corresponding movement areas at the apron [15].

1.1. Status Quo

For modeling the aircraft’s speed profile, we follow the idea of data-driven methods
over physics-based models. While the latter is always a simplified representation of the
real, complex system neglecting contributing factors that are hard to model in full detail,
data obtained from measuring the behavior of the system implicitly comprises inherent
effects influencing the system. Even though data-driven methods have experienced great
attention recently and are expected to provide much better results, especially with the
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availability of big amounts of data in mind, there are now other challenges to be solved
when employing those methods.

One effect is the so-called data set shift or distribution shift [16], which describes the
effect that training and test data set come from different distributions, which might render
a model useless when it is trained on one distribution and tested or even employed in
production on another one. This usually occurs when the data sets are acquired at different
times or locations. For instance, a model trained on data acquired during summer may not
be applied during the winter season without thorough testing or adaption.

Another issue that is receiving increasing attention in the field of machine learning is
the lack of understanding about the inner workings of the models being developed [17].
This is also highly related to trust and certification issues in safety-critical systems like air
transportation. Most of the models in the field are usually considered black-box models,
i.e., it is not straightforward to grasp what relationships in the data a model identified
during the learning process and how those influence the prediction.

In the context of aviation, several methods from the field of artificial intelligence are
used to cluster aircraft trajectories [18–21], detect anomalies [22–25] and predict aircraft
trajectories [26–28], development of dynamic airspace designs [29,30], analyse runway
and apron operations [24,31,32], determine airport performance including the impact of
local weather events [33], and for aircraft turnaround operations [34]. More initiatives to
leverage ADS-B open data to improve the state of the art are already commonplace, esp.
in the field of aircraft modeling [35,36]. An ADS-B based milestone concept is already
developed [37] by the authors to enable the data-driven performance management even
for small/medium-sized airports (see Figure 1). Therefore, the incoming ADS-B messages
and the data contained therein are processed accordingly and used to monitor arrival
flows, runway occupancy, aircraft ground trajectories, taxiing times, and airport capacity
utilization. This first step in monitoring airport operations offers operators improved
situational awareness and needs now to be enhanced with forecasting capabilities.

Figure 1. ADS-B-based milestone approach for data-driven operational awareness and framework
for upcoming prediction tasks using Zurich Airport (LSZH) as an example [37]. Milestones are
for instance actual in-block time (AIBT), aircraft ready time (ARDT), actual off-block time (AOBT),
or actual take-off time (ATOT).

Trajectory prediction is a very prominent field that provides a lot of use cases for
machine learning in aviation. While historically being dominated by model-based ap-
proaches, e.g., [38,39], data-based methods are gaining growing attention. One criterion
to distinguish the prediction methods is whether they are intended to predict the time of
arrival [40,41] or a full trajectory, spatially and temporally [42–44]. The accuracy of the
predictions is quantified solely on the comparison between prediction and ground truth
during the model testing phase. There is no measure of uncertainty for a single prediction,
like the output of a prediction interval would provide.
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Most studies that assign uncertainties to predictions can be found in the context of
arrival and flow management for planning and scheduling inbound aircraft. Usually,
those applications comprise much longer time horizons (from 20–30 min up to several
hours before arrival) and are used for building up sequences rather than fine-grained
separation management. In the context of predicting arrival times, efforts have been
made to also predict the probability to which the actual arrival time may deviate from
the estimate [45,46], as well as making this information available in the decision finding
process of controllers [47]. Furthermore, methods have been developed that aim to infer
the accuracy of the prediction by using a generative model that creates multiple possible
trajectories and infers a probability distribution from this set [48,49].

Research so far is mostly of methodological nature providing little to no application
or use case for the prediction models. However, there is some work available that focuses
on the very specific application of trajectory and time-to-fly prediction in the context of
separation management during the approach. In [50] the authors seek to predict optimal
separation for the following aircraft when the leader is at 4DME (Distance Measuring
Equipment, which corresponds to 4 NM ahead of the threshold), considering aircraft speed
profiles, wind conditions, and the resulting closing effect. The speed profile and time-to-fly
values are formulated as functions of aircraft type and wind band. Finally, the authors
derive fixed values for additional separation buffer to apply, depending on wind speed
and RECAT-EU wake turbulence category, which reflects average behavior. The follow-up
study evaluates different machine learning techniques to improve the prediction of speed
profiles and time-to-fly [51]. The authors evaluated six regression techniques, as well as
four neural network techniques. However, predictions are again made per aircraft-type
and wind-band combination and not for individual aircraft. The authors of [52] use a
similar data set and concept for predicting mean speed profile and time-to-fly per cluster
of aircraft-type and wind-band. Contemplating previous studies, authors assume that a
normal distribution of the actual values and in addition to the mean, track the standard
deviation, as well. The following studies, where predicting those values for the final
approach segment is presented, serve as an enabler for Eurocontrol’s Leading Optimised
Runway Delivery (LORD) Tool [53], which is a controller assistance tool that provides an
additional indicator on the radar screen that represents the proposed position for an aircraft
behind its predecessor so that when the leading aircraft passes the threshold, the distance
between aircraft is as close as possible at the minimum required separation.

Our work contributes to the field of machine learning in trajectory prediction de-
scribing an approach that combines time-to-fly prediction and uncertainty estimation by
allowing us to quantify the prediction interval and even give a full probability function
over the remaining time-to-fly. Furthermore, we additionally provide a specific use case
making use of the presented model in a real ATC environment.

1.2. Focus and Structure of The Document

In the presented paper, we focus on the area around the final approach, including
the upstream part of the turn onto instrument landing system (ILS) (instrument landing
system, provide horizontal and vertical flight guidance) course. We develop a methodology
to predict time-to-fly not only as a point estimate as in the work presented before but also
considering the uncertainty inherent to predictions of the future. This will enable the
assessment of possible impacts on safety and capacity, which is subsequently employed to
find a trade-off for optimal separation. Controllers required their support tools to propose
only actions that will not compromise safety in the first place. Therefore, a prediction
method is required that allows deriving information about the uncertainty of the prediction,
the prediction interval.

In the following Section 2, we first present the data our analysis is based on, including
a description of the data preparation steps. Section 3 describes the method for probabilistic
prediction of time-to-fly and provides an overview of the model assessment measures.
Afterward, in Section 4 the model implementation, concrete training procedure, as well
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as predictions and assessment, is provided. Complementary, we briefly present the use
case of determining the optimal initial separation buffer required to compensate for the
compression effect along with the final approach. Finally, the paper ends with a discussion
and outlook in Section 5.

2. Data Preparation
2.1. Data Description

The flight track data set comprised 6 months of arrivals and departures to/from a
major European airport serving over 400,000 flights per year. All flights were recorded
within a 40 NM radius around the airport reference point (cf. Arrival Sequencing and
Metering Area (ASMA) [54]) and are represented by a metadata record as well as a list of
trajectory points. A flight’s metadata contains information about

• Flight identifier
• Date and time of arrival or departure (i.e., touch-down/take-off)
• Origin and destination airport
• Runway identifier
• Call sign
• Aircraft type

For each flight, the trajectory was represented by a series of records with a 4-second
update interval. Each record contained information about the aircraft’s position (easting,
northing, altitude) and velocity (ground speed).

Furthermore, meteorological aerodrome report (METAR) data was acquired to provide
weather information for the full recording period covered by our data set [55]. Each METAR
record was composed of a timestamp and the actual report. A report was issued every half
an hour at xx:20 and xx:50, respectively. From each report, we extracted information about
wind (speed and direction), pressure, and temperature (cf. [56]).

2.2. Preprocessing
2.2.1. Data Selection

In the preprocessing phase, we prepared the data for further analysis and the use in
model training and testing phase. This comprised data set selection, merging of different
data sets into a common data frame, as well as data imputation, filtering, and some
additional pre-calculations.

The data used for this study were clustered by aircraft type and landing runway. The
proposed methodology was outlined using an exemplary cluster that contained about
5000 arrivals performed within six months. This way, the model training process was more
tailored towards specific characteristics and the predictions were more streamlined, instead
of having to deal with more diverse data, which is suspected to have a decreasing effect on
model accuracy.

For weather data, no pre-selection was made, the full 6 month period of nearly
9000 records was included in the base data set. All records that were not required, for in-
stance, due to night flying restrictions and the resulting absence of traffic data during that
time, were automatically abandoned in the following data merging step.

Finally, we included airport-specific information, especially regarding the landing
runway. The most important feature here was the location of the threshold, against which
distance and time-to-fly were measured.

2.2.2. Data Merging

After all, data were obtained and included in the base data set, the flight tracks were
merged with airport data. This related every point of the trajectory with data about the
location of the threshold to allow computation of distance to go. Subsequently, for each
record of the trajectory, atmospheric data from the METAR data set was attached. Since
METAR reports were issued every half an hour, every point of the trajectories that was
recorded in between those times is related to the last, most recently available weather
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data record. We included both, the METAR report time, as well as the track recording
time in the feature set. This allowed the model to conclude the time difference during the
training phase. A schematic view of all the data sets and how they are merged is depicted
in Figure 2.
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Figure 2. Schematic view on data sets and their relationship.

2.2.3. Imputation

During the data imputation phase, records with missing data were identified and,
if possible, values were inferred. Flight tracks were always fully recorded, therefore, no
missing data were found in the data set. Contrarily, several effects led to incomplete records
in the METAR data set.

First, a METAR record may have been missing. This was the case for 15 out of the
expected 8928 records, which corresponded to 0.17%. Another 10 records contained the
string ’NIL’, which indicates that no METAR record was issued for this time. Furthermore,
even if available, not every METAR report contained information about all the weather
features that were required for the analysis. For instance, an update may concern runway
parameters exclusively (e.g., visibility) but not wind parameters or temperature.

For all those cases, data imputation was required to fill missing values in the data set.
In the first step, we inserted ’NIL’ reports where a METAR report was completely missing.
This led to a fully populated data set. However, this did not provide additional information
about weather properties like wind or temperature. Therefore, in a second step, all records
with missing information about those properties were selected. This comprised 32 records
where temperature, dew point, and pressure were missing, as well as 25 records where
wind speed was missing. A numerical value for the direction of the wind was missing in
770 records. This is not only because of missing METAR reports, but there existed a special
value ’VRB’ for slow winds (up to 9 knots in this case) from variable directions. In any case,
the longest consecutive sequence of missing weather data was of length 7, which equals a
4 h period.

For filling up the missing weather data, we used a linear interpolation approach.
While this can be done straight forward for features like temperature, dew point, and pres-
sure, wind speed and direction need special handling. Since wind direction is a cyclical
feature, a simple linear interpolation was not possible. Instead, the wind was treated as
a vector that reflected speed (length) and direction, and which is decomposed into its
Cartesian components, usually named u and v. Those components are then interpolated
independently of each other and the results are transformed back into two values for speed
and direction.

2.2.4. Filtering

To reflect the scope of the time-to-fly prediction that was described above, the flight
tracks were truncated accordingly. Therefore, a rectangular region around the final ap-
proach path was defined that covered the area where aircraft were usually cleared to
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intercept ILS. This comprised the extended runway centerline within the 40 NM radius of
data coverage and extends orthogonally to this until just before the downwind leg to not
include that part of the track. Figure 3 depicts this area schematically.

Runway final approach

downwind

Figure 3. Area of interest, blue rectangle depicts the region to which flight tracks are truncated.
The orange part of the flight tracks are part of the data set, the purple parts are discarded. (not
to scale).

As soon as an aircraft entered this region, a prediction of its time-to-fly was possible.
Flights that left the area after entering it, for instance, due to overshooting the localizer
(LOC) intercept, were considered from the first entry on, provided they land eventually.

Additional filter criteria were altitude and track to exclude flights that crossed the
area much higher or in a direction that was not appropriate for the approach. Furthermore,
missed approaches, i.e., flights that did not reach the runway threshold, were removed.

2.2.5. Feature Transformation

For random forest methods, there was no normalization or standardization of the
data required since RF models are based on decision trees, which are invariant to linear
transformations because they use indicators like information gain, Gini index, and variance
reduction, which are not affected by scaling of the variables. This stays true for quantile
regression forest (QRF), even though it is a regression method because there is no explicit re-
gression coefficient to measure the relationship between features and the response variable.

Finally, the last step of the data preparation phase was the decomposition of the cyclical
features representing wind direction and aircraft track into their Cartesian components.
This step was required, since, for cyclical features, the relation between distant values
could be much closer than indicated numerically, like for instance tracks 005 and 355. To
account for this, we split the aircraft speed vector and wind speed vector each into two
features, one for the sine and one for the cosine part. This corresponds to the handling of
wind direction during the data imputation phase, as described above.

2.3. Exploratory Data Analysis

After the preprocessing phase, there were 4886 flights available contributing to a total
of 452,037 data points. Figure 4 visualizes the tracks that were included in the data set.

0 10,000 20,000 30,000 40,000 50,000 60,000
easting [m]

0

5,000

10,000

15,000

no
rt

hi
ng

 [m
]

Figure 4. The flight tracks that are part of the data set that is used for this study. The red cross depicts
the runway threshold.

For all recorded flight tracks, the time-to-fly could be determined for every point along
the flight path. Figure 5 depicts for all tracks of the data set the time-to-fly along the flight
path. Furthermore, Figure 6 visualizes the time-to-fly distribution using a histogram over
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all the values in the data set. It highlights the values that were expected at first contact with
an aircraft entering the active area. It can be seen that those were not common distributions.
The mean time-to-fly over all the data points was 206.58 seconds, which is depicted by a
green line in the diagram.
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Figure 5. Time-to-fly above the distance to threshold.
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Figure 6. Distribution of time-to-fly values. The blue histogram comprises the full data set. The or-
ange one depicts the time-to-fly at first entry of an aircraft. Solid curves depict the kernel density
estimation. The green line depicts the mean over all time-to-fly values.

3. Quantile Regression Forests
3.1. Quantile Regression

Predictions made by machine learning (ML) algorithms are never absolute but rather
probabilistic. Despite this fact, most of the ML methods usually provide a point estimate,
which reflects only one property of the underlying probability distribution, depending
on what the models are trained for, usually the conditional mean E(Y|X = x). However,
many applications would benefit from more distinct information about the underlying
distribution. Sometimes it is crucial to obtain a prediction interval, rather than a single value.
For example, in air traffic control it is not only required to know what the state of an aircraft
(i.e., its position, orientation, and speed) may be on average when performing predictions
but to know the possible distribution of aircraft state to be able to detect developing safety-
critical situations. The field of collision risk modeling makes extensive use of probability
distributions over the position of aircraft [57,58]. Employing quantile regression methods
allow for determining additional supports of the probability distribution by predicting
several quantiles [59].
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For a conditional random variable Y|X = x and its cumulative distribution function
(CDF) F(y|X = x), the τth quantile (with 0 ≤ τ ≤ 1) of the random variable is determined
using Equation (2). When employing quantile regression techniques, the quantiles are
the model’s output and the probability function is what needs to be derived from these
values. Figure 7 visualizes an exemplary quantile function as constructed from the model’s
prediction output for 100 quantiles with τ ∈ {0.01, 0.02, 0.03, . . . , 1.00}.

Qx(τ) = F−1(τ) (1)

= inf{µ : F(µ|X = x) ≥ τ} (2)
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Quantiles
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te
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tim

e
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f
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 [s
]

Quantile Function

Figure 7. A quantile function constructed from the responses at 100 collocation points
(τ ∈ {0.01, 0.02, 0.03, . . . , 1.00}) as given by the QRF model.

Deriving the CDF from the quantile function requires inverting the relationship pre-
sented above in Equation (1). Since the prediction can be performed for discrete quantiles
only, the inverse of the quantile function, Q(τ)−1, depicts a right-continuous, non-derivable
empirical cumulative distribution function (ECDF) F(t), which is visualized in Figure 8.
This distribution can then be used to perform further investigations that consider the
uncertainty in the prediction of time-to-fly, like a trade-off analysis as presented later in
Section 4.

Usually, when performing quantile regression, ML models need to be trained indi-
vidually for all the quantiles that are required to provide the necessary supports of the
underlying distribution, which results in a large set of models, each of which requires
training time and memory. In contrast, a QRF model needs to be trained only once and can
afterward provide predictions for arbitrary quantiles [60].
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Figure 8. Plot of inverse quantile function, which results in a right-continuous empirical cumulative
distribution function.

3.2. Random Forest

Random Forest is an ensemble method based on binary decision trees. It belongs to
the category of supervised machine learning algorithms. A prediction of the target value is
achieved based on the outcomes of multiple, distinct trees, hence it is called a forest. At
each level of a tree, the decision, which branch to follow, is made based on the value of
certain features. Depending on the objective of the prediction (classification or regression)
the trees’ outputs are regarded as a vote for a certain class or contribute to the calculation
of a numerical value.

In general, a random forest model is trained via a randomized bootstrapping pro-
cess [61]. This means the training data set is sampled n times, depending on the number of
trees in the forest. Each sample contains exactly the same amount of observations as the
original data set. The observations are chosen randomly from the base data set, which leads
to the effect of duplicate and missing records. Therefore, this method is called sampling
with replacement.

After sampling n individual sets of training data, the training process starts growing
one tree per sample. A tree is grown by an iterative splitting of the data sample into two
parts based on a decision criterion that gives the reduction in variance to determine the
quality of a split [61].

The training process of a QRF model does not differ from training a standard random
forest model except how the values in the leaves of each tree are handled. While in a classic
random forest regression model, only the average of all observations that a leave contains
is stored, in QRF all the observations of the training phase are preserved. In the prediction
phase, those values are necessary to calculate individual weights for constructing the
quantile function as described in detail in [60].

3.3. Model Quality Assessment

The quality of the model has to be assessed during the training process, as well as
afterward to allow for a comparison with similar approaches. We first provide a brief
summary of common measures for models that provide point estimates, whereafter metrics
are presented that explicitly account for quantile estimates and probabilistic predictions.
During training phase, quality measures are typically termed loss function or loss value.
However, in this section, we use the terms loss, score, and measure interchangeably.
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3.3.1. Point Estimate Assessment

For quantification of model performance and accuracy, a wide variety of methods have
been developed in the past [62]. All of those methods target classic, not quantile-enabled
ML approaches that could provide point estimates. We select the three most commonly
employed measures and briefly discuss them in the following. Equations (3)–(5) depicts
the equations on how to calculate them, where ŷ denotes the predicted value and y the
associated expected value of a sample from a data set with N samples in total.

RMSE =

√
1
N ∑N

n=1(yn − ŷn)2 (3)

MAE =
1
N ∑N

n=1|yn − ŷn| (4)

MAPE =
1
N ∑N

n=1
|yn − ŷn|

yn
(5)

The root mean squared error (RMSE) seems to be the most common measure, al-
though it is hardly interpretable. Rather, it is more suited to compare different models or
model configurations against each other regarding their prediction quality. In contrast,
the mean absolute error (MAE) gives the average deviation of the prediction from the
expectation in the same domain as the dependent variable, which makes it much more
meaningful. However, the absolute error integrates a large variety of magnitude both of
absolute time-to-fly values and prediction errors. For instance, predicting a time-to-fly of
550 s when the actual value is 500 s is much better than predicting 250 s when the actual
value is 200 s. In this example, even though the absolute error is identical, the relative error
is 10% in the former case and 25% in the latter. Therefore, the scale-independent mean
absolute percentage error (MAPE) measure is employed to provide a third quantification
for the quality of the model that constitutes the average relative prediction error.

3.3.2. Probabilistic Prediction Assessment

To provide probabilistic predictions instead of point estimates, it is appropriate to
additionally calculate measures that are tailored to determine the accuracy of the prediction.
Therefore, probability scoring as a measure for the accuracy of probabilistic predictions of
the QRF model is additionally applied. Two common scoring functions that specifically
target probabilistic prediction assessment are the pinball loss (PL) and the more comprehen-
sive continuous ranked probability score (CRPS). Those measures allow for comparative
prediction evaluation, i.e., to compare different models or model configurations against
each other.

The pinball loss Lτ is an asymmetric, piecewise linear function, that acts as an accuracy
measure for single quantile predictions [63]. The corresponding quantile score or quantile
loss is calculated for a single quantile as depicted in Equation (6), where qτ denotes the
prediction for quantile τ and y the actually observed value. The overall model performance
is determined by averaging the PL values over all the predicted quantiles τ ∈ [0, 1].

Lτ(qτ , y) = 1qτ<y(y− qτ)τ + 1y≤qτ (qτ − y)(1− τ)

= (τ − 1y≤qτ )(y− qτ)
(6)

Since we are not interested in the score of individual quantiles but rather in the
accuracy of the resulting distribution as a whole, we employ a more general score function,
specifically, the continuous ranked probability score, which is the integral of the pinball
score overall quantiles of the underlying distribution [64]. It generalizes the MAE for
probabilistic predictions by measuring the distance between the predicted CDF F̂(x) and
the CDF of the observed value, which itself is basically the Heaviside function (also known
as step function, cf. Equation (8), as depicted in Equation (7) [65]. The overall performance
of the model is then calculated by averaging the CRPS results over all predictions from the
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validation data set. Since it is defined in the same domain as the dependent variable, it is
directly comparable to the MAE of a point estimate model.

CRPS(F̂, y) =
∫ ∞

−∞
(F̂(x)− H(x− y))2 dx (7)

with

H(x) = 1x≥0 =

{
1 if x ≥ 0
0 else

(8)

Quantile decomposition can be applied to transform the calculation of the CRPS in the
form provided in Equation (9), which allows us to plugin the quantiles that are provided by the
QRF model directly [66,67]. Changing the notation from Heaviside to indicator function and
some additional repositioning of the operands, it can be seen from the resulting Equation (10)
that the integrand is the pinball loss function from Equation (6) [68].

CRPS(F̂, y) = 2
∫ 1

0
(H(qτ − y)− τ)(qτ − y)dτ (9)

= 2
∫ 1

0
(τ − 1y≤qτ )(y− qτ)dτ (10)

4. Prediction of Time-To-Fly and Compression Buffer Compensation
4.1. Implementation

For implementing the prediction model we set up a toolchain comprising widely-used
ML frameworks from the Python [69] and R [70] community, respectively. Data preparation
and analysis steps were conducted using the scikit-learn library [71], which provides
several methods that help to accomplish standard ML tasks, like splitting a data set into
train and test data, strategies for hyper-parameter tuning, accuracy measures, etc. The R
package quantregForest [72] from the author of the original paper on QRF [60] provided
implementations for growing a forest and making predictions for arbitrary quantiles. It
has been found to provide higher performance in terms of calculation speed and memory
usage than the scikit-garden adaption written in Python [73].

After the preparatory steps of data acquisition, merging, cleaning, and transformation,
the final data set was split into three parts before applying the QRF algorithm. The first
part is the training subset, which was used to fit the model and which comprises 60% of
the available data. Second, the validation data set comprised 20% of the data. It was used
for model assessment during hyper-parameter tuning. The remaining 20% formed the test
data set used after the fitting and tuning processes are finished to provide an assessment
of the model’s performance in terms of prediction quality and accuracy according to the
measures presented above. Sampling training, validation, and test data from the same base
data set ensured that the data comes from the same distribution.

4.2. Hyper-Parameter Tuning

A QRF model provides several parameters for configuration, hyper-parameters, which
are shared with the underlying, general random forest algorithm. Those parameters are the
number of trees to grow, the number of features to consider in a branch split (mtry), and the
minimum number of samples that a leave node should contain (nodesize). Following the
size of the data set, the calculation time and memory requirements did not allow us to
investigate every single variation of the different parameters. Therefore, we started with a
fixed population size of 100 trees per forest to investigate the influence of the other two
parameters. For regression trees, the default values are 5 for the nodesize parameter and
4 (more specifically: number of features, which is 12 in our data set, divided by 3) for
the mtry parameter. Therefore, we started hyper-parameter search in the vicinity of those
values. For each combination, we calculated the RMSE, MAE, and CRPS based on samples
from the validation data set. The results are presented in Figure 9.



Aerospace 2021, 8, 29 13 of 20

1 2 3 4 5 6 7 8 9 10
number of features to consider in split

6.5

7.0

7.5

8.0

8.5

R
M

S
E

 [s
]

1 2 3 4 5 6 7 8 9 10
number of features to consider in split

4.4

4.6

4.8

5.0

5.2

5.4

5.6

M
A

E
 [s

]

1 2 3 4 5 6 7 8 9 10
number of features to consider in split

3.2

3.4

3.6

3.8

4.0

4.2

4.4

C
R

P
S

 [s
]

nodesize = 1
nodesize = 2

nodesize = 3
nodesize = 4

nodesize = 5
nodesize = 6

nodesize = 7
nodesize = 8

nodesize = 9
nodesize = 10

Figure 9. Results of three different accuracy measures for various model configurations consisting of
a combination of parameters for the number of features to consider in a split, and for the minimum
number of samples in the leave nodes (nodesize). In all three cases, the best performance is reached
for the configuration with two features per split and a single data point per leave. In all cases,
the number of trees per forest is 100. All calculations were conducted on the validation data set.

Subsequently, we selected the best combination of the feature-split and node-size
parameters and performed additional calculations for the different number of trees to find
the optimal size of the forest. The results are presented in Figure 10. As can be seen from
the figure, the number of trees influenced the model’s prediction quality positively with
increasing population size, which corresponded to the general rule of thumb to use as many
trees as possible, which is primarily limited by the memory available. However, the change
in CRPS between a forest size of 100 to 900 trees was magnitudes lower than what could
be achieved by tuning the node size and feature split parameters. The improvement was
below 0.45 % from the highest score at a population of 100 trees and the lowest (best) score
for 800 trees.
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Figure 10. continuous ranked probability score based on the validation data set for different tree
population sizes and a fixed setting of node-size (=1) and feature-split (=2) parameters.

4.3. Model Assessment

After training and tuning the model using the train and validation data subsets, we
provided an assessment of the model based on predictions made from the test data set,
which the model did never see before. The test data, therefore, provided an unbiased as-
sessment of model performance and allows for comparison with other models. The models
parameter were selected according to the results of the hyper-parameter tuning (mtry = 2,
nodesize = 1, ntree = 800). Besides accuracy measures for probabilistic predictions, we
additionally included measures for point estimate accuracy to allow for comparison with
similar models that did not perform probabilistic predictions. The results are summarized
in Table 1.
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Table 1. Final model accuracy assessment based on predictions performed on the test set.

RMSE MAPE MAE CRPS

6.3 s 2.2 % 4.3 s 3.1 s

4.4. Determining the Separation Buffer

The prediction of time-to-fly for two aircraft in a leader-follower relationship could
now be used to calculate the probability of a certain separation at the threshold. Since we
focused on time-based-separation for now, this corresponded to the difference between the
two random variables X and Y representing the time-to-fly predictions of the leading and
following aircraft, respectively. According to the formulation of cross-correlation, the differ-
ence Z = Y− X between two random variables with probability density functions fX and
fY was calculated as depicted in Equation (11). This required assuming independence be-
tween variables X and Y, which is usually not the case for real aircraft in a leader–follower
relationship. We made this assumption here since it is essentially the goal of the support
tool to allow the controller to place aircraft far enough from each other so that every aircraft
can follow its own speed regime without further intervention and thus be independent of
each other.

fX(z) ? fY(z) =
∫ ∞

−∞
fX(u) fY(z + u)du (11)

To account for the fact that the presented QRF model did not provide a density
prediction but a quantile prediction, whose inverse was a right-continuous and non-
differentiable ECDF, we reformulated the equation using the Riemann–Stieltjes integral,
which led to the following form of the cross-correlation:

FX(z) ? FY(z) =
∫ ∞

−∞
FY(z + u)dFX(u) (12)

With Equation (12), it was now possible to compute the probability of an infringement
of minimum required separation ST as P(Z ≤ ST) = FZ(ST). The other way around, given
an acceptable probability for loss of separation pLoS, the time-to-gain or time-to-lose was
calculated as the difference between ST and the infimum of all possible separation values z
that fulfill the probability constraint, as shown in Equation (13). A positive result ∆t depicts
a time-to-lose, a negative value depicts a time-to-gain.

∆t = ST − inf{z : P(Z ≤ z) ≥ pLoS}
= ST − inf{z : F(z) ≥ pLoS}

(13)

The last step for this use case was determining the acceptable probability for a loss
of separation. This could be done either by explicitly giving a value for the probability
derived from external analysis, expert opinion, etc. However, since the overall goal of the
presented approach was to optimize capacity utilization, we needed to find a trade-off
between two effects that led to decreased capacity utilization: a loss of separation (LoS) and
a too wide spacing. Thus, it was required to balance the probabilities of both approaches
to find the optimal initial separation of aircraft. Specifically, the probability for a LoS pLoS
should be equal to pLoC, which depicts the probability to lose capacity due to too wide
separation, as depicted in Equation (14). Here, ST is the target separation at the threshold,
which may usually be the minimum required wake vortex or radar separation. ∆S denotes
the exceedance of the minimum required separation that is tolerable. When the separation
exceeds ST + ∆S, capacity utilization is assumed to decrease by one movement (e.g., 1
arrival per hour). We introduced an additional factor γ, which allowed weighing the effects
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of separation infringement and too wide separation events against each other, e.g., γ = 2
means that two arrivals lost due to too wide separation are equally acceptable as one LoS.

pLoS = pLoC

PZ(Z ≤ ST − ∆t) = 1− PZ(Z ≤ ST + γ∆S− ∆t)

FZ(ST − ∆t) = 1− FZ(ST + γ∆S− ∆t)

(14)

With this set of equations, it was now possible to determine the time-to-gain or time-to-
lose either depending on an explicitly given probability for loss of separation. Alternatively,
these time values could be calculated from a weighted trade-off between two different
scenarios that could lead to degraded capacity utilization and if required, compute the LoS
probability from that.

4.5. Model Application

Finally, we present an exemplary use case in which we show how the developed
model was applied to derive advisory for optimizing separation. For this, two aircraft
(leader and follower) were randomly selected from the dataset. The aircraft’s state values
were then fed into the QRF model, resulting in a prediction of two quantile functions
representing the time-to-fly of each aircraft. Those predictions are depicted in Figure 11,
in which the quantile functions are already transformed into ECDF form.

Now, the difference between the time-to-fly distributions of the following and leading
aircraft was calculated via cross-correlation as shown in Equation (12). The result represents
the distribution of time-based separation at the threshold, which is illustrated by the blue
curve in Figure 12. The red vertical line depicts the required separation of 60 s that has to be
maintained. In this case, the probability for a separation infringement pLoS = FZ(60) is 10 %.
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Figure 11. The right-continuous empirical cumulative distribution functions given by the
QRF model as result of the time-to-fly predictions for two aircraft: leader (FX(t), blue) and
follower (FY(t), orange).
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Figure 12. The predicted time-based separation between leader and follower (blue curve)
will lead to a separation infringement (vertical red line) with probability of 0.1. The fol-
lower has to lose 84 seconds to reduce the probability below 10−4 (orange curve).

Subsequently, following the first of the two options presented above, we could now
calculate a time-to-lose by setting the acceptable probability for loss of separation to
pLoS = 10−4, i.e., only one in 10,000 approaches should lead to a separation infringement.
This value may, for instance, be acquired by expert judgement. With Equation (13), the time-
to-lose was determined to be 84 s for this example.

Following the second option, which finds ∆t based on the trade-off between separation
infringement and too wide separation, ∆S had to be determined. For this example, we
simplified this task and took a homogeneous traffic mix (medium aircraft category only)
assuming an average separation of 60 seconds. This means, an overall separation of
ST + ∆S = 120 s or more was probable to lead to the loss of one arrival. Additional
assuming that a loss of separation was twice as worse as a lost arrival due to too wide
separation, we set γ = 2 and can use Equation (14) to calculate ∆t, which is 34 s in this case
(with pLoS ≈ 1.8 %).

This example case demonstrates how the developed methodology can be applied to
obtain advice regarding time-to-lose or time-to-gain based on probabilistic predictions.
It remains a strategic decision of the stakeholders, specifically the air navigation service
provider (ANSP), which option (preselect pLoS or trade-off between pLoS and pLoC) to
choose for calculating ∆t.

Since our data set does not contain information about the applied separation at the
time of recording, we currently cannot evaluate the effect of the model when applied as
described above. Specifically, we do not have the values for ST that have been applied at
the time of recording. The next step will therefore be to transfer the model into an ATC
simulator and evaluate the application in human in the loop simulations.

5. Conclusions and Outlook

In this paper, we presented the development of a quantile regression forest model
to predict the time-to-fly of aircraft from the turn onto the final approach course to the
runway threshold. The quality of the model in terms of point estimate accuracy as well
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as probability prediction has been investigated regarding several model error measures.
Finally, we presented an approach on how to derive advice regarding time-to-gain/time-
to-lose from the predictions depending on the trade-off between two scenarios leading to
degraded capacity utilization.

Following the development of the initial model, the next step is to enable the model
to be applicable for distance-based-separation as well. At the current stage, the proposed
model considers the present state of the aircraft under consideration and recent weather
only. It seems promising to also include (partially) the track history as a feature to improve
the accuracy and precision of the prediction as well as extending the scope of features
taking into consideration additional correlations between multiple aircraft in the sequence.
However, it needs to be investigated whether the QRF approach can be employed for a
variable length of time-series input.

Furthermore, the prediction of time-to-fly and its implication to the air traffic controller
is just the first step towards a decision support tool. At the current state, the tool would
only show a possible goal (time-to-gain/-lose) but the controller has to decide how to
achieve the proposed system state. A future step is to enhance the tool’s capabilities
towards generating recommendations for ATC commands that help to reach the goal, using
advanced ML techniques.
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Abbreviations

ADS-B Automatic Dependent Surveillance-Broadcast

AIBT actual in-block time

ANSP air navigation service provider

AOBT actual off-block time

ARDT aircraft ready time

ASMA Arrival Sequencing and Metering Area

ATOT actual take-off time

CDF cumulative distribution function

CRPS continuous ranked probability score

ECAC European Civil Aviation Conference

ECDF empirical cumulative distribution function

FAF final approach fix

IAS indicated air speed

ILS instrument landing system

LOC localizer
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LORD Leading Optimised Runway Delivery

LoS loss of separation

MAE mean absolute error

MAPE mean absolute percentage error

METAR meteorological aerodrome report

ML machine learning

MTOM maximum take-off mass

PDF probability density function

PL pinball loss

QRF quantile regression forest

RECAT-EU re-categorisation of ICAO wake turbulence separation

RMSE root mean squared error

TAS true air speed

TMA terminal maneuvering area
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