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Abstract: Unmanned Aerial Vehicles (UAVs) undoubtedly pose many security challenges. We need
only look to the December 2018 Gatwick Airport incident for an example of the disruption UAVs can
cause. In total, 1000 flights were grounded for 36 h over the Christmas period which was estimated
to cost over 50 million pounds. In this paper, we introduce a novel approach which considers UAV
detection as an imagery classification problem. We consider signal representations Power Spectral
Density (PSD); Spectrogram, Histogram and raw IQ constellation as graphical images presented to a
deep Convolution Neural Network (CNN) ResNet50 for feature extraction. Pre-trained on ImageNet,
transfer learning is utilised to mitigate the requirement for a large signal dataset. We evaluate
performance through machine learning classifier Logistic Regression. Three popular UAVs are
classified in different modes; switched on; hovering; flying; flying with video; and no UAV present,
creating a total of 10 classes. Our results, validated with 5-fold cross validation and an independent
dataset, show PSD representation to produce over 91% accuracy for 10 classifications. Our paper
treats UAV detection as an imagery classification problem by presenting signal representations as
images to a ResNet50, utilising the benefits of transfer learning and outperforming previous work in
the field.

Keywords: unmanned aerial vehicles; UAV detection; RF spectrum analysis; machine learning
classification; deep learning; convolutional neural network; transfer learning; signal analysis

1. Introduction

UAVs are used widely in a manner of different civil applications, from providing
wireless coverage for networks [1] to conducting search and rescue missions and even the
delivery of goods [2]. In 2020 the global drone market was valued at 22.5 billion USD and is
predicted to grow to 42.8 billion USD by 2025 [3]. While UAVs undoubtedly provide many
economic and social benefits, they pose equal challenges including the facilitation of crime,
aircraft/airport disruption, the delivery of cyber-attacks and physical attacks, for example
carrying a software defined radio (SDR) or explosive device. In December 2018 1000 flights
were grounded for 36 h at Gatwick Airport due to UAV sightings [4]. This disruption was
estimated to cost over 50 million pounds. The facilitation of crime is another area that
poses real security challenges, UK prisons have been targeted for drug deliveries using
UAVs [5]. Another major concern is the weaponisation of UAVs. Violent non-state actors
have been using low cost weaponised UAV technology for years as a way of balancing the
power with limited resources in asymmetric warfare [6]. As far back as 2017 former UK
Prime Minister David Cameron, warned of the risk of the use of a UAV equipped with an
aerosol device for the dispersal of nuclear or chemical material over a European city [7].
In 2020, steps forward have been made to combat the threat in terms of policy, legislation
and technology. In 2019 a strategy was published by Government regarding malicious use
of UAVs [8] and in January 2020 a police powers bill was introduced for the enforcement of
laws surrounding it. Policy and legalities are important but technology is equally looked
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upon to provide solutions to UAV misuse [4]. The detection of an unwanted UAV in an
airspace is the first step towards its mitigation.

UAV detection has been studied in various forms and can be broken down into
the following categories; audio detection, video/image detection, thermal detection,
Radio Frequency (RF) detection and RADAR detection. Audio signals have been stud-
ied using microphones pointed in different directions that can capture sound up to 30 ft
away. Mezei et al. [9] use mathematical correlation as a way of fingerprinting audio signals
from different UAVs. This method concentrates on capturing the motor sound which
resonates around 40 KHz but this technique struggles in urban areas where the base noise
level is high. Recent work in the imagery and video detection field have come up against
difficulties in trying to distinguish birds from UAVs, particularly birds such as seagulls that
glide and especially at a distance. Shummann et al. in [10] show that video detection meth-
ods are making progress with this issue using feature extraction and classification through
CNNs. Busset et al. [11] combine the first two approaches with a video and microphone
system achieving a detection range of 160–250 m (UAV type dependant). The combination
of different detection techniques is thought to warrant further investigation as each tech-
nique has different strengths and weaknesses. Andraši et al. [12] show thermal detection
to work better on fixed wing UAVs. This is due to quadcopters being built with small
electronic motors which are more efficient and therefore harder to detect as they produce
little heat. Thermal signatures have not had as much research attention due to high cost,
low detection rates and limited distances [13]. RADAR detection methods struggle with
the UAV being classed as clutter. This is due to UAVs tending to fly low and be relatively
small in size (compared to an aircraft for example). Research in this field looks to improve
the detection rate by trying to separate the UAV from the clutter [14]. Lastly, RF detection
is seen as one of the most effective ways of detecting UAVs at long distance ranges and has
shown detection at 1400 ft [13]. It does warrant its own concerns too, with the UAV often
having to be in line of sight with the antenna and some techniques have struggled with
interference from other devices which use the same frequency bands such as Wi-Fi and
Bluetooth signals. This paper looks to extend current research in the use of RF signals to
detect and classify UAVs. We will now discuss current and the associated literature in the
field and systems available commercially.

The Drone Detection Grid [15] is a system made by DD Countermeasures, Denver,
CO, USA which flags unknown transmitters within a certain frequency range. Systems
like these are susceptible to false positives as no classification of the signal is performed, so
it could be something other than a UAV flagging detection. Ref. [16] describes a solution
based on a network of sensors which use energy detection to identify the UAV and then
correlation to classify them. Since the system uses a network of sensors, time difference of
arrival can then be used to locate the device. However, due to the number of distributed
sensers required these systems can be expensive.

In the recent literature, Nguyen et al. [17] use Wireless Research Platform Board
(WARP) version 3 by Mango Communications and the USRP B200 by Ettus Research
software defined radio (SDR) platforms for the testing of passive and active RF techniques
to detect UAVs. Their work concluded that the UAVs tested were detectable in the RF
spectrum when an active signal was successfully reflected, and by passively observing
the communication between the UAV and controller. Their work however was limited to
only 2 types of UAV. Ezuma et al. [18] evaluate the classification of different UAV controller
handsets. Their system is multistage and uses Markov models-based Bayes decision to
detect the signal and then machine learning classifiers are evaluated. K-nearest neighbour
produced a classification accuracy of 98.13%. Their work extends the field from the detec-
tion of a UAV to the classification of a remote control handset type. Huang et al. [19] use a
HackRF SDR to detect UAV controllers. They further prove that localisation of the handset
is possible using a modified multilateration technique and 3 or more SDRs. Zhao et al. [20]
use a USRP to capture the signal amplitude envelope and principal component analysis
to feed a set of features into an auxiliary classifier Wasserstein generative adversarial
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network. They achieve 95% accuracy with 4 different types of UAV. Training took place in
an indoor environment and testing outdoors. Future work looks to use open datasets so
these accuracy figures can be compared to other researchers work.

Al-S’ad et al. produce the open DroneRF [21] dataset. A significant contribution to
the field, this is the first open dataset for the classification of UAV flight modes. In the
associated publication, Al-S’ad et al. [22] use the USRP SDR to capture raw IQ data. I stands
for In phase and Q for Quadrature, the I representing the real component of the signal and
the Q the imaginary, a complex number. They use a deep neural network (DNN) to classify
3 different UAVs operating in different modes—switched on; hovering; flying with video;
and flying without video. Results show classification accuracy to drop significantly when
the classes are increased; 99.7% for 2 classes (UAV present or not), 84.5% for 4 classes (UAV
type) and 46.8% for 10 classes (UAV type and flight mode). Al-S’ad et al. [22] struggle
to classify flight modes accurately using raw data and a DNN, they conclude that an
issue may exist with distinguishing between UAVs produced by the same manufacturer.
Swinney and Woods [23] use a VGG-16 CNN for feature extraction after using the DroneRF
dataset to produce Power Spectral Density and Spectrogram signal representations. They
evaluate machine learning classifiers Support Vector Machine, Logistic Regression (LR)
and Random Forest and achieve 100% accuracy for 2 class detection, 88.6% for 4 class
UAV type classification and 87.3% accuracy for 10 flight mode classifications. Swinney and
Woods show treating signal representations as images using a CNN that they are able to
distinguish between UAVs produced by the same manufacturer.

Other domains have benefitted from considering a signal as an image. Long et al. [24]
use images of wind power curves to detect anomalies in wind turbine data by identifying
anomalous data points. They show the method superior to more traditional methods of
outlier detection such as k-means. Spectrogram signal representations as images are used
for jamming detection in [25] by doing a comparison with a baseline image. This work
does not extend to classification of the signal. O’Shea et al. [26] also use spectrograms as
images in conjunction with CNN feature extraction to classify wireless signals such as
Global System for Mobile Communications (GSM) and Bluetooth. Their work concludes
that this method struggles to pick up burst communications as the spectrogram is looking
at the frequency changes over a set time period. If the burst didn’t happen within the time
frame the spectrogram would miss it. In a similar vein UAV signals can hop around the
frequency spectrum, potentially making signals harder to detect and classify accurately
through spectrogram time domain image representation. Due to the significance of this
method in wireless communications, our work in this paper will extend the types of signal
representations considered as graphical images presented to a CNN. Viewing a signal in
2D as an image over 1D signals allows a human in the loop to visually identify issues,
in some cases providing a contextual understanding. We will also carry on the findings of
Swinney and Woods [23], who showed flight mode classification possible with the same
manufacturer, by investigating a deeper CNN architecture for classification accuracy. This
work does not consider or compare the additional processing power that would be required
for the use of a deep CNN compared to the use of 1D data. For example, there would be
practical limitations on hardware. However, this is a larger issue with the implementation
of DNNs for practical real time and embedded applications which is reviewed in [27].

The approach proposed in this work utilises transfer learning through the use of a
pre-trained ResNet50 CNN on ImageNet to extract features from our graphical image
datasets of the various signal representations. These features are then classified using
machine learning classifier LR. Figure 1 shows the process from the raw signal data in the
open DroneRF dataset in block 1 through to the classification of the signal. Block 2 refers to
plotting the raw data as Spectrogram, Histogram, Raw IQ constellation and Power Spectral
Density (PSD) graphical representations. Block 3 is concerned with extracting features
using a ResNet50 CNN which has already been pretrained on the ImageNet database.
Lastly block 4 is concerned with evaluating machine learning model Logistic Regression
(LR) as the classifier. The rest of the paper is organised as follows; Section 2 introduces the
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methodology including an explanation of the signal representations as images, the CNN
feature extraction and the machine learning classifier LR. Section 3 presents the results and
Section 4 the conclusions from the work.

Figure 1. Block diagram of the overall model.

2. Materials and Methods
2.1. Dataset

Table 1 shows UAV classes assessed in these experiments from the open DroneRF
dataset produced by Al-Sa’d et al. [21]. Three UAV types are evaluated–Parrot Bebop,
Parrot AR (Elite 2.0) and the DJI Phantom 3. Al-Sa’d et al. in [22] pick these UAVs because
they are commonly purchased for civilian applications.

Table 1. UAV Classes.

Class UAV Type Mode

1 No UAV N/A
2 Parrot Bebop Switched on and connected to controller
3 Parrot Bebop Hovering automatically with no controller commands
4 Parrot Bebop Flying without video transmission
5 Parrot Bebop Flying with video transmission
6 Parrot AR Switched on and connected to controller
7 Parrot AR Hovering automatically with no controller commands
8 Parrot AR Flying without video transmission
9 AR Flying with video transmission
10 DJI Phantom 3 Switched on and connected to controller

The Bebop, AR and Phantom 3 are varied when it comes to price, size and overall
capability. They increase with weight and size, respectively, and in terms of range the
Phantom 3 can operate out to 1000 m, while the Bebop and AR are restricted to 250 and
50 m, respectively. The Phantom 3 and the Bebop utilise the 5 GHz and 2.4 GHz Wi-Fi bands
but during these experiments are limited to observing their activity in the 2.4 Ghz band.
The Bebop can be set to automatically select a Wi-Fi channel based on the countries legal
requirements and channel congestion or you can manually set the channel yourself [28].
Capturing the whole Wi-Fi spectrum ensures that the UAV will be captured even if the
device switches channel during operation due to interference.

In Table 1, we can see that for the Bebop and the AR various modes are captured,
including switched on and connected to controller; hovering automatically with no input
from the controller; flying with video transmission; and flying without video. The DJI
Phantom 3 is recorded only in the first mode - switched on and connected to controller.
Al-Sa’d et al. [22] is the first work to the authors knowledge which considers different
modes of operation when classifying UAVs. The ability to classify the signal would be
extremely useful in helping to determine intent. Organisations such as the police could
use this information to make an assessment on risk. For example, flying with the video on
could indicate an intelligence collection operation due to the real time feedback of imagery.
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Intelligence capabilities on UAVs have been directly linked to targeted killing [29]. The
DroneRF dataset [21] was recorded using two USRP-2943 SDR made by Ettus Research,
Austin, TX, USA. The USRP-2943 is a higher end SDR costing around £6350 each [30]. They
operate between 1.2 GHz and 6 GHz frequency range with the ability to capture 40 MHz
of instantaneous bandwidth. Al-Sa’d et al. utilise two USRP-2943 simultaneously in order
to cover 80 MHz of the Wi-Fi spectrum (excluding channel 1 and 14). For the experiments
in this paper 1000 samples were taken for each class and split 80% for training with cross
validation and 20% kept entirely separate as a hold-out evaluation dataset.

2.2. Signal Representation
2.2.1. Raw IQ Data and Histogram

The raw data captured from an SDR is IQ data. I stands for In phase and Q for
Quadrature, the I representing the real component of the signal and Q the imaginary,
a complex number. A very basic SDR receiver connected to an antenna is shown in
Figure 2 [31].

Figure 2. SDR Reciever.

In Figure 2, ω can be equated to 2πf where f is the frequency from the local oscillator.
With respect to time, I and Q components have the same phase relationship as sin x being
90 degrees different from cos x. Utilising I and Q components allows signals of different
frequencies above and below the local oscillation frequency to be separated. There are other
advantages as these vectors provide more information for a Fast Fourier Transform (FFT)
than a single scaler. Further, it will produce the same result with half the sampling rate so a
wider bandwidth can be achieved [31]. I and Q components can be plotted with Matplotlib
using a simple scatter plot. A histogram allows us to see a statistical view whereby the
occurrences of the real part of the signal are counted over 500 bins and plotted to measure
the distribution of the signal.

2.2.2. Power Spectral Density

Power Spectral Density (PSD) calculates the strength of a signal and the distribution
of that strength in the frequency domain. This is done using Welch’s method, an approach
developed by Peter Welch that uses periodogram spectrum estimates and converts the
signal from the time to the frequency domain. The Welch method is known for its ability
to provide improved estimates when Signal to Noise Ratio is low but there is a tradeoff
between the reduction in variables to achieve this and the resolution of the PSD [32].
First the signal in the time domain is partitioned into blocks as shown in Equation (1)
ref. [33]. The signal x is broken into m windowed frames and Equation (1) shows the m th
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windowed frame from signal x where R is the hop size (the number of samples between
each successive FFT window) and K is the number of frames [33].

xm(n) , w(n)x(n + mR)
n = 0, 1, . . . , M− 1, m = 0, 1, . . . , K− 1

(1)

Next the periodogram of the m th block is calculated as show in Equation (2) [33].

Pxm, M(ωk) ,
1
M
|
N−1

∑
n=0

xm(n)e
−2jπnk

N |2 (2)

Lastly in Equation (3) we calculate the Welch estimate which is an average of all the
periodograms [33].

SW
x (ωk) ,

1
K

K−1

∑
m=0

Pxm1 M(ωk)
(3)

Our implementation of PSD uses Python 3 Matplotlib which utilises the Welch method.
We use 1024 data points in each segment for the FFT and we include a windowing overlap
of 120 points between segments with a Hanning windowing function.

2.2.3. Spectrogram

While the PSD looks at the distribution of signal strength in the frequency domain,
a spectrogram looks at how the frequencies are changing with time. Spectrograms are used
extensively in fields such as speech processing due to their ability to visualise bursts of
activities at different frequencies over time. The spectrogram shows the intensity of the
Short-Time Fourier Transform (STFT) magnitude over time. It is a sequence of FFTs of
windowed data segments which lets us visualise how the frequency content of the signal is
changing over time. In Equation (4) we define the STFT [34].

X(ω, m) = STFT (x(n))

:= DTFT (x(n−m)ω(n))

:=
∞

∑
n=−∞

x(n−m)ω(n)e−(iωn)

:=
R−1

∑
n=0

x(n−m)ω(n)e−(iωn)

(4)

Equation (4) describes a visual representation of the STFT magnitude |X(ω, m)|,
the spectrogram. In (4) x(n) represents the signal, ω(n) the windowing function with
a length of R and the windowing function determines the block length. As with the PSD,
Matplotlib is used to plot the spectrogram with a Hanning windowing function and FFT
length 1024.

2.3. Image Representation

The frequency range that is covered is from 2.402 GHz–2.482 GHz (Ch 1–Ch 13 Wi-Fi
bands with the exception of the first and last 1 MHz). In the figures below 0Hz represents
the center of the captured spectrum 2.442 GHz. Figure 3 shows the different signal repre-
sentations when there is no UAV present. What we are looking at here is the background
noise or other signals present in the frequency band at the time of signal capture. Figure 4
shows the Bebop in mode 1–switched on and connected to the controller. It is clear on the
PSD that there is some activity in the higher end of the spectrum (2.44–2.48 GHz). As there
is no video transmission in this mode, it is likely that this is the command and control
signal between the UAV and controller.
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Figure 3. No UAV Present.

Figure 4. Bebop Mode 1—switched on.

In Figure 5, the Bebop is hovering in automatic mode. What we can see is that there is
an even spread of activity across the entire band. In particular if we compare the PSD to
the PSD where no UAV is present in Figure 3, we can see there is an increase of around
3 dB across the whole frequency band. If we compare the spectrogram in Figure 5 where
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the platform is hovering in an automatic mode (with no active communication with the
controller) to Figure 3, we see a decrease in power in the higher end of the spectrum,
again indicating this to be a command and control signal.

Figure 5. Bebop Mode 2—hovering.

Figure 6 shows the Bebop flying without video and Figure 7 with video. The histogram
indicates an increase in activity with the video transmitting.

Figure 8 shows the AR switched on and connected to the controller. The spectrogram
and PSD show two clear bands of activity in the spectrum, one above and one below the
centre frequency. Figure 9 shows the spectrum when the AR is hovering. If we compare
this to Figure 5 where the Bebop is also hovering we can see a similar constant spread of
activity across the entire spectrum but with a drop at the center frequency.

Figures 10 and 11 show the AR flying without and with video, respectively. We can see
in Figure 11 on the PSD that the higher end of the spectrum increases in power by around
3 dB when the video is present. We can also see a clear rise in the histogram representation
when the video feed is turned on.

Figure 12 shows the DJI Phantom turned on and connected to the controller. Compar-
ing this to the Bebop in Figure 4 and the AR in Figure 8 we can observe that the Phantom
has a more even spread of power across the entire spectrum.

In all of the figures it is hard to see any real pattern in the raw data changes, this
may be due to the fact that we looking at so much of the frequency range at once. We
need to consider the whole frequency range as we can’t be sure if a UAV will hop to a
random Wi-Fi channel due to interference during operation. The DroneRF dataset includes
10.25 s of recording with no UAV present and 5.25 s for each UAV flight mode at a sample
rate 200 MS/s, producing a dataset larger than 40 GB [22]. Samples are plotted in each
of the 4 signal representations using MatPlotlib and saved as images with 300 DPI. We
constructed separate datasets of images for raw constellation, spectrogram, PSD and
histogram. Each class within each dataset contained 1000 image representations resized to
224 × 224 pixels. The databases were split so there were 8000 images for use with k-fold
cross validation and 2000 images with the evaluation set.
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Figure 6. Bebop Mode 3—flying without video.

Figure 7. Bebop Mode 4—flying with video.
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Figure 8. AR Mode 1—switched on.

Figure 9. AR Mode 2—hovering.
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Figure 10. AR Mode 3—flying with video.

Figure 11. AR Mode 4—flying with video.
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Figure 12. AR Mode 3—Phantom Mode 3—switched on.

2.4. CNN Feature Extraction

Transfer learning is when a pre-trained network is used for a purpose it was not
trained for. It is a popular technique in the medical field for the diagnosis and indication of
severity for various medical conditions [35–37]. Residual Networks (ResNet) [38] allows for
deep neural networks to be trained using a technique called skip connection which take the
output from an earlier layer and combines it with the a later layer. This technique overcame
prior difficulties with training very deep neural networks whereby gradients would vanish
due to repeated multiplication. ResNet50 has been commonly used for transfer learning
research with a large scale image recognition database of over 14 million images called
ImageNet [39]. Training the weights in a neural network from scratch can take a very long
time and needs a large amount of training data, for example the 14 million images that
trained the weights for ImageNet. Transfer Learning allows other domains to benefit from
the use of pre-trained weights for a new purpose. In these experiments a CNN ResNet50
trained with ImageNet will be used to extract features from our signal representations,
presented to the ResNet50 as 224 × 224 pixel images with 3 channels. ResNet50 is 50
layers deep, consisting of 48 convolution layers, 1 max pooling and 1 average pooling layer.
The last layer will have an output shape of 7 × 7 × 2048. This gives us a feature vector of
100,352 values when the shape is flattened.

2.5. Machine Learning Classifier Logistic Regression

LR is a machine learning model which has a fixed number of parameters based on
the number of features in the input. The output of LR is categorical and uses a sigmoidal
curve. The equation for a sigmoid can be seen in Equation (5).

h =
ex

(1 + e−x)
(5)

The output of Equation (5) will always be between 0 and 1 so if we define a threshold
for example of 0.5, then any values below 0.5 will return 0 and above 1. x represents the
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input features and to initialise θ it is multiplied by a random value θ. When there are
multiple features this makes the equation seen in Equation (6).

h = θ0 + θ1X1 + θ2X2 + . . . (6)

The algorithm in Equation (6) updates θ and eventually will establish a relationship
between the features and the output through updating θ. For a situation where we have
multiple classes, the sigmoid is generalised and this is called the Softmax function. The Soft-
max function takes a input vector and then plots it to a probability distribution between 0
and 1. In Equation (7) we describe the softmax function for vector z with k dimensions or
classes [40].

so f tmax(zi) =
ezi

∑k
j=1 ezj (7)

LR was implemented in Python 3 through Sklearn. Ridge Regression as the penalty
for the loss function and Limited memory Broyden–Fletcher–Goldfarb–Shanno (LGBFS)
was used as the solver. Values for regularisation (‘C’) were optimised using SkLearn Grid-
SearchCV.

2.6. Cross Validation

It is important that machine learning models can make predictions on new data, this
is called its ability to generalise [41]. Cross validation assesses how a model will generalise
and should highlight other problems such as bias or overfitting [42]. Stratified K-Fold cross
validation is used in our experiments whereby the training/test data is split into k− 1 sets
and the sets are used to train the model, except for the last set which is used as test data.
Using the stratified version of k-fold in SKlearn allows the same distribution of each class
in each subset [43]. The value k = 5 was used as it is thought in the statistical community
not to be susceptible to either high bias or high variance [44]. Nested cross validation
was used with 3 folds in order to optimise hyperparameters. Lastly a hold-out evaluation
dataset was kept entirely separate. It was not used to train or test the model so this data
provides a further evaluation of the models’ performance on unseen data.

2.7. Performance Evaluation

There are different metrics we could use to evaluate performance. A confusion matrix
helps us to calculate and visualise indictors of performance such as accuracy. Figure 13
shows the components that make up a confusion matrix.

Figure 13. Confusion Matrix.

True Positive (TP) tells us that the prediction was correct and it was true to what was
predicted. True Negative (TN) is where we have predicted something was incorrect and
it was incorrect. False Positive (FP) is where we have predicted something was correct
but it was not. False Negative (FN) is where we predicted incorrect when it was correct.
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The values help us to define accuracy and F1-score. Accuracy shows us how often the
model was right in its predictions, shown in Equation (8).

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

To calculate F1-Score we need to understand how to calculate both recall and precision.
Precision is calculated by dividing TP by TP + FP. This shows how many predicted positives
were actually positive. Recall is calculated by dividing TP by TP + FN. It shows the fraction
of positives that were correctly predicted. F1-Score is often used as a performance metric
as it takes into consideration both recall and precision as seen in Equation (9).

F1 Score =
2 (Precision × Recall)

Precision + Recall
(9)

3. Results
3.1. CNN Feature Extraction

To try to understand the features that are being chosen by the CNN we show the
output of convolutional layers 0, 20, 40 and 48. We have restricted the depth in the maps
to 64 for consistency in the comparison but it should be noted that the depth is greater in
deeper layers. PSD was chosen for the feature map visualisation as it produces the highest
accuracy in Section 4. Figure 14 shows the input image given to the ResNet50 model for
feature visualisation.
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Figure 14. Input Image AR Mode 1.

Figure 15 shows the output of the first convolutional layer (layer 0) and we can clearly
see the detail of the PSD for both input images AR Mode 1.

As we move to convolutional layer 20, Figure 16 shows that although we can still see
the outline and depth of the PSD, we start to lose some detail. This happens because the
CNN starts to pick up on generic concepts rather than specific detail.

Figure 17 shows the output of the last convolutional layer 48 and we can see that
it is difficult now to determine with the human eye what the features are that the CNN
is distinguishing.
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Figure 15. Feature Map Extraction Convolutional Layer 0.
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Figure 16. Feature Map Extraction Convolutional Layer 20.
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Figure 17. Feature Map Extraction Convolutional Layer 48.

3.2. Classifier Results
3.2.1. Cross Validation Training/Test Data

It is clear from Table 2 that PSD outperforms raw constellation, spectrogram and
histogram representations.

Table 2. UAV Classification Accuracy (%) and F1-Score (%).

Metric Raw Spec PSD Hist

Acc 45.3 (+/−1.1) 83.8 (+/−1.1) 92.3 (+/−0.3) 37.0 (+/−0.2)
F1 45.1 (+/−1.1) 83.7 (+/−1.2) 92.3 (+/−0.3) 36.8 (+/−0.2)
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Spectrogram representation was approximately 10% less accurate than PSD, with his-
togram performing the worst out of all the representations. PSD produced 92.3 (+/−0.3%)
accuracy and F1-score which is an increase of over 45% from previous published work.

Table 3 shows the individual representations and their F1-score performance for each
individual class. PSD outperforms the other representations in all classes except for Bebop
Mode 4 (flying with video). Spectrogram was 4% more accurate at classifying Bebop Mode
4. Overall Table 3 shows that PSD is the most accurate way to classify UAV signals across
80 MHz of the Wi-Fi band using transfer learning with ResNet50 CNN feature extraction
and LR.

Table 3. Individual Classification LR F1-Score (%).

Mode Raw Spec PSD Hist

No UAV 51 97 100 49
Bebop Mode 1 26 88 97 26
Bebop Mode 2 29 83 97 18
Bebop Mode 3 90 79 100 79
Bebop Mode 4 23 87 83 17

AR Mode 1 23 92 100 21
AR Mode 2 31 86 94 14
AR Mode 3 20 69 71 18
AR Mode 4 99 72 100 100

Phantom Mode 1 35 64 71 25

3.2.2. Hold-Out Evaluation Results

The evaluation data set results in terms of accuracy and F1-score can be seen in Table 4.
These results confirm the cross validation results in Table IV with PSD producing the
highest accuracy and F1-score. Table 4 shows that PSD is over 10% more effective than
spectrograms and over 40% more accurate than raw constellation and histograms.

Table 4. Evaluation Data Accuracy (%) F1-Score (%).

Metric Raw Spec PSD Hist

Acc 43.1 81.5 91.2 36.7
F1 42.9 81.7 91.2 36.6

Figures 13 and 14 show the confusion matrix for PSD and spectrogram representations,
respectively. Both are able to detect whether a UAV is present or not with an accuracy of
96% or over, with PSD performing at 99.7%.

Figures 18 and 19 confirm that both representations were worst at classifying the AR
in mode 3 (flying without video) and the Phantom 3 when switched on and connected
to the controller. The reason for the Phantom 3 could be the fact that it will hop Wi-Fi
channels based on interference. Without monitoring the spectrum separately we can’t be
sure whether this is happening. The AR when flying without video must look similar
in terms of features in the frequency domain to the Phantom 3 when switched on and
connected to the controller.
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Figure 18. Confusion Matrix PSD.
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Figure 19. Confusion Matrix Spectrogram.

Figures 18 and 19 show the confusion matrix for PSD and Spectrogram representations.
Both representations produce an overall accuracy of above 81% but PSD performs with
higher overall accuracy above 91%. Due to the fact we produced our results with the same
open DroneRF dataset used and produced by Al-Sa’d et al. [22], who achieved accuracy of
46.8% using a DNN across all 10 classes, we can directly compare our results. Our results
show that LR with PSD, to achieve over 91% accuracy, a 45% increase compared with
the prior work. We achieve this by viewing UAV classification as an image classification
problem and utilising transfer learning from the field of imagery. Al-S’ad et al. found that
when they increased the classification from detecting the presence of a UAV (2 class) to
its type (4 class), to include flight modes (10 class) the accuracy decreased significantly.
They put this down to similarities caused by two of the UAVs (Bebop and AR) being
manufactured by the same company. We have shown our approach using CNN feature
extraction able to improve these results distinguishing between same manufacturer.
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4. Conclusions

Our results have shown that PSD outperforms raw constellation, spectrogram and
histogram representations for LR. PSD produced over 91% accuracy with cross validation
results and the evaluation dataset. We achieve this by viewing UAV classification as an
image classification problem, utilising transfer learning and presenting signal representa-
tions as graphical images to a deep CNN. If a system like this was employed in the real
world it would likely need to be trained in the particular environment that it needed to
work in. For example, a built up city area will have more background noise in the Wi-Fi
bands than a rural area. This will also likely affect the accuracy of the classifier so field
testing in city areas is paramount for this type of system. It may also help researchers
understand how much frequency hopping occurs due to interference and whether this
has an impact on detection and classification accuracy. Further, the issue of how often you
would need to re-train the classifier, as RF bands are constantly changing, and how much
change the classifier can cope with before accuracy starts being affected is an important
question which would need further investigation.

Future work could also consider the employment of another SDR to capture the 5 Ghz
band to fully represent dual frequency band UAVs such as the Bebop and Phantom 3. It
is thought that this would further improve accuracy as it provides an increase of distin-
guishing features. The dataset could also be expanded to include more UAV platforms.
This method which utilises signal representations as graphical images would require more
processing power and therefore increased energy requirements compared with processing
1D data. Further work could look at hardware implementations such as FPGA, GPU and
hardware accelerators such as Tensor processing unit [45] by Google to evaluate practi-
cal limitations for 2D data against the use of 1D compared with accuracy of the models.
In conclusion our results have shown a novel approach by treating UAV classification as
an imagery detection problem utilising the benefits of transfer learning and outperforming
previous work in the field by over 45%.
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