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Abstract: Risk assessment methods are widely used in aviation, but have not been demonstrated
for visual inspection of aircraft engine components. The complexity in this field arises from the
variety of defect types and the different manifestation thereof with each level of disassembly. A
new risk framework was designed to include contextual factors. Those factors were identified using
Bowtie analysis to be criticality, severity, and detectability. This framework yields a risk metric that
describes the extent to which a defect might stay undetected during the inspection task, and result
in adverse safety outcomes. A simplification of the framework provides a method for go/no-go
decision-making. The results of the study reveal that the defect detectability is highly dependent on
specific views of the blade, and the risk can be quantified. Defects that involve material separation or
removal such as scratches, tip rub, nicks, tears, cracks, and breaking, are best shown in airfoil views.
Defects that involve material deformation and change of shape, such as tip curl, dents on the leading
edges, bents, and battered blades, have lower risk if edge views can be provided. This research
proposes that many risk assessments may be reduced to three factors: consequence, likelihood, and a
cofactor. The latter represents the industrial context, and can comprise multiple sub-factors that are
application-specific. A method has been devised, including appropriate scales, for the inclusion of
these into the risk assessment.

Keywords: risk assessment; risk management; aviation safety; gas turbine engine; blade inspection;
MRO; aircraft maintenance; contextual factors

1. Introduction

Gas turbine aircraft engines are inspected at regular intervals, or after a known incident
(e.g., bird strike). While maintenance, repair and overhaul (MRO) of engines is crucial
for flight safety, it is predominantly performed by human operators who are prone to
error. The International Air Transport Association (IATA) reported that maintenance and
inspection errors are under the top three causes of aircraft accidents and that in 26% of
the cases, a maintenance-caused event started the event chain [1,2]. According to Federal
Aviation Authority (FAA) records, maintenance was involved in 27.4% of fatalities and
6.8% of incidents [1]. Furthermore, it was reported that component or structural failures
are the primary root-cause for maintenance-related incidents and that it most likely occurs
at the engine.

In aircraft engine maintenance, the first inspection made is by boroscopic means,
whereby a borescope is inserted into the engine (typically while on the wing) and the
rotating parts are inspected. The inspector has to examine each blade for indications of
damage. If a defect is found, it has to be recorded and quantified as to acceptability. The
inspection has to be made in a difficult environment with several constraints, such as
limited space for the operator, restricted views, restricted lighting, limited pixel resolution,
boredom, distraction, and time pressure [3].

A sample borescope photograph image is presented in Figure 1.
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Figure 1. Typical borescope view.

Borescopy is the first in a sequence of several inspection activities. In a semi-manual,
operator-dependent, time-consuming, and tedious procedure [4], the inspector has to
identify a wide variety of defects, with different severity degrees and locations under
different angles [5]. This activity informs the decision whether to let the engine continue
flying, reduce the inspection interval to check for propagation of the defects over time, or
remove it for maintenance. Committing the engine to a (costly) teardown process enables
other means of inspection, both visual and other non-destructive testing (NDT) methods,
to be applied.

Once an engine is committed to repair, it is disassembled and further visual inspections
occur. While the initial borescope inspection is limited in what can be seen, once the engine
is disassembled, the blades can be visually inspected individually and in better conditions.
The most detailed inspection is the examination of disassembled parts. This is called the
‘on-bench’ or ‘piece-part’ inspection, and is the subject of the present paper. This inspection
is done visually, and allows the blades to be individually examined from any angle, with
excellent lighting, and the use of optical magnification if warranted (refer to Figure 2). At
this point, the decision will be made as to whether the blade may be returned to service in
its current condition, or diverted to the repair or scrapping processes.

Figure 2. On-bench inspection of a single blade.

The inspection process is prone to human error tendencies as well as lack of accuracy,
reliability, subjectivity, consistency, and repeatability, among other factors [6–9]. Missing a
defect (false negative) during an inspection task anywhere on this chain has the potential to
lead to catastrophic engine failure, hence risk of damage to the engine and fuselage [10,11],
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as well as to severe harm to passengers or even fatalities [12,13]. On the other hand, a false
positive detection may commit the engine to a needless repair process that is costly in time
and financial utility. Hence, visual inspection tasks introduce key decision points into the
maintenance process, with far-reaching consequences.

Furthermore, engine maintenance is a complex, time-consuming, and expensive task
and one shop visit can create costs equivalent to the engine list price [5,14–16]. This creates
a competitive pressure between MRO service providers, whereby the one with the lowest
price and shortest turn-around time wins the order.

Increasing fleet sizes, heavy growth of the MRO industry, and shortage of trained
personnel at the same time creates additional time pressure to meet the demand [17]. This
is highly critical, as time pressure must not have any negative impact on the inspection
quality, which affects passenger safety. It further contributes to human error and the risk of
missing a critical defect.

Since 90% of inspections in aircraft maintenance are done visually [8,14,18], there is a
need to understand the risk inherent in such inspection process. In this paper, we develop a
risk framework specifically for visual inspection tasks of geometrically complex parts such
as blades. While the subject under examination is inspection of blades, it should be pointed
out that much of the safety of aviation systems depends on the inspection vigilance of
human operators during manufacture, operation, and maintenance of the technical system.

2. Literature Review

We briefly review the risk management literature and related question of how risk
might be determined in the specific activity of visual inspection.

2.1. Extended Risk Constructs Using n-Tuples

The term ‘risk’ is somewhat ambiguous as it has multiple definitions and methods
for determination [19]. Thus, depending on the context, risk may be: uncertainty, po-
tential loss, consequences, probability of an undesired event, or effect of uncertainty on
objectives. It is also often a combined metric, e.g., Consequences or damage + Uncertainty, or
Probability + Consequences.

Over time, the interpretation of the ISO 31000 risk management [20] concept has
tended to dominate. This standard defines risk as the ‘effect of uncertainty on the possibility
of achieving the organization’s objectives’. Furthermore, it provides a specific mechanism
to determine risk. It partitions risk into two dimensions: consequence, and likelihood
of that occurring. Then, these are combined into a risk metric. The combination may be
done in two ways: (a) simply multiplying consequence and likelihood, if both are numeric
scales, or (b) using a correlation matrix or map. Thresholds for acceptable risk are then
applied, to categorise the risks and prioritise them based on acceptability, practicality,
response time, enforceability, durability, cost–benefit ratio, compliance with legislation, and
possible treatment. The expected efficacy of the treatments can be estimated by calculating
the ‘residual’ risk after treatment, and this too can be evaluated for acceptability. The
results are tabulated in the ‘risk register’. The overall outcome of the process is that
it provides a methodology whereby organisations can show due diligence towards a
systematic assessment of risk, and justify rationing resources to treat the more important
risks. Note that in ISO 31000, the concept of risk includes both threats and opportunities,
hence the treatments are prevention of threats and capture of opportunities respectively,
but here we are primarily interested in the threat component.

The ISO 31000 construct of Consequence× Likelihood has the benefit of providing a
common method for the determination of risk. Nonetheless, it has limitations. In the
general application of risk management, the scales are almost always subjective and highly
variable between organisations [21,22]. Different analysts could even estimate different
outcomes with the same scale, contributing towards the inconsistency. Even technical
systems, like piece-part inspection, are prone to qualitative assessments of risk as not
every quality parameter can be measured and quantified, at least not in real operational
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settings. Moreover, in reality, failure outcomes are not single consequences but rather a
chain of progressive deterioration of the system with multiple opportunities to intervene.
The method does not accommodate this—it assumes an equifinality to consequence (and
likelihood) that may be unjustifiable in complex failure sequences. Moreover, the two
factors do not provide sufficient granularity for many engineering situations.

In an attempt to incorporate other conditional factors, the literature shows diverse
ways of achieving this. A common but highly variable approach is to extend the risk
metric to encompass a third or more factors. The most common ones were vulnerabil-
ity [23–26], detectability [27–30], manageability [29,31–35], and time [29,36–39]. Other
more application-specific factors that have been added to the risk equations include pre-
ventability [35], layers of protection [40], resilience [41], volatility [39], experience [42],
knowledge [43–45], social impact [46] and coping capacity [47,48], performance-shaping
factors [49], and human factors [50]. Many of these methods start by defining the conse-
quences and likelihood and then adding the other factors. Other methods augment this by
instead focusing on the events leading up to the consequences, typically using a correlation
approach such as Quality Function Deployment (QFD) and related extensions [51–54].
Invariably, the objective is to quantify the risk for a specific situation or context. A detailed
list of risk equations with a contextual variable is shown in Table 1. As this shows, there is
no general approach capturing all the different approaches.

2.2. Specific Frameworks for Visual Inspection Risk

Several approaches attempt to incorporate detection in the risk assessment of failure.
The most common approach is the Failure Mode and Effect Analysis (FMEA) [57,58], which
analyses the components of a system and how these can fail, and assigns a consequence to
each of them. On an operational level, the failure modes are typically processes, thus the
resulting framework is Process Failure Mode and Effect Analysis (PFMEA) [58,59], while
in the design stage, it is called Design Failure Mode and Effect Analysis (DFMEA) [58,60].
Some attempts have been made to include the criticality and detection of failure modes
into the model, leading to the Failure Mode Effect and Criticality Analysis (FMECA) [57],
and Failure Mode Effect and Detection Analysis (FMEDA) [61], respectively.

Risk-based inspection (RBI) is a process of developing a risk analysis scheme of inspec-
tion. It may include an assessment of the likelihood (probability) of failure due to flaws,
damage, or deterioration or degradation, along with an assessment of the consequences of
such failure.

A key concept is that of the Probability of Detection (POD), which was originally
developed for the US Air Force focusing on turbine engine inspection [62]. The typical
area of interest is cracks and flaws, for which the conventional parameters of interest
are crack length and sometimes crack depth. However, there does not appear to have
been any consideration of other parameters such as other defect types, image quality,
inspector expertise, etc., nor has the POD concept evolved into a broader risk management
framework. Probability of detection in supply chains has been included in the risk equation
by Griffis and Whipple [30], but not for defect detection in manufactured parts.

While there has been some prior work on visual inspection, the literature is sparse on
the application of risk frameworks to this area. For example, human factors were studied
for borescope operators [63], but without quantifying the risks. Where risk assessments
have been used, they have been addressed to the implementation of new systems, rather
than the inspection decisions themselves. For example, the authors of [64] provided a risk
assessment for the implementation of the structural health monitoring, and similarly, the
authors of [65] for a detection procedure.
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Table 1. Overview of existing approaches that considered other factors.

Author(s) Consequence Metric Likelihood Metric Other Metrics Application

Chien et al. [41] Hazard Vulnerability Resilience Soil liquefaction on land
development and utilisation

UNDRR [26] Hazard Vulnerability Exposure Natural disasters

Marin-Ferrer et al. [47],
Boudreau [48] Hazard and Exposure Vulnerability Lack of coping capacity Disaster risk assessment

Cioaca et al. [25] Consequence Threat probability Vulnerability probability Aviation systems

Azadeh et al. [35] Severity Frequency Preventability Occupational injuries

Higbee [50] Severity Likelihood Human factors Welding and assembly
operations

Gray et al. [42] Severity Likelihood Occupational role Aero medical risk

Jin et al. [40] Occurrence
consequence

Occurrence
likelihood Independent protection layers Public safety

monitoring system

The University of
Mebourne [55] Consequence Likelihood Exposure Knife cuts and cold burns in

university laboratories

Juan et al. [23] Severity Possibility Vulnerability Food quality and safety and
supply chain

Talbot and Jakeman [39] Consequence Likelihood Time × Incidence Dying in a car crash

Project Management
Institute [29] Impact Probability Time × Frequency Project risk

(generally applicable)

Talbot and Jakeman [39] Consequence Likelihood Volatility × Confidence in risk
rating Security risk management

Project Management
Institute [29],

Valitov and Sirazetdinova [31],
Lowe [32], Aven et al. [33]

Impact Probability Manageability/ Controllability Enterprise and
commercial risks

Xia et al. [34] Impact Probability Stakeholder attributes ×
Manageability

Stakeholder-related risks in
construction projects

Dobson and Dobson [36] Impact Probability Time × Remediation Project risk
(generally applicable)

Osundahunsi [38] Impact Occurrence Velocity (speed) Enterprise and project risk
management

El-Karim et al. [37] Impact (cost) Probability Impact (schedule) Construction projects

Kolesar and Petruf [24] Consequence severity Threat (perceived
likelihood)

Vulnerability (probability of
breach of failure)

Acts of
Unlawful Interference of

Civil Airport

Paltrinieri et al. [43], Aven [44]
Aven and Krohn [45] Consequence Probability Knowledge

Oil and Gas drilling rig,
High Reliability

Organisations (HROs)

Griffis and Whipple [30] Potential Impact Likelihood of
Occurrence Probability of detection Supply chain

risk assessment

Hughes [27] Impact Probability Undetectability Risk of developer stories

Youssef and Hyman [28],
Project Management

Institute [29]
Severity Probability Hazard detectability × Hazard

correctability × Product utility Medical devices

Zhang and Zhang [46] Loss Accident rates Social impact of accidents Tourism attractions
accident risk

Arjmandi et al. [56] Consequence Probability
Weight of application-specific

parameters (here: chemical
composition of wastewater)

Wastewater treatment

Luquetti dos Santos et al. [49] Consequence Frequency Performance-shaping factors Offshore
installation

Cascading correlation
matrices, e.g., quality function

deployment (QFD). Liu and
Tsai [51], Fargnoli et al. [52,53],

Bas [54]

Consequence Probability
Various combinations of work
activities, tasks, hazard causes,

hazard types
Occupational safety
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2.3. Representation of Inspection Risk for Decision-Making

All tabular approaches have in common that they multiply the failure likelihood,
consequence, and any additional factors. To perform the calculation, numeric scales are
required at input and output [21]. Ideally, these scales would represent consequences in a
robust variable (such as economic utility, though even that fails to capture all dimensions
of value), likelihood as a probability, and the output risk as a number to which people
could relate. In practice, there are seldom sufficient data to quantify the input variables,
and instead an ordered scale (e.g., from rare to almost certain) is used to which numerical
values are assigned (e.g., 1 to 5) [28]. The numbers are then used in the product function,
and the resulting risk score (RS), also called risk rating (RR), risk priority number (RPN),
or risk value (RV), is mapped back to a descriptive scale (e.g., from low to extreme). All
these processes introduce subjective judgements [22]. This, plus the variability in scales
used, make it difficult to compare risk assessments from different organisations. Pons [21]
showed that this is also problematic for safety assessments, especially considering the need
to reconcile these with legislative requirements (which vary across jurisdictions).

An important aspect of risk management is the communication of the risks and
identification of appropriate means of prevention and mitigation that address those risks.
Typically, colour coding is used to highlight different risk levels, which enables a faster
reception and identification of critical risks.

Most common risk matrices use a traffic light system to colour risks from low or
acceptable (green), over moderate or tolerable (amber), to high or intolerable risks (red) [66].
Some researchers have added yellow as another colour to their risk matrix, representing
low risks in risk assessments that have large values for likelihood and impact, and typically
these are non-linear scales [67,68].

In New Zealand and Australia, the handbook for risk management (HB 436:2004)
suggests five colours: green, blue, yellow, orange, and red, in ascending order of risk
levels [69]. However, there is inconsistency with the order and allocation of these colours.
While some follow the Australian and New Zealand standard (AS/NZS 4360) order [70],
others follow the order of green-yellow-blue-red [71], and still others start with blue
followed by green, yellow, and red [72]. Vose introduced a graded colour scheme with
nine colour tones [73]. Only a few risk levels with adjacent RPNs were assigned the
same colour. Although the risk heat map consists of nine shades, it contains only four
different colours, i.e., green, amber, orange, and red. Since some shades are so similar, it
is hard to differentiate the associated risk levels from each other, which does not support
the idea of an easier risk perception. As the author stated, it adds more complexity to
a tool that was meant to simplify the risk assessment process. It can be concluded that
too many colours are detrimental. Vose stated that managers need to know whether to
say ‘Stop!’ or ‘Go!’ based on the risk involved [73]. Another way of specifying colours is
by consideration of the intended audience. In most organisations, there is a progressive
escalation of communication about risk depending on the risk appetite of the organisation.
Thus, small risks might be treated by the operators, with larger risks progressively escalated
to supervisors, managers, executives, board, and external regulators. Hence, the notion
of risk might be portioned not so much into arbitrary colours, but into audiences and
stakeholders [21]. Some risk assessment tools provide an icon-based rating, which is
beneficial for colour-blind people. The tool was used for risk rating biased assessment [74].
The different risk levels are as follows, with their associated icons shown in brackets: low
(+), moderate (−), serious (x), and critical (!) [74,75].

2.4. Gaps in the Body of Knowledge Regarding Visual Inspection

A two-dimensional risk matrix, while simple to understand, does not allow the
complex causality to be represented. This has given rise to an extensive literature on
methods that multiply consequence, likelihood, and an additional contextual factor that
is application-specific. Most studies have included only a single third dimension. The
work by Luquetti Dos Santos et al. presents the idea of multiple performance-shaping
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factors [49]. However, they did not show how these factors could be included into the
risk equation. There is a general lack of understanding as to how additional factors can be
added to the risk assessment, especially if there is more than one application-specific factor.
There are two primary issues.

The first issue is the increasing risk score when adding (multiplying) additional factors.
It is difficult to determine the relative importance or weighting of these factors. Often,
they are given the same weighting as the likelihood and severity, which potentially leads
to distorted results. To solve this, it is necessary to compensate for the additional factor.
Thus, there is a need for a standardised approach to include one or more sub-factors into
the risk equation, which should be as generic as possible to allow for its applicability to
different industries.

The second issue is that all the risk assessment methods struggle to include factors
that are difficult to quantify, such as human factors. While the presence of such factors is
generally acknowledged [50,76–79], it remains problematic to quantify, or even identify an
appropriate scale.

Different risk assessment methods have been applied to the aviation industry and
specifically to aircraft maintenance. These including Event Tree Analysis (ETA) [80], Bowtie
Analysis [81], Maintenance Factors and Analysis Classification System (MxFACS) [11], and
Failure Mode, Effect, and Criticality Analysis (FMECA) combined with Fuzzy Logic, and
the ‘as low as reasonably practicable’ (ALARP) approach [82]. Most commonly however,
a tabular approach (risk register) is used for the risk assessment in the aviation domain,
e.g., by the International Civil Aviation Organization (ICAO) [83,84], European Union
Aviation Safety Agency (EASA) [85], Federal Aviation Administration (FAA) [86], or Civil
Aviation Safety Authority (CASA) [87]. However, these methods are applied in basic form,
i.e., multiplying the probability and severity, with no considerations of additional factors
affecting this risk score. Moreover, no previous study has examined the inherent risk in
visual inspection tasks of aircraft engine components, and the factors that might influence
the process and hence the risk.

3. Methods
3.1. Research Objective

The research objective was to devise a standardised methodology for evaluating risk,
in the specific area of visual inspection. The desired outcome was a generic framework
for risk assessment with the following attributes: is clearly structured, can accommodate
multiple application-specific factors, and can be applied to any industrial visual inspection
task. The proposed framework is then applied to the specific case of visual inspection of
defects in gas turbine blades.

3.2. Approach

The approach involved the lead author being embedded in MRO for the duration of
the project. This experience provided contextual knowledge, and access to expert operators.
Several work streams were undertaken, of an overlapping and mutually informing nature.
The methodology was therefore developed around the industrial context. The concepts
were refined through an iterative process of theory building and testing of face validity
in the industrial context. The workflow is presented in Figure 3 and each work stream is
subsequently described in more detail.

3.2.1. Work Stream 1: Collection of Specimen Images

A reference set of images was needed for ‘type’ defects. By ‘type’ we refer to a
specimen, that represents a particular category and size of visual defect. The type image
presents the defining features of that defect. This is semantically similar to how type is
used in biology and within taxonomies. We adopted the taxonomy of blade defects per [88].
We then examined a large number of damaged blades, categorised per the defect taxonomy.
Photographs of each defect type were taken with standardised image acquisition and
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lighting conditions to give a consistent image quality comparable to inspection with a
low-magnification glass as available on inspection workbenches in the industry. The image
acquisition was done with a Nikon D5200 digital single-lens reflex (DSLR) camera (Nikon
Inc., Tokyo, Japan) and a Nikkor 105 mm micro-lens, in a self-built light tent with three
6 W Superlux (Superlux, Auckland, New Zealand) light-emitting diode (LED) ring lights.

Figure 3. Research approach and workflow.

3.2.2. Work Stream 2: Design of Risk Framework

Having identified the relevant factors for visual inspection, it was then necessary to
design a conceptual framework to include these into a risk metric.

3.2.3. Work Stream 3: Identification of Contextual Factors

First, it was necessary to identify the factors involved in the visual inspection task.
This was achieved by observation of the inspection process and communication with
industry experts. Specifically, a visual inspection task always depends on how well the
defect is manifested in the view. Hence, the detectability or manifestation is a factor that
needs to be included. See related work with Bowtie analysis [89]. We identified three
primary factors: criticality, severity, and detectability. Criticality is the importance of the
defect type to be detected before the part is released back to service. Severity in turn
describes the characteristics of the defect shape and probability of propagation towards a
severe outcome. The manifestation represents the detectability of the defect in the present
level of inspection. There is a correlation between the three factors.

3.2.4. Work Stream 4: Integration of Factors into an Inspection Risk Calculation and
Method Validation

The relationships between the three factors were analysed and expressed using a
three-dimensional correlation matrix. Subsequently, the proposed method was applied
to a case study in a MRO environment. A comparison between the traditional two-factor
risk equation and the proposed three-factor approach was done by calculating the two risk
scores for the selected defect samples. The most experienced industry expert then validated
the veracity of the two results for each case and determined which one best represents the
reality. We have high confidence in the validity of the experts’ ability to detect the ground
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truth, since the highly regulated nature of the aviation industry ensures that there is a
hierarchy of inspection seniority based on passing a personal certification process.

4. Results
4.1. Defect Taxonomy and Specimen Images

The defect taxonomy was used from [88]. Specimen images for each defect are shown
in Table 2. These represent a subset of a larger collection of images.

Table 2. Sample images for each blade defect type.

Defect Type Sample Image Defect Type Sample Image

Battered Bent

Breaking Corrosion

Crack Dent on Airfoil

Dent on Leading edge Nick

Scratch Tear

Tip Curl Tip Rub
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4.2. A Generalised Model for Cofactors in Risk Assessment

Inspection of the existing methodologies hints at a common underlying structure,
whereby a consequence metric is multiplied by a likelihood metric, and then by a variety
of other factors. Hence, to some extent, many of the methodologies follow an approximate
ISO 31000 construct of risk, though they do not all use the consequence and likelihood
metrics in precisely the same way (see Table 1).

Therefore, we propose a general scheme for an extended risk assessment, whereby the
basic structure follows the ISO 31000 framework of consequence× likelihood, for continuity
of interpretation. To this is appended a third ‘cofactor’. Hence:

Risk = Consequence (C) × Likelihood (L) × Co f actor (X) (1)

We propose that the cofactor runs from halving to doubling the risk, i.e., takes
the range:

r = [x | 0.5 ≤ x ≤ 2.0] (2)

The cofactor can vary according to the industry and application. Alternative termi-
nologies might be conditional, influence, situational, impact, or correction factors.

The ‘cofactor’ (X) itself comprises any number of additional ‘contextual’ factors CF1,
CF2, CF3, etc. These are determined based on the industrial context. The relationship
between the cofactor and the contextual factors is determined by a correlation matrix. This
calculation methodology is illustrated in Figure 4.

Figure 4. Calculation methodology for the risk assessment.

Multiple contextual sub-factors can be assimilated in the cofactor, and for each ap-
plication, it would be necessary to determine how to do this, i.e., the algorithm need not
be fixed.

We interpret consequence as the harm or damage outcome to the overall system. Thus,
the other terms for consequence are severity, impact, and loss. The likelihood describes the
chances that an event results in these negative outcomes. Thus, in the example of Failure
Mode and Effect Analysis (FMEA), we would interpret its severity as a type of consequence,
the probability as a likelihood metric, and the detection as a cofactor for the covertness
of the failure mode. The same applies to the Failure Mode Effect and Criticality Analysis
(FMECA), whereby the criticality is interpreted as the cofactor.

The consequence and likelihood scales are not always continuous scales, but rather
have discrete steps. Most frameworks have a five-step scale for consequence and likeli-
hood. Hence, for consistency, we propose that the maximum product of consequence and
likelihood without the cofactor shall be about 50, however, that is arranged. Thus, for a
context involving inspection of a defect, the risk scales would be as shown in Table 3. The
consequence represents any adverse outcome that could occur if a defect stays undetected
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and propagates. The likelihood in turn describes the occurrence rate of such negative
outcome. The contextual factor represents variables that may influence the outcome (in-
spection accuracy in the present case). Ultimately, the contextual factor adjusts the risk
score based on the reliability of the inspection. The resulting risk score can range from 0.5
to 100. An overview of the risk scores and associated risk levels is presented in Table 4 and
visualised as a three-dimensional risk matrix in Figure 5.

Table 3. Proposed risk factor scales for an inspection process.

Consequence Score Likelihood Score Contextual Factor Score

Hazard in control:
Defect present but existing

barriers prevent progression
1

Rare:
Theoretically possible but

not expected to occur
1 Minor:

Defect always detected 0.5

Incident without harm:
Incident occurs with no
harm (system failure)

2
Unlikely:

Did happen in
other industries

2
Low:

Defect detectable and
rarely missed

0.8

Minor harm:
Incident occurs and minor

harm arises
5

Possible:
Event does occur in the

industry from time to time
3

Moderate:
Certified inspector should
be able to detect this defect

1

Serious harm:
Incident results in

serious harm
8

Likely:
Has occurred at least once
in the company’s history

4
High:

Defect difficult to detect
during visual inspection

1.5

Fatality:
Fatalities and possibly
catastrophe; recovery
systems inadequate

10
Almost certain:

Annual occurrence in
this situation

5
Extreme:

Defect visually
not detectable

2

Table 4. Relationship between risk score (RS) and risk level (RL).

Risk Score (RS) Risk Level (RL) Colour Scheme
RS < 3 Minor Green

3 ≤ RS < 8 Low Yellow
8 ≤ RS < 20 Moderate Orange
20 ≤ RS < 50 High Red

RS ≥ 50 Extreme Burgundy

Figure 5. Three-dimensional risk matrix including cofactor.
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4.3. Contextual Factors in Visual Inspection

In the case of visual inspection tasks, there are multiple contextual factors that need to
be identified and then assimilated into a single risk cofactor. Visual inspection of aircraft
components is a complex task, since there are numerous internal and external variables,
parameters, and conditions that may adversely affect the inspection. Thus, it is difficult to
incorporate all factors. We therefore focused on those having the largest influence on the
visual perception of the inspector, since the subsequent decision-making process is highly
dependent on that perception.

We determined the contextual factors by applying a Bowtie analysis [89], which in
turn relied on discussion with experts. Hence, we propose three contextual factors for
visual detection:

1. The criticality of the defect if it stays undetected and the part is being released back to
service, with the risk of propagating and cascading towards severe damage and harm.

2. The severity and characteristics of the defect shape.
3. The ability to detect the defect with the selected inspection method before the engine

returns to service.

All three play a crucial role in the ability to detect a defect and the resulting decision-
making. The factors are elaborated below, and the integration into the overall risk equation
is shown subsequently. Regarding the scales for the contextual factors, we decided to use
scales with scores ranging from 1 to 5 rather than −2 to +2. This is because the combination
of multiple negative numbers, e.g., in a product operation, results in confusion of signs in
the outcome.

4.3.1. Defect Class Type—Criticality Factor

The seriousness level is determined by the risk of propagation during future operation
and the ease of repairing the defect.

There are twelve different types of defects that can occur on engine compressor
blades [88], each with its own characteristics. Some defects are more critical than others, as
they can lead to more severe damage and the propagation is much quicker, which means it
can cause damage even before the next routine inspection.

The approach taken was to understand the stress initiators (e.g., sharp bottoms) and
stress pathways in the material based on the loading occurring in service. Since the depth of
some surface defects, such as corrosion, on these type of blades is sometimes negligible and
the blades may not even fail, the risk is relatively low to cause any negative outcome except
for efficiency loss. It is also not a common type of defect found on this blade material.

The criticality scale is shown in Table 5 below. Defects with a high criticality were
rated with a score of three, while critical defects were scored with two points, and less
critical ones received a score of one.

Table 5. Qualitative criticality scoring scheme.

Criticality
Score

Criticality
Descriptor Description

1 Low criticality

Serviceable as long as the defect does not propagate to a
more severe defect, e.g., a scratch might be acceptable, but
once propagated into a crack it must be removed. Unlikely

to propagate.

2 Moderate criticality Serviceability depending on defect location and severity.
Often can be repaired.

3 High criticality Parts need always be removed from service if this defect is
found. Typically not repairable.

The proposed criticality rating (Table 6) is based on the risk of failure and the poten-
tial of resulting in catastrophic outcomes. This includes consideration of several defect
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attributes. For instance, the location of where the defect commonly occurs plays an im-
portant role, i.e., defects on the edges are more critical than defects on the centre of the
airfoil. Furthermore, the characteristics of the defect shape are taken into account, i.e.,
sharp defects propagate faster to more severe defects than smooth round bottom defects.

Table 6. Criticality rating for each defect type.

# Defect Type Criticality Rating

1 Breaking 3
2 Battered 3
3 Tear 3
4 Crack 3
5 Bent 2
6 Nick 2
7 Dent on edges 2
8 Tip Curl 2
9 Dent on airfoil 1
10 Scratch 1
11 Corrosion 1
12 Tip Rub 1

The most critical defects involve material separation, while the critical ones are char-
acterised by material deformation. Both criticality level two and three defects are typically
found on the edges, which increases the severity further (see next section). Criticality level
one defects however are typically found on the airfoil, the least critical blade area. The only
exception is tip rub, which is caused by elongation of the blade under centrifugal forces
during operation and is hence not foreign object-related. Since it is a known effect, it has
been considered in the design phase when determining the life cycle of the part and thus
the criticality is considered as being low despite some material deformation and removal.

4.3.2. Propagation Characteristics—Severity Factor

It should be noted that in the area of aircraft engine inspection, there is a periodic
inspection process at certain intervals. Hence, the question is not so much whether an
undetected defect will be released to service, but rather whether that defect might propagate
to catastrophic outcomes before the next service. This complicates things because it requires
that regard be given to the type of defect and its propagation characteristics.

Severity represents the potential for the defect to grow to catastrophic outcomes before
the next maintenance inspection. It takes into account the size of the defect, categorised by
type of defect. For example, a long crack is more likely than a small edge nick to propagate
to complete engine destruction before the next inspection, and hence has higher severity.
In contrast, a surface defect such as a scratch or corrosion has low severity. When assessing
severity, the inspector uses their expertise and training to evaluate how severe the outcomes
would be, if the defect under examination was not repaired or replaced.

We propose the concept of retained defect to represent a condition that is not treated
but instead passes back into service. The defect could be retained for many reasons: because
the inspector judged it to be small (that judgement could be correct or wrong), or it was
not visible with the technology available (borescope resolution is limited), the part was too
dirty to see it, or it was not apparent from that view. Several of these are covered by the
other contextual factors, and hence there is correlation between the factors (explored later).

The proposed severity scoring scale is presented in Table 7 below. A minor defect has
a low probability of progressing to severe engine failure before the next engine shop visit
(score of one), while a large defect has a high severity (score of three).
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Table 7. Qualitative severity scoring scheme.

Severity
Score Severity Descriptor Description

1 Low severity Retained defect will not cause an engine failure before the
next shop visit (6–12,000 cycles).

2 Moderate severity

Defect has the potential to increase and propagate towards a
more severe damage and has the potential to cause engine
failure during test or operation. The latter can lead to loss of

engines, aircraft, and even lives.

3 High severity
Obvious defects that can cause damage to the engine and
test cell, or subsequently in service cause severe damage

and harm to aircraft, engine or passengers.

The primary categorisation of severity is again by defect type, see Table 8. Note that
some defects have no level one severity, as they are: (a) not visually detectable at this level
e.g., micro-cracks, or (b) because they are progressions of other pre-existing defect types,
e.g., a teared, battered, or broken blade. Likewise, for some defects, there might not be a
level three, e.g., for corrosion, since the blades are made of titanium and the corrosion is
merely of the surface deposits.

As the table shows, the more severe defects are visually pronounced, and have a high
likelihood of being detected under favourable viewing conditions.

4.3.3. Detection of the Defect—Detectability Factor

Detectability refers to the extent to which the defect is visible to the inspector. The
main parameters are (a) the level of disassembly, and (b) the viewing angle that the operator
has of the defect.

There are different levels of inspection before and during an engine shop visit, starting
with on-wing in-situ borescope inspection, followed by module inspection, and on-bench
piece-part inspection. Each inspection method allows additional views of the part com-
pared to the previous one. Hence, there is a relationship between camera view and level
of disassembly. The higher the level of disassembly, the higher the part exposure, and
hence the more camera views are possible. Some defects are simply not visible from certain
directions or at certain stages of disassembly.

Defects vary in shape and appearance, and hence there is a need to better understand
which views are beneficial for each type of defect. An unfortunate view may lead to missing
an important defect even by an expert inspector. Thus, it is even more critical when the
level of expertise is low and the defect is not presented in the best possible way.

Representative Blade Views

Eight representative blade views were chosen in a way that all relevant areas that
need to be inspected during visual in-situ inspection of engine blades are covered. The
designation of those views is: leading edge 1 (LE1), leading edge 2 (LE2), concave airfoil 1
(CC1), concave airfoil 2 (CC2), trailing edge 1 (TE1), trailing edge 2 (TE2), convex airfoil 1
(CX1), and convex airfoil 2 (CX2). For better understanding, the acronyms of the relevant
views and the viewing directions towards the blade are shown in Figure 6a,b below. The
diagram serves only the purpose of illustrating the different views. Since the airfoil is
curved and twisted, a simplified but not-to-scale representation was chosen. The acronyms
are used in the following sections.
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Table 8. Severity levels of growth factors.

Defect Type Severity Level 1 Severity Level 2 Severity Level 3

Battered Refer to Level 3 Bent

Bent

Breaking Refer to level 3 Nick

Corrosion

Typically, deposits on
the blade corrode and

not the blade
material, which is

why it is superficial
and no level 3 exists

Crack Not detectable by
purely visual means

Dent



Aerospace 2021, 8, 117 16 of 30

Table 8. Cont.

Defect Type Severity Level 1 Severity Level 2 Severity Level 3

Nick

Scratch

Tear

Tip Curl

Tip Rub

The idea of detectability is included in the literature, though not specifically applied
to visual orientation as it is here. For example, Youssef et al. defined the detectability
as ‘the likelihood of discovering and correcting a hazard or failure mode’ [28]. During
inspection of parts, either in the manufacturing process or during a maintenance repair
and overhaul (MRO) process, the viewing angle of either the camera or the human eye and
the illumination have a major effect on the appearance of anomalies and defects.
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Figure 6. Schematic presentation of the different blade perspectives and its acronyms. (a) Isometric presentation of the
blade, (b) presentation of the blade from the top.

Lee et al. [90] previously discussed this phenomenon in the manufacturing process
of injection-moulded parts. Detection of defects, such as cracks, scratches, or finishes, are
dependent on the viewing angle and incidence of light. Likewise, Zhang et al. [91,92]
emphasised the same effects during inspection of highly specular reflective (HSR) surfaces,
such as of chrome-plated parts. Reflection on engine blades is less common since these
parts, made of titanium and some with a ceramic coating, are often discoloured or covered
with deposits, and thus illumination might be less critical. In a manual inspection process,
the inspector can move the part relatively to the light source and their eyes, but this is not
possible with photographs. In borescope inspection the light source and the camera are
always in line—this is a design constraint.

There is a correlation between the view that the operator has of the defect, and the
type of defect. We approached this as follows.

Defect View Scale

A camera view comparison was made to determine the best views showing the
defect under investigation. The evaluation of the view suitability was made based on the
perception of industry experts and verified by the actual defect dimensions as visible from
that particular view.

We prepared a set of photographs comprising different views of a variety of defects.
These images were shown to the inspection experts (N = 2). We then asked them to rate the
viewing positions based on a rating scale from most unfavourable (3) to most favourable
(1), as shown in Table 9 below. Between them, the experts had 45 years of experience. One
expert did the first evaluation, and the second reviewed and approved the scores. It shall
be noted that the scale is inverse, i.e., a high detectability receives a low score as missing
the defect is low. Likewise, a low detectability results in a high risk score.

Table 9. Qualitative defect detectability scaling scheme.

Detectability
Score

Detectability
Descriptor Description Confidence

of Detection Level of Inspection

1 High detectability
Defect detectable and
classifiable with full

dimension visible
>80%

Detailed visual inspection (DET),
i.e., on-bench

piece-part inspection

2 Moderate detectability Defect type just detectable ≈50% General visual inspection (GVI),
i.e., module inspection

3 Low detectability
Some visual anomaly

detectable but not sure
whether it is a defect

<25% General borescope
inspection (GBI)
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We added the level of disassembly to the table as this might help industry select the
appropriate detectability score.

The verification was done by using a software that measures the defect size visible
on the photograph (in pixels) for each view [93]. The results were than compared and a
ranking was made based on the visible defect size.

Correlation Between View and Type of Defects

The ratings given by the experts for each type of defect and viewing angle are pre-
sented in Table 10.

Table 10. Correlation table of expert rating of image acquisition view for each defect type.

Defect Type CC1 CC2 LE1 LE2 CX1 CX2 TE1 TE2

Battered 2 1 1 1 3 1 1 1
Bent 2 1 3 1 3 1 1 1

Breaking 1 1 2 1 1 2 3 1
Corrosion 1 1 3 1 1 1 3 1

Crack 1 1 3 1 1 1 2 2
Dent on Airfoil 1 1 2 3 3 3 1 1

Dent on LE 2 1 1 1 3 3 3 1
Nick 1 1 1 2 1 1 3 2

Scratch 1 1 3 1 1 1 3 1
Tear 1 1 2 1 1 1 2 1

Tip Curl 2 1 1 1 2 1 2 2
Tip Rub 1 2 3 1 1 1 3 1

It can be concluded from the scores that defects that have a stronger three-dimensional
shape on the edges, such as teared or battered blades, can be detected from most angles,
whereas surface defects have less views from which they can be seen.

Implications are that the view needs to be selected for the type of defect being sought.
For example, the best perspective to detect a crack is the CX1 view, but this is relatively
poor for bent or battered defects. Generally, it will be necessary to have multiple views. If
only one view is possible, then the results identify it as CC2.

4.4. Inspection Risk Calculation

To recap, our objective is to determine the multiple sub-factors that make up the
cofactor for the risk equation. Having identified three sub-factors for blade inspection
(criticality, severity, and detectability), it is now necessary to identify the relationships
between them.

4.4.1. Determination of the Cofactor for Blade Visual Inspection

Multiplication of the factors is the most common approach when calculating a risk
score. However, other mathematical operations, such as the power law, can be applied as
well [47]. In the case of four dimensions, the risk has been calculated by the volume of the
pyramid [39]. The literature shows that another way to solve the problem of combining
multiple scales can be to use a nomogram. This graphical method involves constructing
lines between points on multiple scales, with the intersections then giving the output
variable. They were once popular for sizing engineering componentry in an era before
computing power, as they obviated the need for the complexity of using slide rules. A
novel application of a nomogram to safety has more recently been shown by Amirshenava
and Osanloo for mine closure risk [94]. Nonetheless, nomograms do require an explicit
algorithm for their construction, even if that is not apparent in the graphical representation.
Hence, they were not considered further here. Instead, we proceeded with a correlation
matrix between the three factors.

In a first step, the relationship between criticality and severity was represented as a
product operation. We justify this on the basis that each of these factors makes the other
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worse. With a three-level ordinal scale for each, the resulting scores range from 1 to 9 (see
Figure 7).

Figure 7. Defect criticality and severity matrix if scales are equal.

The issue that arises with this approach is that different combinations can result in the
same overall score. For instance, a non-critical defect of criticality level 1 but with a level 3
severity rating would mathematically result in the same score as a highly critical defect
(level 3) of minor severity (level 1). In practice however, this is not the case, as a critical
defect, such as a cracked, teared, battered, or broken blade, always needs to be removed
from service, independent of the severity level. This problem becomes even more apparent
when adding a third dimension to the contextual factor matrix, as there is an increase in
combinations available, obtaining the same score. Therefore, the scales need to be adjusted
for the subsequent calculation.

The solution we propose is to adjust the weighting. Thus, the criticality, being the most
important factor, is given the largest weighting, followed by the severity and detectability.
Hence, criticality is rated 1 to 10, severity 1 to 5, and detectability 1 to 3.

Therefore, the Contextual Factor Score becomes:

Contextual Factor (CF)Score =
Criticality (de f ect type) × Severity (de f ect size) × Detectability (view)

(3)

Similar to the risk matrix, the three contextual factors influencing the inspection and
decision-making process can be visualised as a three-dimensional matrix (Figure 8). The
scores can range from 1 to 150. The higher the score resulting from Equation (3), the
higher the influence on the inspection risk. An extended colour scheme was introduced to
visualise the different levels, reaching from minor (green), low (yellow), moderate (orange),
high (red), and extreme (burgundy). The resulting cofactor that is fed back into the generic
risk equation (Equation (1)) can be retrieved from the right column of the correlation matrix
shown in Table 11.
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Figure 8. Contextual factor matrix.

Table 11. Correlation matrix for contextual factor to cofactor conversion.

CF-Score Influence Level Colour Coding Action by borescope inspector Cofactor Score
1–4 Minor Green No action required 0.5
5–14 Low Yellow Flag for next service 0.8

15–29 Moderate Orange Monitor – recheck after × h 1.0
30–74 High Red Remove as soon as possible 1.5

75–150 Extreme Burgundy Immediate removal of engine from service 2.0

4.4.2. Case Study

The proposed framework was tested and validated by applying it to a case study
of high-pressure compressor (HPC) blades of gas turbine engines. This includes sample
blades with different types of defects and severity levels at different inspection levels
(Figure 9a–d).

First, the traditional two-factor method was applied to calculate the overall risk score
(RS) for all four blade samples by multiplying the consequence and likelihood. This resulted
in the following risk scores: Blade (a) and (b) RS = 8 (2× 4), blade (c) RS = 5 (1× 5), and
blade (d) RS = 6 (2× 3).

Subsequently, the risk scores for the same blades were determined using the new
approach, which takes into account the contextual factors (criticality, severity, and de-
tectability). The defect type was classified as nick and thus the criticality score was 5
(level 2). Its deformation is quite severe and therefore received a score of 5 (level 3). Both
the criticality and severity score are the same for image (a) and (b), since it is the same
blade. However, Figure 9a shows the boroscopic representation where the defect is quite
difficult to detect, whereas in the piece-part representation, the defect can hardly be missed
(Figure 9b). Therefore, Figure 9a has a detectability score of 3 (level 3), whereas Figure 9b
has a score of 1 (level 1).

Multiplying the contextual factors following Equation (3), the resulting cofactor is 75
and 25 for Figure 9a, b, respectively. Applying the correlation matrix (Table 11), the cofactor
for Figure 9a is 2.0 and is 1.0 for Figure 9b. This shows not only that the overall risk scores
differ to the one of the traditional risk approach, but also that the risk can be different for
the same blade and defect at different levels of inspection (borescope vs. piece-part).
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Figure 9. Sample blades with different defects highlighted with red markings. (a) Borescope image of high-pressure
compressor (HPC) stage 8 blade with nick on leading edge. (b) Same blade as in (a) but this time presented as during
on-bench piece-part inspection. (c) Airfoil dents on an HPC stage 8 blade in boroscopic view. (d) Broken-off leading edge
corner of a high-pressure turbine (HPT) stage 1 blade.

The conditions shown in Figure 9c are two dents on the airfoil and therefore the
criticality factor equals 1. The defect is presented in the CC1 view (perpendicular to the
surface). Since this is the ideal perspective for airfoil dents, it is highly detectable and
receives a detectability score of 1. The defect is of moderate size and thus equals severity
level 2. The CF score is 2 and the resulting cofactor score is 0.5. This indicates that the defect
does not affect the safety of aircraft operation, which was confirmed by the industry experts.
If such a defect is detected during borescope inspection, the engine does not require a costly
teardown or further inspection. This is the result of the proposed framework, whereas
the traditional approach would have resulted in a twice as high risk score and possible
different maintenance and disassembly decision.

In some cases, such as the blade presented in Figure 9b, the cofactor score equals 1.0
and the proposed three-factor approach results in the same risk score as the traditional
two-factor method. This demonstrates that the traditional risk approach is still accurate in
some cases (where the cofactor equals 1.0).

We wanted to show that the proposed inspection risk approach is also applicable to
other engine blades and parts and therefore included a turbine blade in the case study
(Figure 9d). The defect is a broken-off corner of the blade with a criticality score of 10
(level 3), a severity score of 5 (level 2), and a detectability score of 1 (level 1). The resulting
contextual factor score is 50 (10× 5× 1), which translates to a cofactor score of 1.5. This
leads to an overall risk score of 9 (2× 3× 1.5). While this particular example shows a
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defect type that is common on both HPC and HPT blades, there are other defects that only
occur on HPT blades and that need to be added to the score lists. Nonetheless, it is possible
to apply the same principles and risk equations to any other engine parts.

4.4.3. Go/No-Go Matrix

In some cases, a five-level scoring system is not effective and a simplified version
might be required, for example in situations where a decision has to be made. This is
readily accommodated by reducing the decision factor categories down to two, namely
‘go’ and ‘no-go’. The threshold can be adjusted based on the company’s risk-appetite.
‘Go’ means that the inspection conditions are good enough to make a sufficiently reliable
decision as to whether or not to strip down the engine and perform a more detailed
inspection. ‘No-go’, in contrast, shows that the decision cannot be made with certainty. The
relationship between the decision factor score and decision output is shown in Table 12,
and the resulting three-dimensional go/no-go matrix is presented in Figure 10.

Table 12. Relationship between decision factor and decision output.

Risk Score Decision Output Colour
1–29 Go Green

30–150 No-go Red

Figure 10. Three-dimensional go/no-go matrix.

4.4.4. Optimal Viewing Perspectives

When working in an environment with time pressure, such as in aviation maintenance,
it is often not practical to take several recordings of a single part, especially if there are
hundreds of parts that need to be inspected. Hence, there was an interest to identify the
most favourable views to capture as many defects with as few perspectives as possible.

The above method lends itself to this. The multiple views can be analysed using the
risk assessment to give a score for criticality and detectability. The view with the highest
score is best. This process can be repeated for the range of defect types, to determine overall
scores, or scores for specific types of defect (e.g., nicks). This information may then be used
to determine which views to prioritise as part of the organisational quality management
system. Results for the blades in this dataset are shown in Table 13.
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Table 13. Weighted factor analysis for different viewing perspectives.

Defect Type CR
CC1 CC2 LE1 LE2 CX1 CX2 TE1 TE2

DR WS DR WS DR WS DR WS DR WS DR WS DR WS DR WS

Battered 3 3 9 4 12 4 12 4 12 2 6 4 12 5 15 4 12
Bent 2 3 6 4 8 1 2 4 8 2 4 4 8 5 10 4 8

Breaking 3 5 15 4 12 3 9 5 15 5 15 3 9 2 6 4 12
Corrosion 1 5 5 5 5 2 2 4 4 5 5 5 5 2 2 5 5

Crack 3 4 12 4 12 2 6 4 12 5 15 4 12 3 9 3 9
Dent on Airfoil 1 4 4 5 5 3 3 1 1 1 1 1 1 4 4 4 4

Dent on LE 2 3 6 5 10 5 10 4 8 2 4 2 4 1 2 4 8
Nick 2 5 10 4 8 4 8 3 6 5 10 4 8 2 4 3 6

Scratch 1 5 5 4 4 1 1 4 4 5 5 4 4 1 1 4 4
Tear 3 4 12 4 12 3 9 5 15 4 12 5 15 3 9 5 15

Tip Curl 2 3 6 4 8 5 10 4 8 3 6 4 8 3 6 3 6
Tip Rub 1 2 2 5 5 2 2 5 5 4 4 5 5 2 2 5 5

Overall Score 92 101 74 98 87 91 70 94

The results show that when choosing a minimum set of views to cover all areas of
the blade, CC2 and CX2 combined have the greatest potential to cover all defect types,
locations, and severity levels. CC2 combined with CC1/LE2/TE2 would have given a
higher total score, but would not have covered all blade regions.

In some cases, it is known that an engine has experienced a particular event, e.g., bird
strike, ‘lucky’ coin ingestion, or volcanic ash, in which case it becomes possible, knowing
the types of defects that arise, to determine which views would be most effective to view
any damage.

For all defects that involve material separation or removal such as scratches, tip rub,
nicks, cracks, and breaking, an airfoil view (CC1, CC2, CX1, and CX2) is beneficial. For all
defects that involve material deformation and change of shape, such as tip curl, tears, dents
on the leading edges, bents, and battered blades, edge views (LE1, LE2, TE2) are beneficial.
For all defects that occur on the airfoil surface, such as corrosion, scratches, and dents on
airfoil, a concave view (CC1 and CC2), and dependent on the severity, also a convex view
(CX1 and CX2), can provide a good detection.

Dents

The appearance and detectability of dents is highly dependent on where the defect is
located on the part and on the level of severity. For example, dents on the leading edge are
never entirely on the vertex of the edge. The foreign object that hit the blade continues its
pathway on either the convex or the concave side of the blade. View LE1 is always good
but dependent on the trajectory of the foreign object, sometimes view LE2 is the best, and
some other times, perspective CC2 is the best to see the damage. In contrast, a dent on the
airfoil highly depends on the severity for its detectability.

Tears

The detectability of tears depends on the location and severity. In some cases, the tear
evolved in a way that it is not detectable (as a tear) but rather looks like a nick. This is
because a nick often pre-exists and evolves into a tear over time. Hence, a nick can be the
preceding defect from which a tear evolves. Thus, the defect may not be detectable in the
TE1 view, although this is the position where the defect is closest to the camera sensor. In
other cases, this is the best view. Hence, it is difficult to determine a standard view here.
We decided to choose a “good view” (LE2) as a somewhat ideal view, knowing that in
some cases, there might be a better view, but this one is the one whereby the defect can
always be seen. The same counts for LE1.
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Nicks

The situation with nicks is similar to tears. The best view highly depends on how the
defect was formed and its severity level.

5. Discussion
5.1. Summary of Outcomes

This work provides a universal framework for risk assessments that incorporates a
third dimension into the risk equation, the so-called cofactor. This factor represents the
industrial context, and can comprise multiple sub-factors that are application-specific. A
method has been devised, including appropriate scales, for the inclusion of these into
the risk assessment. A traffic light colour scheme was applied to visualise the different
risk levels.

A simplification of the framework provides a method for go/no-go decision-making,
which is more relevant to industry practitioners, who need a more black-and-white ap-
proach, since any grey will cause inconsistency and potentially an incorrect decision.

In principle, the proposed method allows to add an unlimited number of contextual
factors to the risk equation. The contextual factors are summarised (normalised) into one
cofactor using a correlation matrix. This is necessary to avoid that the total risk score
does not increase infinitely and that adding more contextual factors does not outweigh
the likelihood and consequence component, i.e., the number of contextual factors does not
affect the risk score.

The proposed framework was applied to a case study in the aircraft engine mainte-
nance domain. The contextual factors relevant for the specific case of visual inspection of
engine blades were identified as being criticality, severity, and detectability. Appropriate
scales were devised and the new framework was validated by experts in the field.

We suggest that factors that affect the risk can have a negative but also a positive effect.
For instance, under ideal inspection conditions such as the ones in on-bench inspection, the
risk of missing a defect is much lower than, for example, in borescope inspection, where
the environment is more difficult and thus the overall risk score needs to be higher.

5.2. Implications for Practitioners

The proposed framework was tested and validated in the specific area of visual inspec-
tion of gas turbine engine blades. The generic structure, however, allows for application
of the risk framework to other inspection and quality assurance tasks within and outside
the aviation sector. Likewise, it is applicable to any other process within the aviation
maintenance domain and beyond. It might be of particular interest to other error-prone
high-reliability organisations (HROs), including nuclear power, oil and gas, mining, or
healthcare [89], as the understanding of risk and safety in those industries is of utmost
importance. This generic framework not only allows for the integration of human fac-
tors into the well-known consequence × likelihood risk equation, but also supports the
standardisation of risk assessment across different organisations and industries.

The go/no-go matrix can be generalised and applied to other applications outside
quality assurance, since decisions have to be made in any area. For example, a company
might decide whether to invest into a certain product or market based on the inherent risk
and the company’s risk appetite. In project management, one could think of a project that
is exposed to increased risk and the project manager needs to make a call if the project shall
continue as planned or needs to be adjusted to the changed circumstances.

One of the most important aspects of risk assessment is the effective communication of
those [95,96]. If risks cannot be communicated properly so that stakeholders understand the
need to implement new means of prevention and mitigation, or reinforce existing ones, and
understanding which risks are most critical, then the entire risk calculation and assessment
is of little use. Thus, applying a traffic light system, or a go/no-go system, although done
before, can support such risk communication and make it more understandable to people
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throughout the organisation. Consistency of quality expectations across an organisation,
and between organisations, is important in high-reliability systems.

Adding contextual factors to the risk equation requires the involvement of shop floor
staff in the risk assessment process to identify the important factors, since they are the
ones with the best understanding of the context. Furthermore, the quantification of those
factors often relies on expert judgement, when historical data might be scarce or simply not
available. Thus, it is beneficial if the context expert (in our case the visual inspection expert)
can perform or at least support the risk assessment and provide an ‘as good as possible’
estimate. This collaboration between the risk analyst and shop floor staff might have several
benefits, including increased awareness and better understanding of the inherent risks
of the specific application due to improved communication between the risk analyst and
workforce, as well as buy-in for changes to reduce those risks. Potentially, the generic and
simple structure may even allow non-risk analysts to perform a risk assessment themselves.

5.3. Limitations

The framework proposed here could do with more validation. Potentially, this might
take the form of a larger study whereby the ground truth was established for multiple
blades (by expert assessment), and the risk determined. The detection accuracy from the
confusion matrix (false positive/false negative) has not been determined and would be
a useful step forward. Alternatively, it could be interesting to track one defective blade
through the various work inspection stages, i.e., undertake a longitudinal study of the risk.

The time component of failure has only partly been accommodated in this framework.
Some defects may change criticality over time when they propagate towards more severe
defects, for example, a nick can become a tear or crack, which can cause a blade to break.

Although one benefit of the proposed framework is that there is no restriction for the
number of contextual factors, this is one of the drawbacks at the same time. In this specific
case study of visual inspection, three contextual factors were identified. However, in other
cases, there might be more or less factors, or the factor scales might be different, and thus
the contextual factor scores may vary. Therefore, an adjustment of the correlation matrix
based on the number of contextual factors and scores is needed. Such uniform scaling
approach has yet not been devised and could be the scope of future work.

The weighting of the scales used for the three contextual factors in this research were
adjusted to the specific case. As highlighted in Section 4.4.1, the use of equal and linear
scales, would have resulted in risk scores that derive from the reality and thus needed to
be adjusted. Applying the risk framework to other industries is possible, but scales may
need adjustment. The framework is flexible enough to cope with those variations in scales
and the resulting contextual factor scores, providing the correlation matrix is adjusted.

The modified risk equation might be of limited use in situations where the contextual
factors or the scales thereof are difficult to quantify. This could be either because of the lack
of historic data or the inability of providing estimates by the industry experts.

The three-dimensional risk cube with its traffic light colour coding might be a helpful
visualisation and support the communicating risks to stakeholders. While it may work well
for the overall risk score comprising three factors (likelihood, consequence, and cofactor), it
might not be applicable for the contextual factors level, as there might be more than three
sub-factors, which will be difficult to express visually.

5.4. Future Research Opportunities

There are several directions for future research. Firstly, there is a knowledge dimension
to any risk assessment [44]. We believe this aligns with the expertise and experience of the
operator and hence could be included in the risk framework.

Secondly, Hameed et al. introduced a risk-based approach for optimising shutdown in-
spection and maintenance including human errors and human error probabilities, whereby
the authors introduced performance-shaping factors (PSF) related to the performance of
the human operator [97]. These include factors such as training, experience, time pressure,
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work memory, and work environment, among others. Potentially, these ideas might be
applied to the current situation.

Thirdly, as mentioned above, sometimes the engine under examination is known
to have experienced an incident such as bird strike, in which case, Bayesian methods
(conditional probabilities) might be used to determine the likelihood of undetected damage
given the views available for inspection.

Lastly, as explained in the Limitations Section, an adjustment of the correlation matrix
might be needed if the number of contextual factors or their scale values change. This
could be done by proving percentages rather than absolute numbers in the left column of
the correlation matrix (Table 11). The contextual factor score levels could then be calculated
by multiplying the percentages with the maximum achievable score, which equals the
product of the highest value of each scale.

6. Conclusions

This work makes several novel contributions. The first one is of philosophical nature in
that it is proposed that many risk assessments may be reduced to three factors: consequence,
likelihood, and a cofactor. The latter represents the industrial context, and can comprise
multiple sub-factors.

The second contribution is the identification of three factors that are relevant to visual
inspection: criticality, severity, and detectability. Associated with those are a variety of
scales for their measurement, and a method to combine them into the risk calculation.
This generic framework has the potential to support standardisation in risk assessment
to counteract the high variation among different organisations and industries. It has
been tested on visual inspection of jet engine blades, but we believe that the principles
are adaptable to other inspection tasks. Moreover, due to its generic structure, the risk
framework might be applicable to other industries and applications as well.

Another contribution is in the form of a go/no-go matrix that has been devised to
support the decision-making process, wherever a clear answer is required and a maybe is
not acceptable. One finding worth mentioning is that risk scores do not always have to
increase when adding additional factors, but can also decrease, depending on the positive
or negative impact those factors have.

A fourth contribution is specific to blades, and the identification of the views for
which defects are most visible. In practice, the usefulness of this is more likely to be in its
corollary: knowing what incident an engine has experienced, what is the likelihood that
any associated defects will be visible? While this paper does not completely answer this
question, it provides a method by which it ought to be possible.
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