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Abstract: Hybrid rockets are considered a promising future propulsion alternative for specific appli-
cations to solid or liquid rockets. In order to raise their technology readiness level, it is important to
perform predictive numerical simulations of their internal ballistics. The objective of this work is to
describe and validate a numerical approach based on Reynolds-averaged Navier–Stokes simulations
with sub-models for fluid–surface interaction, radiation, chemistry, and turbulence. Particular atten-
tion is given to scale effects by considering two different paraffin–oxygen hybrid rocket engines and a
simplified grain evolution approach from the initial to the final port diameter. Moreover, a mild sensi-
tivity of the computed regression rate to paraffin’s melting temperature, surface radiation emissivity,
and Schmidt numbers is observed. Results highlight the increasing importance of radiation effects
at larger scales and pressures. A numerical rebuilding of regression rate and pressure is obtained
with simulations at the time-space-averaged port diameter, producing a reasonable agreement with
the available experimental data, but a noticeable improvement is obtained by considering the grain
evolution in time.

Keywords: hybrid rockets; paraffin; computational fluid dynamics; radiation

1. Introduction

Research in hybrid rocket engines is gaining momentum in recent years owing to
experimental and numerical advances, and to an increasing number of test flights [1–6].
Hybrid rockets, which are propulsion devices burning a solid fuel and a gaseous or liquid
oxidizer, are considered a promising alternative to liquid or solid propulsion for applica-
tions, including sounding rockets, space engines, auxiliary power units, and boosters [7,8].
They can be preferred to solid rockets owing to their higher specific impulse, increased
safety, and throttling capabilities, and to liquid rockets because they are cheaper and
simpler, and with higher average propellant density.

Paraffin-based hybrids are currently under investigation by the community due to
their higher regression rate with respect to conventional fuels. However, there is still a
relatively incomplete understanding of the relevant physical phenomena, including fluid–
surface interaction, radiation, combustion, and turbulence, which occur simultaneously
inside paraffin-based hybrid rockets. In fact, numerical simulations of the internal ballistics
of paraffin-based hybrid rocket engines are becoming increasingly important to raise their
technology readiness level. The most used numerical approach in the literature is based on
Reynolds-averaged Navier–Stokes (RANS) simulations employing different sub-models [6],
which either rely on a prescribed fuel mass flow rate [9–13] or employ a parametric gas–
surface interaction model [14,15]. Radiation effects on the regression rate, which can be
important in HRE operating conditions [16–19], are also usually neglected when dealing
with paraffin-based engines.

The objective of this work is to provide an additional step toward obtaining a predic-
tive tool for the internal ballistics of paraffin-based HREs. To this end, a sensitivity study
is performed on various aspects of the modeling strategy recently adopted and validated
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against experimental data of a lab-scale engine [4]. In particular, the effects of a change in
paraffin’s melting temperature, surface radiation emissivity, and laminar and turbulent
Schmidt numbers are evaluated. Moreover, results on a different test case considering
a larger scale are provided, highlighting scale effects on the internal ballistics. Finally,
simulations at different diameters are analyzed in order to characterize convection and
radiation heat flux changes obtained from a change in scale.

The manuscript starts with the description of the theoretical and numerical model in
Section 2, followed by the illustration of the engine configuration and firing tests chosen for
validation in Section 3. Then, results and discussion are shown in Section 4, and conclusions
are summarized in Section 5.

2. Theoretical and Numerical Model

Numerical simulations were performed by solving the RANS equations for axisym-
metric, turbulent, compressible, and reacting flows [20]. The specific isobaric heat and
enthalpy dependencies on temperature were expressed, for all species apart from paraffin,
with the seventh-order polynomials taken from the Chemical Equilibrium with Applica-
tions (CEA) database [21], which also provides the species standard heat of formation. The
fourth-order polynomials of temperature for transport properties reported in [21] were
employed for all species apart from paraffin, and Wilke’s rule [20] was used to obtain
mixture molecular transport properties. A constant Schmidt number equal to 0.7 imposed
the same molecular diffusivity for all species. The standard Spalart–Allmaras model [22]
was used to evaluate the turbulent viscosity, with turbulent Schmidt and Prandtl numbers
equal to 0.7 and 0.9, respectively. Properties of paraffin will be discussed later.

In this work, a global reaction mechanism was employed to model the combustion of
ethylene, which is the main product obtained from paraffin thermal cracking [23,24]. Due
to the lack of detailed data in the literature, a reaction mechanism developed for butadiene
combustion [25] was adapted here for use in ethylene combustion. Seven reactions and
ten species were considered (Table 1). The chemical source terms were obtained through
Arrhenius-type forward reaction rates and backward rates calculated as the ratio between
forwarding rates and the equilibrium constant evaluated from thermodynamic data taken
from [26]. The reaction rate constant for the thermal cracking of C32H66 was taken as the
one for the liquid C16H34 [24] due to the lack of data in the literature. More details on the
reaction mechanism can be found in [4].

Table 1. Chemical reactions involved in the global reaction mechanism used for paraffin–
oxygen combustion.

C32 H66 −−→ 16 C2 H4 + H2
C2 H4 + O2 −−→ 2 CO + 2 H2

C2 H4 + 2 H2O −−→ 2 CO + 4 H2
CO + H2O −−→←−− CO2 + H2

H2 + 1
2 O2 −−→←−− H2O

O2 −−→←−− 2 O
H2O −−→←−− OH + H

The RANS simulations were performed with an in-house computational fluid dy-
namics (CFD) solver that has been validated in different operating conditions against
experimental data [4,27]. The finite-volume computational tool is second-order accurate in
space, and employs a Roe Riemann solver [28]. The Strang operator–splitting technique [29]
for time integration was adopted: a second-order Runge–Kutta scheme integrates the con-
vective and diffusive terms, whereas an implicit integrator for stiff ordinary differential
equations is used for the chemical source terms [30]. Note that a local time-step approach
was adopted, as steady-state solutions were sought. The code has been recently validated
against experimental data of paraffin wax–oxygen hybrid rockets in [4,31].
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The paraffin taken into account in the present manuscript is C32H66. Differently
from conventional fuels, when paraffin wax is heated, it does not pyrolyze but rather
melts, producing a liquid layer over the fuel grain. However, since the typical chamber
pressure of hybrid rockets is higher than paraffin’s critical pressure, equal to 6.5 bar [32],
the melted paraffin is assumed to be at supercritical conditions, where no surface tension
or boundary for droplets can be defined [33,34]. It is, therefore, reasonable to assume that
in these conditions, the entrainment of the supercritical species is part of the turbulent
mixing process. The melted species was modeled with the simplified dense fluid approach
described in [4,31], with thermodynamic and transport properties taken from [35]. As
described in [4], the fluid–surface interaction sub-model is based on mass and energy
balances, which reduce to

qw,conv + qw,rad = ρsṙ[∆hmelt + cs(Tmelt − Ts,in)] (1)

where qw,conv and qw,rad are the convective and radiative wall heat fluxes, respectively, and
the paraffin density, melting enthalpy, specific heat, melting temperature, and initial tem-
perature are, respectively, ρs = 920 kg/m3, ∆hmelt = 169.83 kJ/kg, cs = 1946.03 J/(kg ·K),
Tmelt = 343 K, and Ts,in = 298.15 K.

The radiative heat flux was computed with in-house software, which has already been
described and used in [4,19,36–38]. The main details of the numerical approach are reported
below for the sake of completeness. The software solves the radiative transfer equation with
the discrete transfer method for generic axisymmetric geometries, gray/diffuse boundaries,
and inhomogeneous gray/nonscattering media. The evaluation of the radiative heat was
carried out only at the boundaries given its small relevance, compared to the whole thermal
power generated within the thrust chamber. Radiation from hydroxyls and from soot
was not considered in the employed model. Absorption of radiative energy was assumed
proportional to the pressure and to the absorption coefficients of H2O, CO2, and CO, which
are considered as the major and only participating species to radiation, weighted with
their molar fraction. A discretization consisting of 256 rays for each calculation point
and a step of 1 mm along each ray were used after performing convergence analyses for
both parameters. A wall emissivity equal to 0.91 was assumed for the paraffin wax grain
by using the emissivity model proposed in [39] with a refractive index of 1.43 according
to [40]. The CFD and radiation codes were coupled through the repeated evaluation of the
radiative wall heat flux, then of the regression rate, and finally of the resulting flow field,
until convergence was reached.

3. Engine Configuration and Firing Tests

The engine configuration for the simulations of this work is the axisymmetric thrust
chamber depicted in Figure 1, which has already been used in [4]. It is composed by a
pre-chamber (0 < x < x0), a chamber with the paraffin grain (x0 < x < x1), a post-chamber
(x1 < x < x2), and finally a converging–diverging nozzle (x > x2). The nozzle conical
converging and diverging sections are connected by circular arcs with each other and
with the cylindrical post-chamber. The cylindrical pre-chamber, post-chamber, and fuel
grain have all the same diameter. Note that, in general, the radius of the pre-chamber and
post-chamber is different from that of the cylindrical grain port, which changes during the
burn. However, this difference influences only slightly the numerical regression rate [41];
hence, it was omitted in the present study, and a simplified geometry with a single radius
(equal to that of the cylindrical grain port) was considered.

Figure 1. Computational setup used for the axisymmetric numerical simulations.
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The computational setup is completed by the boundary conditions outlined below. On
the left-hand side of the setup, an inlet boundary condition imposing gaseous oxygen mass
flow rate, uniform static temperature equal to 300 K, and uniform turbulent viscosity equal
to 10−6 Pa · s is set up for 0 ≤ r ≤ rinj, while an adiabatic wall is set up for rinj < r ≤ R.
The influence of the inlet turbulence viscosity on the flowfield is assessed as minimal. On
the top side, Equation (1) is computed on the paraffin grain section, and adiabatic walls
are imposed in the pre-chamber, post-chamber, and nozzle. Finally, a supersonic outlet
boundary condition is considered on the right-hand side. Depending on the test conditions,
a first simulation is carried out from an initial uniform flowfield with oxygen at 12 bar and
3000 K until steady state, which serves as the initial condition for the following simulations.

Aiming to validate the predictive capabilities of the present approach, two sets of
literature experimental firing tests were considered (see Table 2). Seven test cases were
chosen from the lab-scale experimental tests carried out at the University of Naples “Fed-
erico II” [13] (named set 1), while five were from experiments performed at the hybrid
combustion facility of Nasa Ames [42] (named set 2). Oxidizer mass flow rates ranged
from 29 to 60 g/s for set 1, and from 2.05 to 4.4 kg/s for set 2. The injection pattern of
the experiments in both sets was correctly replicated by the abovementioned inlet bound-
ary condition, as it was composed of a single circular injector. The experimental setups
were of different sizes, the latter being quite larger than the former. For all tests of set 1,
x0 = 25 mm, x1 = 245 mm, x2 = 303 mm, L = 335.66 mm, and rinj = 3 mm. For all tests of set
2, x0 = 120.65 mm, x1 = 1268.65 mm, x2 = 1347.39 mm, L = 1461.46 mm, and rinj = 25.4 mm.
A single simulation at the time-space-averaged port diameter was performed for each test
case. In addition, simulations at the initial and final diameters were also performed for
tests 3 and 4 of set 1.

Table 2. Setup conditions for the two hybrid engines considered in this study. Set 1 is taken from [13],
while set 2, from [42].

Set Test ṁox (g/s) R (mm) rt (mm)

1 3 29.0 11.80 5.3
1 4 39.0 12.65 5.3
1 8 44.0 14.25 5.3
1 9 50.2 14.50 5.3
1 10 55.5 14.50 5.3
1 11 60.0 14.95 5.3
1 12 59.5 14.00 5.3
2 L01 4400 71.96 25.15
2 P01 4430 71.73 35.55
2 L04 4440 61.97 25.15
2 P04 2110 67.67 35.8
2 L09 2050 58.28 27.8

Computational meshes were created considering a proper grid clustering in the
injection, near-wall, and throat regions to sufficiently resolve the mixing layer, the boundary
layer, and the transition through sonic conditions, respectively, (see Figure 2). The mesh
employed for the numerical simulations of tests in set 1 was composed of 160 grid cells
in the axial direction and 100 grid cells in the radial direction. The resolution employed
yielded a maximum cell height on the grain of 12.34 µm, and a corresponding dimensionless
wall distance for wall-bounded flows y+ of the order of 1. Additional details and adequate
mesh convergence studies have been reported previously in [4]. For simulations of tests in
set 2, a topologically similar mesh of 600 × 320 elements ensured approximately the same
wall resolution as for set 1.



Aerospace 2021, 8, 213 5 of 15

Figure 2. Grid clustering near the injector for the mesh used for numerical simulations of set 1 (see
Table 2).

4. Results

The results from the Navier–Stokes simulations show several peculiarities of hybrid
rockets burning paraffin wax and gaseous oxygen. We start with a discussion of the results
from the small-scale engine (set 1), followed by the analysis of the firing tests of the larger
engine (set 2), concluding with the numerical rebuilding of experimental regression rate
and chamber pressure.

4.1. Results on Set 1 Tests

The tests in set 1 are characterized by experimental oxidizer-to-fuel ratios from 0.77 to
1.26; hence, they are all in fuel-rich conditions (the stoichiometric O/F is equal to 3.44).

Figures 3 and 4 show numerical results for test 4 of set 1 obtained by increasing the
port diameter from the initial to the final one with the average diameter as an intermediate
step. This was performed to simulate the time evolution during a firing test. A common
feature for all diameters is the presence of a wide diffusive flame developing from the
pre-chamber throughout the whole combustion chamber. The inhomogeneous presence of
reactants and combustion products is observed at the nozzle entrance, where combustion
still takes place.

Figure 3. Temperature (with streamtraces), paraffin mass fraction, and oxygen mass fraction contours
for test 4 of set 1 at different port diameters.
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Figure 4. Mass fraction contours of water vapor, carbon monoxide, and carbon dioxide for test 4 of
set 1 at different port diameters.

At the initial diameter, the recirculation zone is mostly confined upstream of the fuel
grain, which entails complete combustion of the cold liquefied paraffin before reaching the
injector plate; hence, hot combustion gases are filling the pre-chamber. On the other hand,
as the port diameter grows, the vortex penetrates towards the grain and brings upstream
more paraffin, which cools down the pre-chamber and allows the flame to be anchored
at the interface between the oxygen injector and the injector plate wall. The amount of
paraffin present in the pre-chamber is, in fact, strongly dependent on the extension of the
vortex, and post-firing inspections of the injector plate confirmed the presence of unburnt
paraffin [13]. Downstream of the reattachment point, appearing at varying axial locations
on the fuel grain depending on the port diameter, the liquid paraffin accumulates with
increasing axial distance, covering as a thick film the post-chamber and partially also the
nozzle walls. At the final diameter, a lower mass fraction of both oxygen and paraffin is
observed at the nozzle entrance. Moreover, the flame reaches the symmetry axis earlier
with respect to the other two smaller diameters, yielding a more complete mixing and
combustion in the core region. The mass fraction of molecular oxygen reduces along
the length of the engine because of combustion; however, part of the injected oxygen
directly flows away from the nozzle at the average diameter, indicating a lower combustion
efficiency since this test is very fuel-rich (O/F = 1.3). Combustion products such as water
vapor or carbon dioxide cannot reach the walls due to a thick layer made mainly of paraffin
and carbon monoxide. This actually also prevents nozzle erosion, which was not observed
in the experiments [13].

The regression rate is greatly influenced by the vortex extension over the grain
(Figure 5): As the vortex reattachment point moves downstream, the regression rate shows
a corresponding local minimum or change in slope. Furthermore, due to the reduction
of the total mass flux, the overall magnitude of the regression rate tends to decrease with
increasing port diameter. Moreover, pressure axial nonuniformity vanishes with increasing
port diameter, due to the reduced Mach number in the port caused by the larger contraction
ratio (see Figure 6).
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Figure 5. Effect of port diameter on regression rate and pressure for test 4 of set 1.

Figure 6. Mach number contours for test 4 of set 1 at different port diameters.

Model Sensitivity Analysis

In order to establish the effects of model parameters/constants on the computed
regression rate and pressure, in this section, we consider only the simulation of test 4 of set
1 at its average diameter.

An increase in the melting temperature of paraffin Tmelt from the reference value of
343 K is expected to reduce the convective wall heat transfer, yielding a lower regression
rate [14]. This is indeed observed by comparing numerical simulations at three different
values of Tmelt (Figure 7). The sensitivity of the regression rate is shown to be −5%
every 15 K. The chamber pressure also decreases for higher values of Tmelt, at a rate of
approximately −0.65% every 15 K. The pressure rate of change is lower than the one of
the regression rate because a higher characteristic velocity balances the lower total mass
flow rate.
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Regression rate and pressure are unchanged for variations of the paraffin grain emis-
sivity εw (which equals absorptivity due to the gray wall assumption) in the range 0.91–1.0
(Figure 8). This leads to the possibility of treating the paraffin grain as a black body for
this fuel-rich case and shows that the results are not sensitive to increased grain wall
emissivities in the range 0.91–1.0.
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Figure 8. Effect of grain’s radiation emissivity on regression rate and pressure.

As the turbulent Schmidt number is reduced, mixing is enhanced due to the increased
turbulent diffusivity; hence, higher regression rate and pressure are obtained (Figure 9).
Different turbulent Schmidt numbers entail 1–3% changes in average regression rates and
chamber pressures; however, it is worth noting that typical values of turbulent Schmidt
numbers used in the literature are in the range 0.7–0.9. On the other hand, regression rate
and pressure are insensitive to changes in the laminar Schmidt number (Figure 10). In fact,
molecular diffusion phenomena are not expected to play a significant role in this fuel-rich
test case, as next to the wall, there is mostly paraffin. The small sensitivity of regression
rate and pressure to the laminar and turbulent Schmidt numbers justifies the adoption of
Fick’s law and the assumption of constant Schmidt numbers in this work and allows us to
avoid using other multicomponent diffusion models.
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4.2. Results on Set 2 Tests and Effect of Radiation

The tests in set 2 are characterized by a larger scale with respect to set 1, by experimen-
tal oxidizer-to-fuel ratios from 1.70 to 2.69 (whereas in set 1, O/F ranges from 0.77 to 1.26),
and by a reduced post-chamber length (for test L01 (x2− x1)/R = 1.1, while for test 4 of set
1 (x2 − x1)/R = 4.6). Nevertheless, the same qualitative internal combustion phenomena
of set 1 are observed: the axial injection mode yields flame anchoring at the interface
between the oxygen injector and the injector plate wall with a recirculation zone in the
pre-chamber, which is filled by unburnt paraffin (Figure 11). Due to the short post-chamber,
mixing is not favored, and the flame does not reach the centerline. In addition, a strong CO
presence is observed above the flame but not close to the wall, which is protected by a thick
layer of cold paraffin up to the nozzle walls. Moreover, a large fraction of the oxygen does
not burn but is just accelerated through the nozzle, decreasing significantly the efficiency
of this fuel-rich regime. It is interesting to note that ethylene mass fraction is mostly null,
indicating that when the cracking reaction of paraffin is triggered, the ethylene produced is
burnt right away and does not accumulate (the same holds for set 1 results).

During the simulations of all tests in set 2, mild numerical instabilities involving the
whole flow field are observed. This is due to either numerical or physical reasons. In fact,
numerical results showed oscillations around a constant average flow field, which is taken
as reference in the present work, and the deviations from it are considered as numerical
error. The physical nature of these oscillations should be confirmed by time-accurate
simulations, which are, however, outside of the scope of this work because of their too high
computational effort. Note that in the firing tests of set 2, experimental pressure oscillations
between 4 and 12% of the mean pressure are observed [42]. Their peak in the pressure
spectrum is at 30, 100, and 350 Hz, corresponding to boundary-layer interaction with solid
thermal lag (low-frequency hybrid instability), bulk mode, and acoustic half-wave in the
combustion chamber. Such oscillations are not observed either physically or numerically
in set 1.

A significant effect obtained by increasing the size and the operating pressure of the
engine from set 1 to set 2 is the higher relevance of radiation in the wall heat flux balance,
which directly controls the paraffin’s regression rate (Table 3). For set 2, this contribution
reaches values as high as 88%, whereas for set 1, it is at a maximum of 62%. In fact, the
radiation contribution is found to be proportional to the product between chamber pressure
and port radius, except for the L04 case, which is the one characterized by the highest port
mass flux, yielding an increased share of convection heat transfer. These results depend on
the employed models for turbulence, combustion, and radiation, and need to be verified
with experimental data on radiation heat transfer in paraffin-based hybrid rockets, which
are lacking in the literature.
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Figure 11. Temperature (with streamtraces) and species mass fractions from numerical simulations
of test L01 of set 2 (see Table 2).

Table 3. Wall heat flux contributions on the grain surface for all tests at the average port diameter.

Set Test pcR (bar·m) qw,tot (MW/m2) qw,rad/qw,tot

1 3 0.10 0.38 35%
1 4 0.15 0.45 43%
1 8 0.19 0.44 55%
1 9 0.23 0.48 58%
1 10 0.25 0.52 58%
1 11 0.28 0.54 62%
1 12 0.26 0.58 56%
2 L01 3.33 0.775 88%
2 P01 1.57 0.988 84%
2 L04 2.81 0.940 71%
2 P04 0.74 0.562 81%
2 L09 1.06 0.935 83%

4.3. Numerical Rebuilding

The integral average of the axial profiles of the regression rates and the post-chamber
pressures (x = 0.28 m) are extracted from the numerical simulations at the average diameter
and are compared to the respective experimental values in Figure 12. Very close agreement
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is found for chamber pressures lower than 20 bar, whereas an error of about 15% is
observed for the higher chamber pressures of set 2. Average regression rates are generally
in good agreement with experimental results, with maximum errors of 15%. Table 4
shows a comparison between numerical and experimental O/F, pressures, and combustion
efficiencies for all tests. The combustion efficiencies are underestimated by the numerical
simulations, only slightly (by 1–5%) for tests in set 1 and by larger amounts (6–22 %) for
tests in set 2, also due to the larger errors in the pressure rebuilding.

Overall, the model, which does not require information from any firing test, shows
an acceptable prediction of the experimental data of the two engines at different scales
without any dedicated tuning. This is achieved by making simplifying assumptions that do
not make the model computationally expensive and do not alter significantly its predictive
capabilities.

Table 4. Experimental and numerical oxidizer-to-fuel ratio, chamber pressure, characteristic velocity,
and combustion efficiency for all tests in Table 2.

Experimental Numerical
Set Test O/F pc (bar) c∗ (m/s) ηc∗ (%) O/F pc (bar) c∗ (m/s) ηc∗ (%)

1 3 1.0 8.5 1319 85 1.2 8.3 1388 85
1 4 1.2 11.5 1403 87 1.3 11.4 1450 86
1 8 1.2 13.2 1422 89 1.3 13.1 1499 88
1 9 1.2 15.7 1505 93 1.4 15.0 1515 88
1 10 1.3 16.9 1498 90 1.4 16.6 1521 88
1 11 1.2 18.8 1514 93 1.4 18.0 1529 88
1 12 1.2 18.4 1483 92 1.4 17.6 1512 87
2 L01 2.6 46.3 1627 88 2.6 39.0 1277 69
2 P01 2.7 21.9 1492 82 2.4 19.4 1227 67
2 L04 2.7 45.3 1564 85 2.9 39.3 1302 72
2 P04 1.8 10.9 1437 78 2.0 9.6 1222 66
2 L09 1.7 18.2 1468 80 1.5 18.7 1340 75
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0

1

2

3

4

5

nu
m
er
ic
al

ṙ
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Figure 12. Numerical rebuilding of average regression rate (a) and post-chamber pressure (b).
Experimental uncertainties for the regression rate of set 1 and numerical uncertainties of simulations
of set 2 are also reported.

In order to further validate the computational model and improve numerical pre-
dictions, it is important to verify that results at evolving diameters are coherent with the
experimental data. To this purpose, simulations of test 3 of set 1, for which pressure probe
data in time are available from [13], were performed at the initial, average, and final port
diameters. Flow fields of test 3 are not shown because they are very similar to the ones
already shown for test 4 of set 1 (Figures 3, 4, and 6). As previously observed for test 4,
increasing diameters result in decreasing regression rates, due to lower mass fluxes in the
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port, and more axially uniform pressure profiles due to lower Mach numbers (Figure 13).
The O/F resulting from the simulations at the different diameters are 0.90, 1.22, and 1.24,
showing that test 3 is in fuel-rich conditions for the whole burn duration, which is con-
sistent with the absence of throat erosion observed in the experiments. In addition, the
characteristic velocities obtained are 1218 m/s, 1388 m/s, and 1501 m/s, from the lowest to
the highest diameter, respectively, corresponding to c∗-efficiencies of 86%, 85%, and 91%.
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Figure 13. Effect of port diameter on regression rate and pressure for test 3 of set 1.

It is interesting to observe how the regression rate is influenced by the different
contributions of convection and radiation. At the initial diameter, the dominant share of
the wall heat flux is provided by the convective heat flux, with radiation actually helping
in making the total wall heat flux more uniform in the axial direction (Figure 14). However,
the radiation wall heat flux becomes more significant by increasing the engine diameter
(Table 5). This is quite an interesting result as, despite the significant change of the share
of radiative/convective heat flux, the numerical pressure is rather constant, in line with
the experimental measurement (Figure 15). In addition, it is noted that the radiation
contribution starts to become non-negligible for oxidizer mass fluxes lower than Gox of the
order of 100 kg/(m2s), which is consistent with the value of 140 kg/(m2s) obtained by [7].
This gives further confidence to the numerical models used in this work.
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Figure 14. Effect of port diameter on wall heat flux for test 3 of set 1.
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Table 5. Wall heat flux contributions on the grain surface for test 3 of set 1 at different port diameters.

Set Test D, mm Gox, kg/(m2s) pcR, bar·m qw,tot, MW/m2 qw,rad/qw,tot

1 3, D0 15 164.1 0.06 0.80 10%
1 3, Dave 23.6 66.3 0.10 0.38 35%
1 3, Dfinal 32.2 35.6 0.14 0.27 61%
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ṙ
(m

m
/s
)

D0

Dave

Dfinal

0 1 2 3 4 5 6 7
t (s)

0

2

4

6

8

10

p c
(b
ar
)

D0

Dave

Dfinal

Figure 15. Time evolution of regression rate and pressure for test 3 of set 1. Dashed lines indicate
experimental data taken from [13], while numerical data are shown with circles connected by solid
lines. The horizontal solid line represents the integral average of the numerical regression rate data.

Numerical times in Figure 15 are obtained by considering the average between two
successive regression rates and diameters and were axially shifted by 1 s to match the
experimental ignition transient. By considering just one simulation at the average port
diameter, the average experimental regression rate of test 3 is underestimated by 11.8%.
On the other hand, the integral average of the numerical regression rate obtained with
the three successive simulations yields an underestimation of just 2.2%, due to the higher
regression rate obtained at the initial diameter. This underlines the need to numerically
simulate the evolution of the grain in time for more accurate numerical predictions.

5. Conclusions

A numerical approach based on Reynolds-averaged Navier–Stokes simulations in-
cluding fluid–surface interaction, radiation, combustion, and turbulence, was used to
analyze hybrid rocket engines at different scales. Due to the uncertainty of some of the
model parameters, a sensitivity analysis was carried out for paraffin’s melting temperature,
surface radiation emissivity, and Schmidt numbers, showing a negligible or mild effect on
the computed regression rate and pressure. Although no tuning or calibration was carried
out, the results compare well with experimental data, and, owing to appropriate assump-
tions, the model retains its predictive capabilities without compromising the simplicity and
inclusiveness of the model strategy.

A quite interesting result is that numerical predictions are in line with experimental
measurements despite the wide range of the share of convective and radiative heat flux.
This provides confidence that both convection and radiation models are well suited to
numerically simulate the internal ballistics of paraffin-based hybrid rocket engines. In
particular, the share of the radiative over total wall heat flux ranges from 10% to 88%,
depending on the chamber pressure, port radius, and mass flux. As a further demonstration
of the capability of the approach, it is found that by evolving the port diameter, the nonlinear
time evolution of the experimental regression rate is correctly captured.
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