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Abstract: The aircraft trajectory clustering analysis in the terminal airspace is conducive to deter-
mining the representative route structure of the arrival and departure trajectory and extracting
their typical patterns, which is important for air traffic management such as airspace structure
optimization, trajectory planning, and trajectory prediction. However, the current clustering methods
perform poorly due to the large flight traffic, high density, and complex airspace structure in the
terminal airspace. In recent years, the continuous development of Deep Learning has demonstrated
its powerful ability to extract internal potential features of large dataset. Therefore, this paper mainly
tries a deep trajectory clustering method based on deep autoencoder (DAE). To this end, this paper
proposes a trajectory clustering method based on deep autoencoder (DAE) and Gaussian mixture
model (GMM) to mine the prevailing traffic flow patterns in the terminal airspace. The DAE is trained
to extract feature representations from historical high-dimensional trajectory data. Subsequently,
the output of DAE is input into GMM for clustering. This paper takes the terminal airspace of
Guangzhou Baiyun International Airport in China as a case to verify the proposed method. Through
the direct visualization and dimensionality reduction visualization of the clustering results, it is
found that the traffic flow patterns identified by the clustering method in this paper are intuitive
and separable.

Keywords: air traffic control; trajectory clustering; deep autoencoder; Gaussian mixture model

1. Introduction

The terminal airspace surrounding an airport has significant flight traffic, high density,
and complex airspace structure. According to statistics released by Boeing, 60% of the
world’s commercial aircraft accidents occurred during take-off, initial climb, approach,
and landing stages, from 2007 to 2016, although these four stages only accounted for
6% of the total flight time, which posed a great threat to air transportation safety [1].
Therefore, the research and development of automated decision support tools mainly
focus on the terminal area to help controllers with conflict detection and resolution, arrival
and departure sequencing, aircraft abnormal behavior monitoring, and other air traffic
management behaviors.

NextGen in the United States and SESAR in Europe have promoted the transformation
of the current air traffic management mode to a new mode based on trajectory operation
(TBO). This mode mainly uses 4D trajectory as the basic information for managing safety
and capacity. Among them, the trajectory prediction process is a key component of TBO,
and it relies on the precise clustering of aircraft trajectories [2]. The trajectory clustering
algorithm can also be integrated into tools that support airspace design/management,
complexity management, and so on. In addition, trajectory cluster analysis is an important
step in trajectory planning, which is mainly to find out the prevailing traffic flow and to
provide reference for terminal airspace trajectory planning. The trajectory planning can not
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only provide an effective path for conflict resolution, but also generate the corresponding
4D trajectory according to the optimized time generated by the arrival and departure
schedule to ensure that the aircraft arrives at the designated location safely and on time,
thereby reducing flight delays and improving operational efficiency. It can be seen that
trajectory clustering is the foundation of many air traffic management tasks, and it is of
great significance to the optimization of airspace structure, trajectory planning, abnormal
trajectory detection, and trajectory prediction.

At present, many scholars have conducted a lot of research on trajectory clustering.
Lee et al. [3] proposed a new trajectory clustering and grouping framework, which used
a standard trajectory segmentation algorithm of minimum description length (MDL) to
divide a trajectory into a set of line segments and then used a density-based line segment
clustering algorithm to divide similar line segments into a cluster. Eckstein et al. [4] pro-
posed an automatic flight trajectory classification method, which used K-Means clustering
based on principal component analysis (PCA). Sabhnani et al. [5] extracted the traffic
structure based on standard flows and critical points (conflict points and merging points),
mainly used two methods of greedy trajectory clustering and ridge top detection to identify
standard flows, and determined the intersection of two or more standard flows as the
critical point. Rehm [6] only defined the similarity between the trajectories, including the
pairwise similarity, the closed area between the trajectories, and the grid-based similarity,
and discussed the advantages and disadvantages of using different similarity measures in
the clustering process. Gariel et al. [7] proposed the longest common subsequence (LCS)
clustering method based on turning point recognition, considering the trajectory character-
istics of aircraft that usually fly directly and have fewer turns. Annoni et al. [8] used Fourier
descriptors to describe the characteristics of the actual aircraft trajectories in the terminal
area and clustered them. At the same time, they used kernel density estimation to classify
the trajectory points to detect abnormal traffic conditions. Wang et al. [9] established a
similarity measurement model between trajectories based on the inverse comparison of cor-
responding trajectory points and applied the hierarchical clustering method. Since most of
the existing flow recognition algorithms rely only on spatial clustering without considering
the time dimension, Enriquez et al. [10] proposed a spectral clustering framework to solve
this shortcoming producing robust results. Ayhan et al. [2] proposed an aircraft trajectory
clustering framework based on segmentation, clustering, and merging, which divided
and clustered the trajectory points according to the three main flight stages of the climb,
cruise, and descent, and then merged to obtain the clustering results of the entire trajectory.
Xu et al. [11] used the normal distance of the trajectory point as the similarity measurement
index and used the K-medoids clustering algorithm to cluster, which effectively solved
the mismatch problem in trajectory point selection caused by the difference in aircraft
speed. Mcfadyen et al. [12] proposed a statistical-based clustering method for aircraft
trajectories, which used the iterative K-medoids method to cluster the trajectories based
on circular distribution statistics to resample the angle data. Pan et al. [13] constructed
a multi-factor Hausdorff distance as a similarity measure and proposed a density-based
multi-dimensional trajectory clustering algorithm. Eerland et al. [14] clustered the trajec-
tory data and generated a probability model for each cluster, and weighted the trajectory
based on the probability model to generate a representative trajectory. Mahboubi et al. [15]
adopted a method based on trajectory turning point recognition and clustering. This
method works well when the heading angular velocity data are not too noisy, but the effect
is poor when there is noise in the actual data.

Basora et al. [16] proposed a new Hierarchical Density-Based Spatial Clustering of Ap-
plications with Noise (HDBSCAN) air traffic flow analysis framework, managing different
densities with a single input parameter. Liu et al. [17] obtained typical trajectories through
the three-step framework clustering in [4] to analyze the reasons for inefficient operation.
Gallego et al. [18] discussed the progress of density-based clustering techniques, such as
OPTICS and HDBSCAN*, and evaluated them quantitatively and qualitatively. In addition,
they proposed a hierarchical clustering algorithm based on cyclic DBSCAN* (RDBSCAN*).



Aerospace 2021, 8, 266 3 of 18

Based on the principle of information bottleneck (IB), the clustering method does not need
to predefine the number of clusters and the distance measurement between trajectories,
which is effective for trajectory data. Therefore, Guo et al. [19] proposed an interactive vi-
sual analysis prototype IBVis for trajectory data. Wang et al. [20] combined LOF algorithm,
K-Means clustering algorithm based on time window segmentation, and hierarchical clus-
tering algorithm, and proposed a time window segmentation algorithm based on trajectory
point features. Barratt et al. [21] used K-Means to cluster aircraft trajectories, combined
with the Gaussian mixture model to learn the trajectory probability generation model of the
airport terminal area. Locality Sensitive Hashing (LSH) is a commonly used data mining
technique for finding similar items in high-dimensional data, so it is suitable for grouping
similar flight paths in trajectory data. Given this, Tran et al. [22] proposed an adaptive LSH
algorithm suitable for duplicate document detection, which clusters the nearest trajectories
by representing the trajectory as a packet of words commonly used in text mining. Given
that Deep Learning has the potential of using deep clustering techniques to discover hidden
and more complex relationships in low-dimensional latent spaces, Olive et al. [23] explored
the application of deep trajectory clustering based on autoencoders to the problem of flow
identification. Samantha et al. [24] applied the HDBSCAN algorithm on the basis of a
weighted Euclidean distance function to improve the identification of terminal airspace air
traffic flows. To improve the accuracy of the anomaly detection models from surveillance
data, Deshmukh et al. embedded a data preprocessing step that involves clustering of the
source dataset using DBSCAN [25] and HDBSAN [26] algorithm. Olive et al. [27] proposed
an algorithm that computes a clustering on subsets of significant points of trajectories while
keeping a dependency tree of their temporal chaining and then associates trajectories to
root-to-leaf paths in the dependency tree based on the clusters they cross. Olive et al. [28]
also combined a trajectory clustering method to identify air traffic flows within the con-
sidered airspace with a technique to detect anomalies in each flow. Mayara et al. [29] first
performed a multi-layer clustering analysis to mine spatial and temporal trends in flight
trajectory data for identification of traffic flow patterns. M. Conde Rocha Murca et al. [30]
developed an air traffic flow characterization framework composed of three sequential
modules. The first module uses DBSACN to learn typical patterns of operation from radar
tracks [31]. Built on this knowledge, the second module uses random forests to identify
non-conforming trajectories. Finally, the third module uses K-Means to extract recurrent
modes of operation (operational patterns) from the outcomes of the second module. A.
Bombelli et al. [32] proposed an approach that involves coarse clustering, outlier detection,
fine clustering, and aggregate route construction. Coarse clustering is based on common
origin, destination, and average cruise speed. Fine clustering, based on the Fréchet distance
between pairs of trajectories, is applied to each coarse cluster to subdivide it, if appropriate.
In summary, multiple trajectory clustering algorithms exist in the literature to cluster point-
based data such as K-Means, OPTICS, DBSCAN, HDBSCAN, and hierarchical or spectral
clustering. In addition, there are some studies that use clustering algorithms to cluster
trajectory segments. In addition to clustering algorithms, some studies also focus on how
to define an appropriate distance function between pairs of trajectory points such as Eu-
clidean, LCSS, DTW, Hausdorff, or Fréchet. However, some clustering algorithms require
the trajectories to have the same length. Aiming at the clustering problem of inconsistent
trajectory sequence length, some researchers conduct equal time interval sampling on the
original trajectory from the perspective of data preprocessing [21] or reduce dimension
by PCA [33]. Other researchers solve this problem from the perspective of constructing
different similarity measures, such as DTW [34].

Compared with high-altitude airspace, the position of aircraft in airport terminal
airspace changes frequently, which leads to complex and changeable traffic flow patterns in
this type of airspace. However, aircraft usually follow certain arrival and departure flight
procedures in the terminal airspace, resulting in robust and fixed trajectories. Therefore,
theoretically, a suitable clustering method can be used to dig out typical patterns in different
scenarios as long as there are enough historical trajectory data. Some trajectory pattern
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identification methods are specifically applied to terminal area trajectories, which is also
the focus in our paper.

This paper proposes a Gaussian mixture model (GMM) based on deep autoencoders
(DAE) to cluster aircraft trajectories in airport terminal airspace. Traditional clustering al-
gorithms present serious performance issues when applied to high-dimensional large-scale
datasets. Before applying the clustering algorithm, it is necessary to apply dimensionality
reduction techniques to extract features from the data. Deep learning has always been
the core of solving these problems, so this paper use DAE to extract the features of the
trajectory. A suitable DAE model is trained from a large amount of trajectory data to solve
varying sequence length and track point time mismatch during clustering and provides
features with strong characterization capabilities for subsequent trajectory clustering. The
output features of the DAE network are used as the input of the GMM, and the elbow
method is used to determine the number of clusters. The sum of squared error (SSE) within
the cluster and silhouette coefficient is used to evaluate clustering quality. Finally, multiple
aircraft trajectory patterns in the terminal area are mined.

The rest of the paper is organized as follows. In Section 2, we describe the proposed
clustering method and briefly introduce related model architecture. Section 3 introduces our
data sources and preprocessing procedure and then presents case study results. Section 4
offers conclusions and suggestions for future research.

2. Methodology

The general idea of this paper includes data preprocessing, trajectory feature extrac-
tion, and trajectory clustering, as shown in Figure 1. (1) Data preprocessing: Extract the
trajectory data in the designated area of the airport terminal area and analyze the data
quality. Then, transform the geographic coordinates into ENU coordinates and divide the
trajectory into arrival and departure. (2) Trajectory feature extraction: The DAE model
is used to map the trajectory data to a new set of features in another domain. The input
data include time, longitude, latitude, altitude, speed, and heading. When the model
is built, the parameters need to be adjusted continuously to reduce the error of input
data reconstruction. The parameters mainly include the number of hidden layers and the
number of hidden layer neurons. (3) Trajectory clustering: Use the GMM to cluster the new
trajectory features and combine the commonly used indicators and visualization methods
to evaluate the clustering effect.
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2.1. Data Processing

In the airport terminal area, it is necessary to extract ADS-B data or radar data ac-
cording to the specified horizontal and altitude range and use the value analysis method
to analyze the null, duplicate, and abnormal values of the data preliminarily and deal
with them. To simplify the calculation of space distance and present the changes of the
aircraft trajectory more intuitively, it should convert the longitude and latitude data from
the geographical coordinate system to the ECEF (Earth-Centered-Earth-Fixed) rectangular
coordinate system, which takes earth mass center as the origin; the Z-axis points to the
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north pole, the X-axis intersects the Greenwich line and the equator on the sphere (lon-
gitude and latitude are both 0), and the Y-axis is determined according to the right-hand
coordinate system. The coordinate conversion process is as follows:

Firstly, the flattening of ellipsoid f, eccentricity e_sq, and radius of curvature N corre-
sponding to space spherical coordinate system are calculated:

f =
a− b

a
(1)

e_sq = f × (2− f ) (2)

N =
a√

1− e_sq× (sin ϕ)2
(3)

where ϕ represents the radian corresponding to latitude, a represents the radius of the
earth’s major axis, and b represents the radius of the earth’s minor axis. Then, the coordinate
values X, Y, Z of the corresponding ECEF coordinate system are calculated:

X = (h + N)× cos ϕ× cos λ (4)

Y = (h + N)× cos ϕ× sin λ (5)

Z = [h + (1− e_sq)× N]× sin ϕ (6)

where λ represents the radian corresponding to longitude, and h represents the height.
However, the coordinate value in the ECEF rectangular coordinate system is very

large. In order to express the relative position of the track points, the ECEF coordinates are
further transformed into the ENU (East-North-Up) rectangular coordinate system with the
center of the airport as the origin. The positive Z-axis coincides with the ellipsoid’s normal,
the positive Y-axis points to the north, and the positive X-axis points to the east. Taking
the ECEF coordinate of the center of the terminal area (x0, y0, z0) as the origin position, ϕ0
represents the radian corresponding to the latitude of the origin, λ0 represents the radian
corresponding to the longitude of the origin, and h0 represents the height of the origin. The
coordinate values xEast, yNorth, and zUp of the ENU rectangular coordinate system are
calculated according to the origin coordinates:

xEast = − sin λ0 × (X− x0) + cos λ0 × (Y− y0) (7)

yNorth = − cos λ0 × sin ϕ0 × (X− x0)− sin λ0 × sin ϕ0 × (Y− y0) + cos ϕ0 × (Z− z0) (8)

zUp = cos λ0 × cos ϕ0 × (X− x0) + cos ϕ0 × sin λ0 × (Y− y0) + sin ϕ0 × (Z− z0) (9)

Since arrival and departure flights have completely different operating modes, they
need to be considered separately. Here, the extracted trajectory data can be directly divided
into arrival and departure flights according to the origin and destination contained in the
ADS-B data.

2.2. DAE for Trajectory Feature Learning

The feature learning algorithm aims to find a good representation of data for classi-
fication, reconstruction, visualization, and so on. At present, the most commonly used
unsupervised methods in image feature extraction are PCA and autoencoder. The encoder
and decoder of PCA are linear, while the autoencoder can be linear or nonlinear. PCA is
only interested in the direction of maximum variance, but it does not fit well with many
practical applications. By contrast, autoencoder has been successfully used in many image
processing applications [35–38]. Therefore, this paper will use DAE to extract features from
the original trajectory data.
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In fact, DAE in this paper means Stack Autoencoder rather than traditional deep
autoencoder. Stack Autoencoder and deep autoencoder only differ in the training process,
and they have the same reconstruction function. However, due to the greedy layer-by-layer
training of Stack Autoencoder, its coding ability is slightly worse. Nevertheless, the large
number of aircraft trajectory points results in large data dimension, and the direct use of
traditional deep autoencoder is not efficient. By contrast, Stack Autoencoder has relatively
simple structure, high efficiency, and robustness.

An autoencoder is an artificial neural network that can learn the effective representa-
tion of input data without supervision. It is always composed of two parts: the encoder
(or recognition network), which converts the input to the internal representation, and the
decoder (or generation network), which converts the internal representation to the output.
The dimensionality of the output of the encoder is usually lower than that of the input
data so that the autoencoder can be effectively used for data dimensionality reduction. In
addition, the autoencoder can also be used as a powerful feature detector for unsupervised
deep neural network pre-training. The decoder can randomly generate new data that are
very similar to the training data.

The autoencoder usually has the same architecture as the multi-layer perceptron
(MLP), but the number of neurons in the output layer must be equal to the number of neu-
rons in the input layer. As shown in the network structure of Figure 2, a simple autoencoder
is a three-layer neural network structure that includes a data input layer, a hidden layer,
and an output reconstruction layer. When a set of training datasets X = {X1, X2, . . . , XN}
are given, where X ∈ RN×n, Xi ∈ Rn, n represents the number of neurons in the input layer;
the encoder first encodes the input data and converts them into the hidden layer’s output
h(1)i based on Equation (10). The decoder decodes it to obtain Xi (that is, reconstructed Xi),
as in Equation (11):

h(1)i = f (Xi) = σf (W f Xi + b f ) (10)

Xi = g(h(1)i ) = σg(Wgh(1)i + bg) (11)

where W f ∈ Rn×n1 is the encoder weight matrix, n1 is the number of neurons in the
hidden layer, b f ∈ Rn1 is the encoder bias vector, and σf is the encoder activation function;
Wg ∈ Rn1×n is the decoder weight matrix, bg ∈ Rn is the decoder bias vector, and σg
is the decoder activation function. Non-linear functions are usually used as activation
functions in networks, such as sigmoid function, hyperbolic tangent function, and rectified
linear unit function, and sigmoid function is used here. Since the autoencoder tries to
reconstruct the input, the output is usually called reconstruction, and the loss function is the
reconstruction loss. When the reconstruction is different from the input, the reconstruction
loss will penalize the model. The model can choose different loss functions according
to different criteria, such as Li norm and entropy. Here, we choose L2 norm. Let us
take the first autoencoder in Figure 2 as an example that is trained by minimizing the
reconstruction error L(Xi, Xi) to obtain the model’s best parameters, denoted as θ1, as
shown in Equation (12).

θ = argmin
θ1

L
(
Xi, Xi

)
= argmin

θ1

1
2

n

∑
i=1
‖xi − xi‖2 (12)
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DAE is a deep neural network composed of multiple autoencoders, and the input
of the next encoder comes from the output of the previous encoder. This structure helps
DAE to learn more complex features. As shown in Figure 2, given the DAE of L hidden
layers, the training set is used as input, the first hidden layer is trained as the encoder
and used as the input layer of the second hidden layer, and so on. The kth hidden layer
is used as the input layer of the k + 1th, so that multiple autoencoders can be stacked
in layers [39]. Figure 2 explains the training process of the model. It trains a shallow
autoencoder and then stacks all autoencoders into DAE instead of training the whole DAE.
The final reconstruction error combines the loss of all hidden layers. The training process
is shown in Algorithm 1:

Algorithm 1 Feature extraction of trajectory data based on DAE

Input:
Standardized trajectory data.
The number of hidden layers L and units ni, i = 1, . . . L.

Output:
Extracted feature data.
Optimal model parameters θ = {θ1, θ2, · · · , θL}.

Algorithm—DAE pre-training:
1. Initialize the weight matrix W and the bias vector b randomly.
2. Train hidden layers through greedy layer-wise training.
3. The kth layer is regarded as the input layer of the k + 1th, and for the first layer, the

standardized trajectory data are used as the input.
4. In the kth layer, the encoder’s parameters are determined by minimizing the objective

function such as Equation (12), and Adam optimizer is used to train the model.
5. Output extracted features, optimal parameter set θ.

2.3. Trajectory Clustering with GMM

At present, the clustering algorithms widely used in air traffic pattern recognition
include K-Means [4], K-medoids [12], DBSCAN [18], and their improved algorithms.
Compared with them, GMM can provide the probability that the sample belongs to each
Gaussian component and can be further used for trajectory probability generation and
trajectory anomaly detection. Given the advantages of GMM, this paper will use GMM
for clustering analysis. GMM learns the probability density function of all samples and
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calculates the probability assigned to each cluster. Assuming that all samples obey the
Gaussian distribution, the model is composed of K Gaussian distribution weights [40]:

p(x) =
K
∑

k=1
p(k)p(x|k)

=
K
∑

k=1
πk N(x|µk, ∑k)

(13)

where πk is the weight of the kth Gaussian distribution, N(x|µk, ∑k) is the probability
density function of the kth Gaussian distribution, the mean is µk and the variance is ∑k. The
model needs to estimate the parameters of πk, µk, and ∑k to estimate the probability density
function, which can use the maximum likelihood method to maximize the probability value
of the sample point on the estimated probability density function. However, the probability
is generally very small. When the sample size is large, the result of their multiplication is
very small, which is easy to cause floating-point underflow. Therefore, we usually take the
log of it to turn the product into a sum and obtain the log-likelihood function:

log(p(x)) =
N
∑

i=1
log(p(xi))

=
N
∑

i=1
log(

K
∑

k=1
πk N(xi|µk, ∑k))

(14)

where N is the number of samples. The variable to be sought is generally differentiated
to maximize the log-likelihood function for parameter estimation. However, there is a
summation in the logarithmic function in Equation (14), and the derivative will be very
complicated, so the EM algorithm is used to solve the problem instead of the derivative. The
basic idea of the EM algorithm is to calculate the posterior probability of the hidden variable
as its current estimated value according to the initial value of the model parameters or the
result of the previous iteration, and then maximize the likelihood function to obtain the
new parameter value. The algorithm includes E step and M step, as shown in Algorithm 2.
The specific steps are as follows:

(a) E step: Estimate the probability that each component generates the sample. The
probability that sample xi is generated by the kth component is:

γ(i, k) =
πk N(xi|µk, ∑k)

∑K
j=1 πjN(xi|µj, ∑j)

(15)

since µk and ∑k in Equation (15) are the parameters to be estimated, it is necessary to
assume that µk and ∑k are known when calculating γ(i, k) for the first time, and then
continue to calculate new values through iteration. The K centroid coordinates obtained by
K-Means clustering are used as the initial mean of K Gaussian components of GMM, and
the weight and variance are calculated.

(b) M step: Estimate the parameters of each component. Assuming that γ(i, k) ob-
tained in E step is the correct probability of sample xi generated by the kth component, it
can also be regarded as the contribution of the kth component to the generation of sample xi,
that is, γ(i, k)xi of sample xi is generated by the kth components. When all samples are con-
sidered, it can actually be seen that the kth component generating γ(1, k)x1, . . . , γ(N, k)xN .
Since each component is a standard Gaussian distribution, the parameters in the maximum
likelihood function can be obtained:

µk =
1

Nk

N

∑
i=1

γ(i, k)xi (16)

∑k =
1

Nk

N

∑
i=1

γ(i, k)(xi − µk)(xi − µk)
T (17)
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where Nk = ∑N
i=1 γ(i, k), and πk is estimated to be Nk/N. At this time, the log-likelihood

function value of Equation (14) can be calculated.
(c) Repeat the first two steps until the log-likelihood function value converges.

Algorithm 2 Trajectory feature clustering analysis algorithm based on GMM

Input:
Features extracted based on DAE.
Number of Gaussian components K.

Output:
Suitable GMM model parameter set φ = {πk, µk, ∑k}, k = 1, . . . , K.

Algorithm:
1. Initialize GMM parameters φ using K-Means result.
2. E step: Use Equation (15) to estimate the prior probability of input data generated by

each Gaussian component.
3. M step: Use Equations (16) and (17) to update each component’s parameters.
4. Use Equation (14) to calculate the log-likelihood function value:

If log(p(X|φt))− log(p(X|φt−1)) < ε, ε is the termination threshold; that is, if the likelihood
function converges, the iteration is stopped, or else φ = φt, go back to step 2.

5. Output parameter set φ.

3. Experimental Results and Discussion

This paper takes the terminal airspace of Guangzhou Baiyun International Airport in
China as a case to verify the proposed clustering method. The experiment uses the Python
programming language, and the computer is configured with Windows 10 system, 8-core
i5 CPU, and 64 GB RAM.

3.1. Data Preparation

The experiment uses six months of ADS-B trajectory data collected from September
2018 to February 2019 for data preprocessing. The data cover all flights taking off and land-
ing from Guangzhou Baiyun International Airport and are composed of aircraft position
(measured by WGS84 latitude/longitude), pressure altitude (m), speed, heading, recording
time, aircraft type, and flight information.

First of all, it is found that duplicate records and records with missing values and
outliers in attributes account for a very small proportion through the preliminary quality
analysis of the dataset, so delete them directly. Next, the trajectory data are extracted with
the airport as the center, a radius of 50 km, and a height of 4 km, and their geographic
coordinates are converted into ENU coordinates. Then, they are divided into arrival and
departure according to requirements. All departure (arrival) trajectory sequences use the
runway’s midpoint as the starting point (endpoint) of the trajectory. Because the significant
difference between the arrival trajectory and the runway midpoint is farther than departure,
the length of the arrival trajectory sequence chosen is longer than that of departure. Finally,
10,554 arrival trajectories with a length of 385 and 17,438 departure trajectories with a
length of 248 were obtained. The results are shown in Figure 3.

The min-max normalization is used to standardize the trajectory data and map them
to [0, 1] to eliminate the influence of different dimensions, which is convenient for feature
extraction by DAE.
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Figure 3. Some arrival and departure trajectories in Guangzhou Baiyun International Airport terminal airspace.

3.2. Evaluation Index

To evaluate the clustering effect, the sum of the squared error (SSE) within the cluster,
silhouette coefficient (SC), CH index, and DB index are used as evaluation indexes, and
they are defined as follows [41]:

SSE =
K

∑
j=1

∑
p∈Cj

dist(p, µj)
2 (18)

SC =
1
N

N

∑
i=1

bi − ai
max{ai, bi}

(19)

CH =

K
∑

j=1
dist(µj, µ)2/(K− 1)

SSE/(N − K)
(20)

DB =
1
K

K

∑
i=1

max{
Di + Dj

dist(µi, µj)
} (21)

In Equation (18), Cj represents the jth cluster, p is the sample in Cj, and µj is the mean
of all samples in Cj. SSE measures the compactness within a cluster by calculating the
sum of the squares of the distances between the samples in the cluster and the center of
the cluster, and the smaller the SSE, the better. In Equation (19), ai is the average distance
between the sample pi and other sample points in the same cluster, bi is the average distance
between the sample pi and all the sample points in the nearest cluster, bi − ai/max{ai, bi}
is the silhouette coefficient of the sample pi, and N is the total number of samples. SC
is the average silhouette coefficient of all sample points, which is called the silhouette
coefficient of clustering results: the larger the better. In Equation (20), µ is the mean of all
samples, and ∑K

j=1 dist(µj, µ)2 measures the separation degree by calculating the sum of
the squares of the distances between the center points of various clusters and the center
points of all samples. The CH index is obtained by the ratio of separation and compactness,
indicating that the larger the value, the closer the cluster itself, and the more scattered they
are between clusters. In Equation (21), Di is the average distance between the sample in
the cluster Cj and the center of the cluster. The smaller the DB, the smaller the distance
within the cluster, and the larger the distance between the clusters.

3.3. Performance Analysis

The DAE model includes two modules: encoder and decoder; so, the model pa-
rameters to be determined mainly include the number of hidden layers of the encoder
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and decoder and the number of neurons in each hidden layer. Too few hidden layers or
neurons may lead to poor network learning ability, and it cannot effectively represent high-
dimensional data; while too many will increase the training time and affect the operation
efficiency, so appropriate parameters must be selected. For arrival trajectories, the range of
encoding (decoding) hidden layers is {3, 4, 5, 6, 7}, and the setting range of hidden layer
nodes is {1024, 512, 256, 128, 64, 32, 16}. For departure trajectories, the range of layers is
{2, 3, 4, 5, 6}, and the range of hidden layer nodes is {512, 256, 128, 64, 32, 16}. The best
DAE model parameters are obtained by implementing different parameter combinations,
as shown in Table 1.

Table 1. Parameter settings for the model.

Trajectory Type Number of Hidden Layers Number of Nodes

Departure trajectory

1 512
2 256
3 128
4 64
5 39

Arrival trajectory

1 1024
2 512
3 256
4 128
5 64
6 28

Features are extracted under different parameters. The clustering results are compared
to observe whether the feature extraction effect will affect the later clustering effect. The
root mean square error (RMSE) is used to calculate the error between the reconstruction
result of the DAE decoder and the original data to measure the effect of DAE feature
extraction. As shown in Figures 4 and 5, GMM is used to cluster the output features of
DAE models with different reconstruction errors. It is found that regardless of the arrival
or departure trajectory, with the increase in reconstruction errors, the SSE will increase, the
SC will decrease under different cluster numbers, and the overall clustering effect will be
worse. Therefore, it is necessary to reduce the DAE model feature reconstruction error as
much as possible to improve the effect of later trajectory clustering.
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After using the best DAE model to extract the features of all trajectories, GMM is used
to cluster the extracted features. As shown in Figures 6 and 7, the elbow method is used
to select the appropriate number of clusters K. Since the features extracted by DAE are
clustered here, and the goal is to observe different patterns of trajectories, it is ultimately
necessary to combine the category labels and the original trajectory data to calculate various
index values to select the parameters with the best clustering effect. In addition, clustering
is an unsupervised learning algorithm, and there is usually no strict reference standard
to select parameters. Therefore, in addition to the four clustering evaluation indexes, we
also determine the parameters of the clustering model combined with the actual situation.
It can be seen from the figure that for arrival trajectories, when K < 30, the SSE decline
amplitude is larger, and when K > 30, the SSE decline amplitude slows down and tends to
be gentle; when K = 30, SC is larger than adjacent SC; the downward trend of CH and SSE
is similar; when K > 30, the downward trend begins to slow down; when K = 30, DB index
is also smaller than adjacent values, therefore, the cluster number of 30 is more appropriate.
Similarly, the optimal number of clustering is selected as 40 for the departure trajectories.
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According to the selected optimal cluster number K, the arrival and departure trajec-
tories are clustered. As shown in Figure 8, the first three subgraphs, respectively, show the
horizontal, vertical, and 3D visualization results of each cluster of the arrival trajectories.
Among them, the trajectories with similar altitude changes but different heading directions
are basically classified significantly, indicating that the extracted features include the fea-
tures of trajectory turning points. At the same time, the trajectories with similar heading
and different altitudes are also significantly separated, which shows that the clustering
process considers the horizontal position and the changes in altitude. In summary, it can
be considered that clustering the extracted arrival trajectory features can indeed effectively
classify different patterns. To visualize the classification results of high-dimensional tra-
jectories more intuitively, the t-SNE method is used to reduce the dimensionality of each
trajectory to a 3D space for observation. As shown in the last subgraph, it can be found
that the trajectory set has good separability and is not disorderly, proving that clustering
results are meaningful.
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The first three subgraphs in Figure 9 show the horizontal, vertical, and 3D visualization
results of each cluster of the departure trajectories. Similar to the arrival trajectories,
trajectories with similar altitude changes but different departure directions and trajectories
with similar departure directions and different altitudes are successfully separated. The
last subgraph is the visualization result of reducing the dimensionality of each trajectory to
a 3D space using the t-SNE. It can also be found that the departure trajectory set has good
separability. Therefore, the departure trajectories are similar to the arrival trajectories and
have an excellent clustering effect.

Aerospace 2021, 8, x FOR PEER REVIEW 14 of 18 
 

 

The first three subgraphs in Figure 9 show the horizontal, vertical, and 3D visualiza-
tion results of each cluster of the departure trajectories. Similar to the arrival trajectories, 
trajectories with similar altitude changes but different departure directions and trajecto-
ries with similar departure directions and different altitudes are successfully separated. 
The last subgraph is the visualization result of reducing the dimensionality of each trajec-
tory to a 3D space using the t-SNE. It can also be found that the departure trajectory set 
has good separability. Therefore, the departure trajectories are similar to the arrival tra-
jectories and have an excellent clustering effect. 

 
Figure 9. Visualization of clustering results of departure trajectories. 

The experiment mainly observes whether the feature extracted from the DAE model 
has a good effect in terms of performance and speed. If the clustering results are better 
and the running speed is faster, the clustering framework proposed in this paper is mean-
ingful. 

Firstly, in terms of performance, it visually displays the clustering results. As shown 
in Figure 10, the visualization results of clustering the extracted arrival trajectory features 
are shown. For clear display, each category is displayed separately. Due to a large number 
of clusters, only some of the clusters are displayed randomly. It can be seen from the figure 
that the trajectories in each category basically follow the same approach procedure and 
have the same heading and turning angle. Except for a few trajectories, most trajectories 
have no apparent deviation. Although categories 6, 10, 13, 17, and 24 have almost the same 
arrival heading and trajectory trend, they are divided into different categories due to the 
difference in descent levels. Therefore, the effect of clustering of the extracted features is 
better. It also shows that the extracted features can indeed reflect the location, height, and 
heading of the trajectory. 

Figure 11 shows the visualization results for each cluster of departure trajectories. It 
can be seen from the figure that the trajectories in each category basically have the same 
departure pattern, among which categories 5, 10, 26, and 32, and categories 12 and 30 have 
almost the same departure heading and trajectory trend. Still, they are divided into differ-
ent categories due to the differences in climbing levels. Although the trajectories of each 
cluster are relatively concentrated, a few trajectories have some deviations, which may be 
shown in Figure 3 that the departure trajectories are usually more dispersed than the ar-
rival trajectories, and the arrival trajectories will not have large deviations because the 
airport terminal arrival routes are generally fixed. In general, the clustering visualization 

Figure 9. Visualization of clustering results of departure trajectories.

The experiment mainly observes whether the feature extracted from the DAE model
has a good effect in terms of performance and speed. If the clustering results are better and
the running speed is faster, the clustering framework proposed in this paper is meaningful.

Firstly, in terms of performance, it visually displays the clustering results. As shown
in Figure 10, the visualization results of clustering the extracted arrival trajectory features
are shown. For clear display, each category is displayed separately. Due to a large number
of clusters, only some of the clusters are displayed randomly. It can be seen from the figure
that the trajectories in each category basically follow the same approach procedure and
have the same heading and turning angle. Except for a few trajectories, most trajectories
have no apparent deviation. Although categories 6, 10, 13, 17, and 24 have almost the same
arrival heading and trajectory trend, they are divided into different categories due to the
difference in descent levels. Therefore, the effect of clustering of the extracted features is
better. It also shows that the extracted features can indeed reflect the location, height, and
heading of the trajectory.

Figure 11 shows the visualization results for each cluster of departure trajectories. It
can be seen from the figure that the trajectories in each category basically have the same
departure pattern, among which categories 5, 10, 26, and 32, and categories 12 and 30
have almost the same departure heading and trajectory trend. Still, they are divided into
different categories due to the differences in climbing levels. Although the trajectories of
each cluster are relatively concentrated, a few trajectories have some deviations, which may
be shown in Figure 3 that the departure trajectories are usually more dispersed than the
arrival trajectories, and the arrival trajectories will not have large deviations because the
airport terminal arrival routes are generally fixed. In general, the clustering visualization
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results using the features extracted from the DAE model are better, showing that this
paper’s clustering framework is feasible in performance.
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Since dimensionality reduction of high-dimensional data can significantly reduce
the amount of data and storage space and effectively compress the original data, it will
definitely improve clustering efficiency [42]. Tables 2 and 3, respectively, list the time
consumption of different sample sizes in clustering the original data and the extracted
features. It can be found that with the gradual increase in the sample size, clustering
the reduced-dimensional data can quickly shorten the clustering time and speed up the
clustering. Once the amount of data reaches 10 million or even larger, the clustering method
proposed here can play a huge advantage. Simultaneously, the speed improvement of
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departure trajectories is not as fast as that of arrival because its operation patterns are more
complex than that of arrival.

Table 2. Comparison of the clustering time of arrival trajectories in the two cases.

Sample Size DAE + GMM(S) GMM(S)

100 0.12 0.16
500 0.14 0.45

1000 0.20 0.70
5000 0.58 6.03

10,000 1.09 13.03

Table 3. Comparison of the clustering time of departure trajectories in the two cases.

Sample Size DAE + GMM(S) GMM (S)

100 0.16 0.16
500 0.22 0.30

1000 0.28 0.53
5000 0.94 4.62

10,000 1.67 9.72

4. Conclusions

This paper proposes an aircraft trajectory clustering method, including data process-
ing, feature extraction, and clustering. First, the trajectory data within the designated
terminal area are extracted from the massive and complex raw data and processed into
a form suitable for dimensionality reduction. Then, the DAE model is used to reduce
their dimensionality and extract features that can better reflect the trajectory information.
Finally, the GMM is used to cluster the new features extracted. To prove the feasibility of
the proposed clustering method, the four indicators of SSE, SC, CH, and DB were used
to evaluate the clustering results, and the visualization of various trajectories confirmed
the rationality of the clustering results, which showed the effectiveness of the method
proposed in this paper. At the same time, this method can quickly shorten the clustering
time and improve the clustering efficiency, which has certain advantages.

The method proposed in this paper is based on a data-driven suitable-for-terminal-
area trajectory and can be applied to trajectory pattern mining in the cruise phase. In
future research, we can extract the typical central trajectory according to the output of
the clustering analysis, and compare it with the actual operation of the arrival and depar-
ture flight procedures and airspace division, thereby optimizing the airspace structure.
Besides, we will consider extending this method to assist in trajectory prediction [43,44],
hoping to extract various operating patterns of trajectories through cluster analysis and
establish prediction models, thereby improving trajectory prediction accuracy. Similarly,
we can also perform abnormal trajectory detection for each cluster to improve detection
accuracy. Ultimately, we hope that the clustering method can guide the real-time decision
support system.
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