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Abstract: In an effort to maximize the combat effectiveness of multimissile groups, this paper
proposes an adaptive simulated annealing–particle swarm optimization (SA-PSO) algorithm to
enhance the design parameters of multimissile formations based on the concept of missile cooperative
engagement. Firstly, considering actual battlefield circumstances, we establish an effectiveness
evaluation index system for the cooperative engagement of missile formations based on the analytic
hierarchy process (AHP). In doing so, we adopt a partial triangular fuzzy number method based
on authoritative assessments by experts to ascertain the weight of each index. Then, considering
given constraints on missile performance, by selecting the relative distances and angles of the leader
and follower missiles as formation parameters, we design a fitness function corresponding to the
established index system. Finally, we introduce an adaptive capability into the traditional particle
swarm optimization (PSO) algorithm and propose an adaptive SA-PSO algorithm based on the
simulated annealing (SA) algorithm to calculate the optimal formation parameters. A simulation
example is presented for the scenario of optimizing the formation parameters of three missiles,
and comparative experiments conducted with the traditional and adaptive PSO algorithms are
reported. The simulation results indicate that the proposed adaptive SA-PSO algorithm converges
faster than both the traditional and adaptive PSO algorithms and can quickly and effectively solve the
multimissile formation optimization problem while ensuring that the optimized formation satisfies
the given performance constraints.

Keywords: cooperative engagement; effectiveness evaluation; triangular fuzzy number; particle
swarm algorithm; simulated annealing algorithm; adaptive

1. Introduction

Cooperative engagement in multimissile formations is an important means of warfare
adapted to future combat environments. In a multimissile formation, multiple missiles
are integrated into a combat group using information sharing, complementary functions,
and tactical coordination through coordination among the missiles. The resulting group
advantage can be used to attack defence systems and targets at multiple levels and in all
directions, achieving overall improvement in penetration capabilities [1,2]. At present,
research on the cooperative engagement of missile formations is mainly concerned with
issues related to the coordination of control [3–5], guidance [6,7], mission planning is-
sues [8,9], etc. However, few studies concerning effectiveness indicators for cooperative
engagement involving missile formations have been published.

The combat effectiveness of a missile refers to a comprehensive evaluation of the
effectiveness it can achieve when completing a specified combat mission under specific cir-
cumstances and conditions. Currently, the effectiveness of missiles can be assessed through
expert evaluations, test statistics, or combat simulation methods. Combat effectiveness
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can also be evaluated using analytical methods, such as analogue-to-digital converters
(ADCs) [10–12], neural networks [13,14], and fuzzy evaluation methods [15]. To address
the issues of the intense infrared radiation produced during missile launch, the poor con-
tinuous combat capability of a missile system, the severe ablation of the launcher, and
environmental pollution, refs. [10,11] established an improved effectiveness evaluation
model based on game theory and ADC methods. To improve the overall effectiveness
evaluation of missile weapon systems with phased flight characteristics, ref. [12] proposed
an improved effectiveness evaluation model based on the ADC method. In [13], a combat
effectiveness evaluation model based on a Levenberg–Marquardt backpropagation (LMBP)
neural network was proposed based on the operating characteristics of antiaircraft missile
warheads. In [14], a backpropagation (BP) neural network was trained using the Delphi
method and a fuzzy analytic hierarchy process, thus establishing an effectiveness indicator
system for surface-based air defence missile weapon systems. Ref. [15] proposed a fuzzy
evaluation method based on the weighted relative deviation distance to evaluate the com-
bat capabilities of anti-ship missile weapon systems. However, the methods applied in the
abovementioned studies all focus on evaluating the combat capabilities of a single missile,
without considering the mutual influence between the members of a missile formation, and
thus are incapable of supporting a systematic and comprehensive assessment of the combat
capabilities of missile formations. In addition, most of the aforementioned algorithms for
performance evaluation require the use of the gradient information of the performance
index function to determine the next optimization direction. Moreover, they are sensitive
to initial value information and have low calculation accuracy.

Particle swarm optimization (PSO) is a random optimization algorithm based on
swarm behaviour and has the advantages of a fast calculation speed and a strong opti-
mization ability; accordingly, it has a wide range of applications for solving optimization
problems [16]. Based on an evaluation index system for the cooperative engagement effec-
tiveness of unmanned surface vehicles, ref. [17] combined a fuzzy analysis method and a
BP neural network to establish an effectiveness evaluation model based on a PSO-BP neural
network [18], which used an agent-based modelling method, researched the structure and
functions of a ballistic missile defence system and adopted the PSO algorithm to establish a
multiagent decision support system that included a missile agent, radar agent, and com-
mand centre agent. Based on the PSO algorithm, ref. [19] proposed a heuristic optimization
model for surface-to-air missile path planning under a three-degree-of-freedom model to
achieve the maximum range and optimal height of the missile. Ref. [20] used the PSO algo-
rithm to design the trajectory, propulsion, and aerodynamic characteristics of long-range
ballistic missiles quickly using the minimum take-off quality as an indicator along with the
given design variables and constraint functions. Although the methods described above
have improved the performance of the PSO algorithm to varying degrees, the relationship
between the overall fitness value of the swarm particles and the inertia weight during the
evolution process has not been considered. Hence, in the optimization process for complex
high-dimensional functions, the solution is still likely to fall into a local optimum.

Missile formation cooperative combat refers to a formation of multiple missiles of the
same or different types that are coordinated in time, space, and function in accordance
with tactical requirements to complete tactical tasks. Specifically, there are two types of
missions, with different requirements, that are generally performed in missile formation
combat: 1. Formation penetration. Compared with the penetration effect of a single missile,
a missile formation can rely on coordination in time and space to achieve high-density and
simultaneous penetration, which increases the difficulty of interception by the enemy’s
defence system and maximizes the penetration effect of the formation. 2. Saturation
attack. The most typical method of saturation attack is to use missiles with different
control parameters and different flight altitudes to carry out multiple coordinated attacks
in different directions at once in order to saturate the enemy’s defence system.

Indeed, formation design for multiple missiles is a prerequisite for realizing cooper-
ative engagement in a formation. Due to the diversity of possible mission requirements
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during cooperative operations, the optimal formation of a missile group may change over
time. In traditional cooperative engagement, formation reconfiguration control is often
used to achieve formation changes. However, the actual reconfiguration process must
consume some energy, and in situations where the mission requirements are constantly
changing, the energy consumption is particularly high.

To address the abovementioned issues, this paper addresses the problem of optimal
formation design considering the needs of different missions to reduce the energy consumed
by a formation’s adjustments in response to continually changing mission requirements
during the process of cooperative missile group engagement. The proposed cooperative
multimissile formation has the following three advantages: 1. The missile formation
can perceive the current battlefield situation using cooperative detection information and
combine this information on the combat situation with the group’s attack missions to form
corresponding combat instructions, thereby fully exercising the advantages of autonomous
combat. 2. The design of the combat guidance commands for the missile formation fully
considers the interaction between the motion characteristics of the group members and
the target, reflecting the advantages of adversarial interaction. 3. The missile formation
can consider the needs of different combat missions simultaneously to reduce the energy
consumption during cooperative engagement, giving it the advantage of superior energy
efficiency. Therefore, the main contributions of this work are as follows:

1. In view of the diversity of possible mission requirements during cooperative
operations, we develop an optimal multimissile formation design method that satisfies
the following conditions simultaneously: it can take into account the needs of different
mission requirements; fully and accurately perceive the current battlefield situation; endow
a missile group with a greatly enhanced ability to damage the target; effectively improve
the missile group’s stealth, manoeuvrability and other penetration capabilities; and ensure
that the group can adopt good formations with robust performance.

2. This paper establishes an evaluation index system for multimissile cooperative
combat effectiveness and uses the analytic hierarchy process (AHP) based on partial
triangular fuzzy numbers to evaluate the weight of the index at each level, thereby reducing
the potential harm caused by the subjectivity of the expert evaluations on which the index
system is based.

3. Considering that one weakness of the PSO algorithm is its tendency to easily fall
into local extrema when solving optimization problems, this paper proposes an adaptive
simulated annealing–particle swarm optimization (SA-PSO) algorithm that introduces an
adaptive capability into the traditional PSO algorithm in combination with simulated an-
nealing. The proposed algorithm does not require performance index gradient information
and has fewer parameters than the PSO algorithm while achieving a faster convergence
rate, making it easy to implement in engineering practice.

2. Establishment of the Formation Parameters and Combat Effectiveness Index System

The number of members in a general missile formation can vary from two to hundreds.
For larger-scale missile formations, a hierarchical structure is usually adopted to facilitate
the effective transmission of information among all missiles. The typical information
interaction relationships between leader and follower missiles are illustrated in Table 1.
Any missile formation can be broken down into a number of basic formations, where each
basic formation includes a leader and NF followers; usually, 1 ≤ NF ≤ 3. To facilitate
subsequent modelling and analysis, this article considers only basic formations with one
leader missile.
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Table 1. Typical missile formations.

Number of Missiles 2 3 n

Formations
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2.1. Missile Formation Parameters

There are many types of missile formations, and there are different corresponding
formations for different cooperative combat mission requirements. As shown in Figures 1
and 2, three parameters are usually used to describe the formation of the leader and follower
missiles in three-dimensional space. These parameters are the relative distance RLi between
the leader missile and the i-th follower missile, the relative altitude angle γLi, and the
relative azimuth φLi. Accordingly, the formation of any group can be represented using
these positional parameters for the NF follower missiles relative to the leader missile:

Λ = {Followeri}, i = 1, 2, · · · , NF (1)

Followeri =
[

RLi γLi φLi
]

(2)

where Λ represents the group formation and Followeri denotes the positional parameters
of the i-th follower missile relative to the leader missile.
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2.2. Cooperative Combat Effectiveness Index System

A missile cooperative engagement system is a relatively large and complex system. To
quantitatively analyse the influence of the formation parameters on missile cooperative
engagement, it is necessary to comprehensively and accurately identify the main factors that
affect the completion of the combat mission and to determine their influence relationship.
Thus, an index system is established for evaluating the combat effectiveness of integrated
multimissile formation design, as shown in Figure 3.
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As shown in Figure 3, the proposed index system is divided into two levels. The target
search capability represents the ability of the missile cooperative engagement system to
perceive the surrounding battlefield environment as input for mission planning. This is
a prerequisite for the missile formation to complete a coordinated attack mission. The
cooperative penetration capability and cooperative destructive capability represent how
much damage the missile cooperative engagement system can inflict on the target and
serve as important factors in determining the overall quality of the missile formation’s
cooperative attack missions. The command and control capability, that is, the accessibility
and rapidity of information transfer among missiles, is essential to guarantee the ability of
the missile formation to complete a cooperative attack mission. The tactical stealth capabil-
ity determines the survivability of the missile formation and is the basis for completing any
cooperative attack mission.

3. Combat Effectiveness Index Weights and Fitness Functions

Based on the combat effectiveness index system established above, a method based on
triangular fuzzy numbers will be used to derive the weight of each index in this section.
Furthermore, the fitness function corresponding to each index will be given.

3.1. Derivation of Index Weights Based on Triangular Fuzzy Numbers

During the traditional process of using the AHP to design index weights, each evalua-
tion expert is expected to make accurate judgements on the importance of each index level
and to determine the weights of the indices using the logarithmic least squares method.
However, since the significance of the relationships between different indices may not
be obvious, it can be difficult for the evaluation experts to make accurate judgements
due to the influence of various kinds of interference, which reduces the credibility of the
judgement matrix and ultimately leads to an unreasonable weight distribution.

To reduce the harm caused by the subjectivity of these expert evaluations, this paper
introduces the concept of partial fuzzy triangular numbers into the judgement matrix
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while using the logarithmic least squares method to obtain the weight of each factor [21].
In this paper, judgements are made based on triangular fuzzy numbers only for indices
with uncertain relations, which reduces the number of calculations; at the same time, the
authoritative assessments of experts are considered in the calculation process to obtain
more reasonable results.

The derivation steps are as follows:
a. A total of k experts are invited to evaluate the indices, where the authority of each

expert is ωzk and ∑k
k=1 ωzk = 1. Suppose that the relative importances xij and xji of indices

Ii and Ij cannot be clearly judged. Then, the k experts give triangular fuzzy numbers for the
relative importance xij, which they determine as follows: each expert specifies a minimum
value minijk and a maximum value maxijk of xij as well as a maximum possible value uijk.

b. Using the weighted coefficient method, the triangular fuzzy numbers (minij, maxij, uij)
representing the two levels of index xij are obtained:

minij = ∑K
k=1 (ωzkminijk)

maxij = ∑K
k=1 (ωzkmaxijk)

uij = ∑K
k=1 (ωzkuijk)

(3)

c. Using uij as the reference value, Aij and Bij are used to represent the possibility
uij, which is equal to Aij and Bij times maxij and minij, respectively. The probabilities
Pminij , Pmaxij , and Puij for the triangular fuzzy number xij are calculated using the equal
probability method.

Pminij =
1

2(1 + Bij)

Pmaxij =
1

2(1 + Aij)

Puij =
Aij + Bij + 2AijBij
2(1 + Bij)(1 + Aij)

(4)

d. xij is transformed into a non-fuzzy number as follows:

xij = Pminij ·minij + Pmaxij ·maxij + Puij · uij (5)

e. Steps a~d are repeated to obtain xji.
f. Since the logarithmic least squares method is derived based on the assumption of

reciprocity of the indices, the reciprocity adjustment of xij and xji is carried out as follows:

xij
′ =

{ xij√xij ·xji
, xij · xji 6= 1

xij, xij · xji = 1
(6)

xji
′ =

{ xji√xij ·xji
, xij · xji 6= 1

xji, xij · xji = 1
(7)

g. For a total of NI indicators, the weights are derived using the logarithmic least
squares method as follows:

ωIi =

(
NI
∏
j=1

xij
′)

1
NI

NI
∑

i=1
(

NI
∏
j=1

xij
′)

1
NI

(8)

3.2. Fitness Function Calculation

Before optimizing the formation of a missile group, it is necessary to design a fitness
function for the formation, which will be used as the objective function of the optimization
algorithm. Therefore, to evaluate the overall formation of the group, it is necessary to
design a corresponding fitness function based on the cooperative combat effectiveness
index system established above. The seven aspects corresponding to each second-level
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indicator will be discussed in the following paragraphs. For the fitness functions designed
in this paper, a smaller function value indicates a better evaluation.

3.2.1. Detection Width

The detection width refers to the horizontal detection range within which the target
can be found and tracked stably with the detection probability of the missile formation
being no lower than a given value. The larger the detection width is, the stronger the
ability to search for the target and the easier it is to find the target. Usually, a cone can be
used to represent the detection area of a missile. As shown in Figure 4, if we denote the
generatrix of the cone by Rmax

search and the apex angle by αmax, then the detection width of the
missile is the corresponding basal diameter of the detection cone. For a missile formation,
the detection width of the formation reaches its maximum when the detection areas of
all missiles are continuous and do not overlap, in which case its value is the sum of the
basal diameters of the detection cones of all missiles. Therefore, let the fitness function
value in this case be 0. When the lateral distance between two adjacent missiles is less
than the sum of the basal radii of their two detection cones, the detection areas of the two
missiles will overlap, and the detection capability of the formation will decrease; thus, the
fitness function should correspondingly increase. In contrast, when the distance between
the missiles is too large, the detection areas of the missiles may be discontinuous, that
is, a blind zone for detection appears. In this case, the detection capability of the missile
formation will be greatly reduced. Therefore, the fitness function is set to 1 in this case. For
n missiles, let WLi denote the lateral distance between two adjacent missiles, and let Ws1
and Ws2 denote half of the detection width for each of the two missiles. The corresponding
fitness function F1 is designed as follows:

F1 =

{
1− e(WLF−∑n

i=1 Wsi), WLi ≤ ∑n
i=1 Wsi

1, WLi > ∑n
i=1 Wsi

(9)

where WLF = RLF sin(π − ψLF) represents the horizontal distance between the leader and
follower missiles and Ws = Rmax

det sin(αmax) represents the detection width of the missile
formation members.
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3.2.2. Detection Depth

The detection depth reflects the detection range of the missile formation at a certain
moment. A greater detection depth allows more targets to be found at that moment.
Similarly to the detection width, a greater detection depth results in a stronger detection
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capability of the formation and a smaller value of the corresponding fitness function. The
fitness function F2 is designed as follows:

F2 =

{
1− e(LLF−∑n

i=1 Lsi), LLF ≤ ∑n
i=1 Lsi

1, LLF > ∑n
i=1 Lsi

(10)

where LLF = RLF cos(π − ψLF) represents the longitudinal distance between the leader
and follower missiles and Ls = Rmax

det cos(εmax) represents the depth of detection of the
missile formation members.

3.2.3. Manoeuvrability without Mutual Interference

Non-interference in manoeuvring means that each missile remains within a proper
range so that the missile will not affect neighbouring missiles when manoeuvring. When
the minimum manoeuvring radius of a missile is less than the relative distance to its
neighbouring missiles, the missile’s manoeuvrability and non-interference ability are con-
sidered to be strong. The manoeuvrability of any member of the missile formation can
be expressed as

f i
mov =

{
1, Rimin < Rmov
Rmov/Rimin, Rimin ≥ Rmov

(11)

where Rimin = minRij, j ∈ (1, ni), represents the smallest relative distance among the
distances to adjacent missiles and ni represents the number of missiles adjacent to the i-
th missile.

The fitness function F3 of the missile formation for manoeuvring without mutual
interference is

F3 =
2(n−2)+1

∏
i=1

f i
mov (12)

3.2.4. Attack Range

The attack range represents the spatial range within which the missile formation can
finally carry out effective strikes. A more scattered missile formation results in a larger
attack range and a smaller corresponding fitness function value. The fitness function F4 is
designed as

F4 = 1− S/Smax (13)

where S represents the area covered by the missile formation and Smax represents the
maximum area that the missile formation could cover in the same formation.

Using a triangular missile formation as an example,

S = R2
LF sin(π − φLF) cos(π − φLF) (14)

Smax = (Rmax
link )

2 sin(π − φLF) cos(π − φLF) (15)

3.2.5. Attack Density

The attack density reflects how frequently the missile formation can attack a target in
a certain area. A greater attack density results in greater damage to a target in that area.
This is subject to strict requirements on the time difference between each missile’s attack on
the target area. The corresponding fitness function F5 is designed as follows:

F5 = 1− e−
Rmax∆Tmax

Vmax (16)

where Rmax represents the maximum distance between missiles and ∆Tmax represents the
maximum allowable attack time difference, which is determined by the damage character-
istics of the target.
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3.2.6. Command Response Time

The command response time represents the time interval between when a command is
issued by the leader missile and when all the follower missiles receive the command. The
command response time is determined by the information transmission distance between
the leader missile and the last follower missile, which reflects the rapidity of command
transmission. The corresponding fitness function F6 is designed as follows:

F6 = max(RLi)/Rmax
link (17)

where RLi represents the distance between the i-th follower missile and the leader missile
and Rmax

link represents the maximum communication distance allowed by the data volume to
be transmitted within the missile formation.

3.2.7. Range of Flight Altitude

The flight altitude is an important factor affecting the tactical stealth capability of
a missile. The maximum flight altitude among the members of a missile formation de-
termines the stealth ability of the formation. The corresponding fitness function F7 is
designed as follows:

F7 = 1− Hmin/Himax (18)

where Hmin is the lower limit on the flight altitude of the missile formation and Himax is
the maximum flight altitude of the i-th missile.

Finally, the second-level index weights calculated based on triangular fuzzy num-
bers as described in the previous subsection are used to perform a weighted summation
of the fitness function for each performance indicator, and the total fitness function is
obtained as follows:

F =
NI

∑
i=1

ω2,i
I Fi (19)

4. Formation Optimization Based on the Adaptive SA-PSO Algorithm
4.1. Improvement of the PSO Algorithm by Introducing an Adaptive Capability

During the solution process of the PSO algorithm, the missiles can be abstracted as
particles without mass or volume. Suppose that in D-dimensional space, the total number
of particles is N. The speed information of the i-th particle is represented by the vector
vi = (vi1, vi2, · · · viD), while the positional information of this particle is represented by the
vector xi = (xi1, xi2, · · · , xiD). The optimal position of this particle that has currently been
found is Pi

b = (pi1, pi2, · · · piD), while the optimal position that has currently been found
by the entire particle swarm is Gb = (g1, g2, · · · gD). The next movement of each particle is
determined by its own experience and the best experience of its companions. In the process
of constantly updating and correcting their own speeds and positions, the particles will
increasingly approach the optimal solution, and eventually, the entire particle swarm will
reach the optimal solution. The PSO algorithm is initialized as a group of random particles
and then iteratively seeks the optimal solution. In each iteration, Equations (20) and (21)
are used to update the speeds and positions:

vid(k + 1) = ωvid(k) + c1r1(pid(k)− xid(k)) + c2r2(gd(k)− xid(k)){
vid(k + 1) = vmax, vid(k + 1) > vmax
vid(k + 1) = vmin, vid(k + 1) < vmin

(20)

xid(k + 1) = xid(k) + vid(k + 1){
xid(k + 1) = xmax, xid(k + 1) > xmax
xid(k + 1) = xmin, xid(k + 1) < xmin

(21)

where the subscript d represents the information of a particle in the d-th dimension and
i represents the i-th particle. k represents the number of iterations. ω represents an
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inertia factor. c1, c2 ∈ R+ represent acceleration factors. r1, r2 ∈ R+ are random numbers
uniformly distributed in the interval (0,1), and their function is to ensure the diversity of
the population. [xmin, xmax] and [vmin, vmax] represent the upper and lower limits of the
particle search range.

To further improve the optimization performance and accelerate the convergence
speed of the PSO algorithm, a distance control factor C(k) is introduced into the stan-
dard PSO algorithm to adaptively adjust the inertia weight factor ω and the acceleration
coefficients c1 and c2. The principle is shown in Equation (22):

D(k) =

N
∑

i=1

√√√√ D
∑

j=1
[xi(j) − Pi

b(j)]
2

N
C(k) = D(k)

max(D)

ω = C(k)
c1 = 2× C(k)
c2 = 2− c1

(22)

4.2. Formation Optimization Strategy Based on the Adaptive SA-PSO Algorithm

The simulated annealing (SA) algorithm is a heuristic algorithm in which a solution
that is worse than the current solution may be accepted with a certain probability. In
this way, it is possible to break away from locally optimal solutions to reach the globally
optimal solution [22]. To avoid the tendency of the PSO algorithm to easily fall into local
extrema as well as the problems of low search accuracy and a slow convergence speed, this
paper combines the adaptive PSO algorithm with the SA algorithm to address the issues of
reduced accuracy and likely divergence during the iterative process. In addition, a roulette
rule is added to the selection of the optimal particle so that while reserving better particles,
worse particles can also be reserved with a specific probability, and the speed function
can be adapted to escape from local extrema and converge to the global optimum. The
calculation process of the adaptive SA-PSO algorithm is presented in Figure 5.
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The optimization strategy for achieving the optimal formation of a missile group based
on the adaptive SA-PSO algorithm is as follows:

a. The position and speed of each particle in the population are initialized.
b. The fitness value of each particle is calculated, the current particle position and

particle fitness value are stored in pi, and the optimal individual position and fitness values
among all Pb are stored in pb.

c. The initial temperature t0 is determined as follows:

t0 = f (pb)/ ln 5 (23)

d. The adaptation value of each pi at the current temperature is determined as follows:

TF(pi) =
e−( f (pi)− f (pb))/t

N
∑

i=1
e−( f (pi)− f (pb))/t

(24)

e. The roulette rule is used to determine the globally optimal substitute value p′b from
all pi, and the speed and position of each particle are then updated according to Equations
(20) and (21).

f. The new fitness value of each particle is calculated, and pi for each particle and pb
for the group are updated accordingly.

g. The attenuation coefficient method is used for the temperature reduction operation:

tk+1 = 0.8tk (25)

h. If the termination conditions are met, the search stops, and the result is output.
Otherwise, the algorithm returns to step d to continue the search.

5. Simulation Analysis
5.1. Derivation of the Combat Effectiveness Indices

In this study, ten experts were invited to evaluate each index. They consisted of one
academician, three researchers, four senior engineers, and two engineers, whose authority
values were assigned as 0.35, 0.3, 0.25, and 0.2, respectively. The authority assigned to each
expert was used to weight the triangular fuzzy numbers that they provided. The given
triangular fuzzy numbers were weighted and calculated, from which triangular fuzzy
numbers for the two-level indices were obtained in Tables 2–4.

Table 2. Triangular fuzzy numbers for the first-level indices.

A B1 B2 B3 B4 B5

B1 1 (2.3, 2.5, 2.7) (1.0, 1.1, 1.4) (3.1, 4.2, 5.1) (3.1, 4.2, 5.1)
B2 (0.37, 0.4, 0.44) 1 (0.37, 0.4, 0.44) (2.1, 2.6, 2.7) (2.1, 2.6, 2.7)
B3 (0.7, 0.99, 1) (2.3, 2.5, 2.7) 1 (3.1, 4.2, 5.1) (3.1, 4.2, 5.1)
B4 (0.2, 0.24, 0.32) (0.37, 0.39, 0.47) (0.21, 0.27, 0.32) 1 (0.8, 1.0, 1.2)
B5 (0.2, 0.25, 0.3) (0.37, 0.4, 0.45) (0.25, 0.27, 0.3) (0.83, 1, 1.25) 1

Table 3. Triangular fuzzy numbers for the target search capability.

B1 C1 C2

C1 1 (1.14, 1.61, 2.1)
C2 (0.46, 0.6, 0.83) 1
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Table 4. Triangular fuzzy numbers for cooperative damage.

B3 C4 C5

C4 1 (0.4, 0.6, 0.8)
C5 (1.2, 1.6, 2.0) 1

Finally, the weights of the indices of each level were calculated as follows:
First-level index weights: ω1

I = [0.35 0.16 0.35 0.07 0.07].
Second-level index weights: ω2

I = [0.22 0.13 0.16 0.13 0.22 0.07 0.07].

5.2. Formation Optimization

Using a plane isosceles triangle formation as an example, this paper considers a group
of three missiles, specifically, one leader and two follower missiles. The allowable missile
formation attack time difference ∆T is selected to be 10 s, and the flight performance
specifications of the missile formation are shown in Table 5.

Table 5. Flight performance specifications of the missile formation.

Rmax
link Rmin Rmax

det αmax Hmin Hmax Rmov Vmax

Leader 40 km 5 km 25 km 60◦ 100 m 10 km 5 km 300 m/s
Follower 40 km 5 km 15 km 30◦ 100 m 10 km 5 km 300 m/s

To verify the feasibility and superiority of the adaptive SA-PSO algorithm designed
in this paper, corresponding simulation results are analysed and compared with those
of the traditional and adaptive PSO algorithms. The chosen parameter values of the
three algorithms are listed in Table 6, and the simulation results are shown in Figures 6
and 7. Figure 6a shows that the fitness functions calculated by the three algorithms
all finally converge to an optimal solution near 0.468, and there is little difference in
convergence accuracy among the three algorithms. However, regarding the convergence
speed, the traditional PSO, adaptive PSO, and adaptive PSO-SA algorithms converge to the
optimal value after 85, 25, and 12 iterations, respectively. Compared with the adaptive and
traditional PSO algorithms, the convergence speed of the adaptive SA-PSO algorithm is
increased by 52% and 85.88%, respectively. Because of its better global search capabilities,
the adaptive SA-PSO algorithm can effectively escape from local extrema and converge to a
lower fitness value with a faster convergence speed.

Table 6. Parameter values of the three algorithms.

N Particles C1 C2 ω

PSO algorithm 200 30 1.5 1.5 1
Adaptive PSO

algorithm 200 30 Adaptively varying

Adaptive SA-PSO
algorithm 200 30 Adaptively varying

Figure 6b shows that after 26 iterations of the adaptive SA-PSO algorithm, the distance
between the leader and follower missiles converges to an optimal value of 11.65 km. In
comparison, the distance between the leader and follower missiles gradually converges
to optimal values of 11.64 km and 11.59 km after 37 and 146 iterations of the adaptive
and traditional PSO algorithms, respectively. Similarly, Figure 6c shows that after only 19
iterations of the adaptive SA-PSO algorithm, the azimuth angle between the leader and
follower missiles converges to an optimal value of 45.03◦. In comparison, with the PSO
algorithm, the azimuth angle between the leader and follower missiles gradually converges
to the optimal value after 145 iterations, whereas the azimuth angle converges after 33
iterations of the adaptive PSO algorithm. Thus, a comprehensive analysis reveals that
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the performance of the adaptive SA-PSO algorithm is better than that of the traditional
and adaptive PSO algorithms. Since the traditional PSO algorithm does not include any
improvements, it shows the weakest optimization performance.
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Figure 7 shows the optimal multimissile formation found by the adaptive SA-PSO
algorithm. The distance between the leader and follower missiles is 11.65 km, and the
azimuth angle between the leader and follower missiles converges to an optimal value of
45.03◦. At this time, the optimal distance between the follower missiles is 16.89 km, which
satisfies the minimum safety distance requirement as well as the limitations for data link
communication.
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6. Conclusions

As missile defence systems improve, the role that a single missile can play is becoming
increasingly limited. Cooperative engagement of missile formations is an effective means
of improving combat capabilities using informationization development conditions. This
paper focused on the optimization of missile formation design. First, based on the AHP,
we established an index system for evaluating the effectiveness of coordination in missile
formations; this system fully covers all factors affecting missile formations. Then, a partial
triangular fuzzy number method based on the authority of experts was proposed to
improve the credibility of the judgement matrix and the calculation speed. Finally, an
adaptive SA-PSO algorithm was proposed, which can quickly obtain the optimal solution
of the model to effectively solve the problem of missile formation optimization.
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