
Citation: Kierszbaum, S.; Klein, T.;

Lapasset, L. ASRS-CMFS vs.

RoBERTa: Comparing Two

Pre-Trained Language Models to

Predict Anomalies in Aviation

Occurrence Reports with a Low

Volume of In-Domain Data Available.

Aerospace 2022, 9, 591. https://

doi.org/10.3390/aerospace9100591

Academic Editors: Miroslav Kelemen,

Peter Korba and Wenjiang Yang

Received: 12 September 2022

Accepted: 30 September 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

ASRS-CMFS vs. RoBERTa: Comparing Two Pre-Trained
Language Models to Predict Anomalies in Aviation Occurrence
Reports with a Low Volume of In-Domain Data Available
Samuel Kierszbaum 1,* , Thierry Klein 1,2 and Laurent Lapasset 1

1 ENAC—Ecole Nationale de l’Aviation Civile, Université de Toulouse, 31400 Toulouse, France
2 Institut de Mathématiques de Toulouse, UMR5219—Université de Toulouse, 31400 Toulouse, France
* Correspondence: ksdaunois@gmail.com

Abstract: We consider the problem of solving Natural Language Understanding (NLU) tasks charac-
terized by domain-specific data. An effective approach consists of pre-training Transformer-based
language models from scratch using domain-specific data before fine-tuning them on the task at
hand. A low domain-specific data volume is problematic in this context, given that the performance
of language models relies heavily on the abundance of data during pre-training. To study this
problem, we create a benchmark replicating realistic field use of language models to classify aviation
occurrences extracted from the Aviation Safety Reporting System (ASRS) corpus. We compare two
language models on this new benchmark: ASRS-CMFS, a compact model inspired from RoBERTa,
pre-trained from scratch using only little domain-specific data, and the regular RoBERTa model, with
no domain-specific pre-training. The RoBERTa model benefits from its size advantage, while the
ASRS-CMFS benefits from the pre-training from scratch strategy. We find no compelling statistical
evidence that RoBERTa outperforms ASRS-CMFS, but we show that ASRS-CMFS is more compute-
efficient than RoBERTa. We suggest that pre-training a compact model from scratch is a good strategy
for solving domain-specific NLU tasks using Transformer-based language models in the context of
domain-specific data scarcity.

Keywords: ASRS; transformer; MCC; NLP; aviation; classification; RoBERTa

1. Introduction

In recent years, pre-trained language models (PLM) based on Transformers [1] such
as RoBERTa [2] have advanced the state-of-the-art performances on Natural Language
Understanding (NLU) tasks. Because the Transformer architecture is commonly used in
the literature, we will not do an exhaustive description of how it works. NLU is a field
of Natural Language Processing (NLP) that aims at maximizing the ability of machine
learning models to understand language. Document classification, question answering, or
story comprehension are all examples of NLU tasks.

By using the pre-training + fine-tuning (PF) approach, one can use PLMs for any NLU
task. For instance, if one wants to classify documents, one can fine-tune the off-the-shelf
pre-trained RoBERTa language model on the text classification task (the pre-trained version
of RoBERTa is freely available [3]). Little adaptation is needed to switch between the initial
language modeling task and the downstream document classification task. In our example,
a linear layer is added on top of the language model to adapt it to the new task. The linear
layer allows the model to produce categories as outputs. During fine-tuning, the language
model and the added layer are trained together to categorize input documents. Their
internal parameters change through the continuous comparison between the expected
outcomes (the true label of a document in this case) and the model’s predictions (the output
of the final layer in this case).

Aerospace 2022, 9, 591. https://doi.org/10.3390/aerospace9100591 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9100591
https://doi.org/10.3390/aerospace9100591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-7973-4191
https://doi.org/10.3390/aerospace9100591
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9100591?type=check_update&version=3

Aerospace 2022, 9, 591 2 of 22

However, applications such as classifying medical reports or classifying court cases
are more complicated for off-the-shelf PLMs because they use textual data that is vastly
different from standard everyday language. The difference between the pre-training data
that is not domain-specific and the domain-specific fine-tuning data negatively impacts the
performance of fine-tuned PLMs [4].

To mitigate this problem, one can use domain-specific data during the pre-training
step. We refer to this kind of data as in-domain data.

A possible implementation of this strategy is pre-training from scratch, which is pre-
training a language model using only in-domain data. In the work of [5], the authors
obtain very good results on various medical NLU tasks, by using PubMed as a corpus for
pre-training. In the work of [6], the authors also find that the pre-training from scratch
approach is highly efficient in the context of legal NLU tasks.

However, overcoming domain specificity using the pre-training from scratch strategy
requires an abundance of in-domain pre-training data. A low volume of data availability
can be a legitimate problem when it causes language models to repeat training on the same
examples during pre-training: according to [7], one can estimate the number of repetitions
of data during pre-training by calculating the ratio between the number of tokens seen by
the model during pre-training and the number of tokens that compose the pre-training
data (before it is processed, textual data are decomposed into a sequence of individual
units of language called tokens). The former is equivalent to the product of the training
batch size, the number of pre-training steps, and the model’s maximum input sequence
length. The training batch size is the number of training samples the model uses as input
before it updates its internal parameters. A pre-training step corresponds to an update of
the model’s parameter. The maximum input sequence length is the maximal number of
tokens that can constitute an input for the model.

For instance, for the pre-training of RoBERTa, the batch size and number of pre-training
steps correspond to pre-training on approximately 2.2 T tokens. Given a pre-training corpus
made of 1.1 T tokens, there will be two repetitions during pre-training: each example in the
pre-training data are seen twice during pre-training by the model.

In the work of [7], the authors show that an increase in the number of repetitions
negatively impacts the performance of language models on downstream tasks, and suggest
that this phenomenon is stronger for larger language models. For their Transformer-
based language model of similar size to RoBERTa, they find that 1024 and 4096 repetitions
lead to a respective decrease of performance of 4.4% and 8.3% on the “General Language
Understanding Evaluation benchmark” (GLUE) [8]. GLUE is composed of multiple datasets
used to train and evaluate the models on different NLU tasks, and is commonly used in the
literature to compare NLP models.

In some cases, there is low in-domain data availability, relative to the number of
tokens required for pre-training the model, and finding or producing more in-domain data
on a large scale is not always possible. In particular, for cases where corpus size leads
to repetitions ranging from tens of thousands to more than a hundred thousand during
pre-training, the pre-training from scratch approach will not be optimal.

To summarize, pre-training from scratch allows for overcoming the negative effect of
a mismatch between the pre-training data and the domain-specific data of a fine-tuning
task. However, a drawback of the pre-training from scratch approach is that it requires a
great amount of data to be performed optimally because of the repetition problem.

Interestingly, the repetition problem induced by low pre-training data availability
does not affect as much compact language models (compact language models are language
models with a smaller architecture, relative to the baseline PLMs such as RoBERTa). In
the work of [7], the authors mention that compact language models are less affected by
repetitions during learning. In the work of [9], the authors fine-tune a compact PLM on
the question-answering task. They pre-train their language model using different volumes
of data. When increasing the pre-training data volume from 10 to 4000 MB (10, 100, 500,
1000, 2000 and 4000 MB), they find that past the smallest dataset of 10 MB, increasing the

Aerospace 2022, 9, 591 3 of 22

pre-training data volume does not increase significantly downstream performance. For
reference, the volume of RoBERTa’s pre-training data is 160 GB.

In this context, we propose to compare two approaches that use PLMs on the problem
of domain-specific NLU tasks, compounded with little in-domain data availability for
pre-training. In the first approach, we use a standard PLM, the off-the-shelf pre-trained
RoBERTa. In the second approach, we use a compact version of RoBERTa, which we pre-
train from scratch on low-volume in-domain data (75 MB). The former benefits from his
large size advantage: other things being equal, bigger PLMs perform better than smaller
ones [10]. However, the compact model benefits from the pre-training from scratch strategy.
Hence, it is not affected by the discrepancy between the pre-training data and the data of
the downstream task.

To assess which approach is more advantageous, we use a custom in-domain NLU
benchmark. The benchmark is built using the Aviation Safety Reporting System (ASRS)
corpus. We present this corpus further in Section 2.1, and the benchmark we built from it
in Section 2.2. Details about the pre-training parameters, models architecture, and size of
the in-domain available pre-training data are presented further in Section 2.3. In Section 3,
we show and compare our results. In Section 4, we discuss our findings and the limits of
our work.

2. Materials and Methods
2.1. The ASRS Corpus

The ASRS is a voluntary, confidential, and non-punitive aviation occurrence reporting
program. In the context of the ASRS, an occurrence describes any event excluding accidents
that, in the eye of the reporter, could have safety significance. An accident is an event
that results in either a person being fatally or seriously wounded, the aircraft sustaining
important damage, or the aircraft missing [11]. The ASRS was created in 1976 by both
the National Aeronautics and Space Administration (NASA) and the Federal Aviation
Administration (FAA).

Other industries have since then copied this model of voluntary reporting [12]. This
popularity motivates selecting the ASRS for our study. We assume that our results will
apply to a certain degree to other cases where the data structure is similar.

An extract of a report is shown in Figure 1.

Figure 1. Extract of an occurrence report.

Aerospace 2022, 9, 591 4 of 22

ASRS is a semi-structured dataset. Part of it consists of textual data, in the form of
narratives, and synopses, as in the report extract above. A narrative describes an occurrence
from a reporter’s point of view. For each narrative, a synopsis is produced by an ASRS staff
member. This short document summarizes the narrative from a safety point of view.

The other part of the ASRS dataset is made of metadata that is either generated by reporters
or by an ASRS analyst. The reporter-produced metadata consist of structured information on
the occurrence context (for instance, weather-related information, or aircraft-related information
as in the example of the report above). The reporter provides the metadata upon completion of
the reporting form. There are four different types of forms, based on the job of the reporter:
the Air Traffic Control (ATC) reporting form, the cabin reporting form, the maintenance form,
and the general form (see https://asrs.arc.nasa.gov/report/electronic.html, accessed on
29 September 2022).

The analyst-generated metadata follow the ASRS taxonomy. In this context, the term
taxonomy refers to the categories and sub-categories that are used to classify occurrence
reports. The ASRS taxonomy provides a structured description and assessment of occur-
rences on a safety level. It is built around an entity-based structure [13]. At the top level of
the taxonomy are entities (Time, Place, Environment, Aircraft, Component, Person, Events,
and Assessments). At the lowest branch of the taxonomy are metadata and their values. In
between the two, there are entities’ attributes, and in some cases, attributes’ subcategories.
An example of how the ASRS taxonomy architecture works is in Figure 2.

Figure 2. ASRS taxonomy architecture: the case of the “Deviation—Altitude” anomaly for the
“Events” entity.

As can be seen in Figure 2, there are five possible values for the metadata that corre-
spond to the subcategory “Deviation—Altitude”: “No anomaly of this kind” (reduced to
“No” in Figure 2), “Excursion from assigned Altitude”, “Crossing Restriction Not Met”, “Un-
dershoot” and “Overshoot”. The “Deviation Altitude” is itself a Subcategory of “Anomaly”,
which is an attribute of the “Event” entity.

Since its creation, ASRS has received 1,625,738 occurrence reports up to July 2019
(see https://asrs.arc.nasa.gov/docs/ASRS_ProgramBriefing.pdf, accessed on 29 Septem-
ber 2022). In 2019, the average number of reports received per week was 2248. To better
understand the ASRS, the full report processing flow is described below for clarity, and is
also depicted in Figure 3.

The first step is receiving the reports. The second step consists of time stamping the
reports based on the date of reception. During the third step, analysts screen reports to
provide high-level initial categorization. The “Alert Messages” step occurs if a hazardous
situation is identified, requiring organizations with authority for further evaluations and
putting in place potential corrective actions. During the “Match Multiples” step, reports
on the same event are brought together to form one database record. The previously
mentioned analyst-generated metadata are created during the “Analyst coding” step. The
“Callback” step happens if an ASRS analyst contacts a reporter to seek further details on an
occurrence. It can result in a third type of textual data: callbacks. These are written with

https://asrs.arc.nasa.gov/report/electronic.html
https://asrs.arc.nasa.gov/docs/ASRS_ProgramBriefing.pdf

Aerospace 2022, 9, 591 5 of 22

the purpose to report what was learned during conversations between the analysts and
the reporters. During the last five steps, the information is de-identified, a quality check is
done to ensure coding quality, and the original reports are destroyed. Finally, the ASRS
database is used to produce services designed to enhance safety aviation.

Figure 3. Report processing flow, extracted from the ASRS program briefing, p16.

We obtained our version of the public dataset through a request on the ASRS website.
The dataset size is 287 MB, with a total of 385,492 documents and 50,204,970 space-delimited
words. The occurrences range from 1987 to 2019.

The textual data style from 1987 to 2008 included is vastly different from the style
used after. Documents from this era are characterized by upper-case letters, fragmented
sentences (missing words), and heavy use of abbreviations, as can be seen in the extract of
the narrative of an occurrence report in Figure 4.

Figure 4. Extract of the narrative of an occurrence report from the 1987–2008 era.

It stands in contrast with documents after this era, which have both upper and lower-
case letters, where sentences are not fragmented, and the use of abbreviations is standard-
ized, as can be seen in the first extract.

2.2. Constituting the Benchmark

In this section, we present how we constructed the benchmark on which we compared our
machine learning models. We use the definition of benchmark provided in the work of [14]. In
their article, the authors study the current practices of benchmarking in the context of NLU.
In the light of this study, they provide the following definition: “A benchmark attempts to
evaluate performance on a task by grounding it to a text domain and instantiating it with a
concrete dataset and evaluation metric”.

We will present our benchmark in the following order: the task, the dataset, and the
evaluation metrics.

2.2.1. The Task

For the task, we chose the coding of the occurrences, as done by the ASRS analyst
in the sixth step of report processing. This is an interesting task to choose for mainly
two reasons.

Aerospace 2022, 9, 591 6 of 22

First, it constitutes a legitimate application of language models in a real-world context.
As a result of the growth of global air traffic and the development of “just culture” which
encourages the practice of occurrence reporting within the different aviation institutions,
there are more occurrences reports. In the context of aviation safety, this phenomenon
spurs the need for some form of support to process the reports. A way to do it is to perform
automatic document classification according to a pre-established taxonomy [15,16].

Coding occurrences is a practical choice as well as it constitutes a ready-made set of
supervised text classification (TC) problems. A text classification problem involves a textual
input and one or multiple elements from a set of classes (or labels) as expected outputs. It
is supervised when there is a labeled dataset that can be used to train a model on the task.
Supervised text classification is a common NLU task.

2.2.2. Dataset

When instantiating the task above with a concrete dataset, one must make two choices.
First, one needs to choose which part of the ASRS taxonomy will be the expected outputs.
Secondly, one will have to choose which part of the ASRS corpus will be used to create the
textual inputs. When making these choices, we take into account benchmark construction
good practices as reported in the work of [14]. We also take into consideration the argument
presented in the work of [17], where the authors argue that, in the context of classifying
aviation occurrences, the value of TC algorithms lies in their performance under field
condition exposure. This is why we try to emulate realistic field use of the PLMs to classify
aviation occurrences.

With regard to the first choice (choosing the expected outputs), there is a wide array of
analyst-generated metadata that are created during the sixth step of the reporting process
that one can choose from. However, in the work of [18], the author shows that the categories
of the ASRS taxonomy that cover the assessment of ASRS occurrences from the human
factor perspective all present a high inter-annotator disagreement rate (disagreements
between different annotators regarding what is the correct prediction for a classification
problem). He suggests that this is because “categorizing narratives in accordance with a
human factors taxonomy is an inherently subjective process”. Inconsistent annotations
have been reported to happen on datasets used across a wide range of NLP tasks [19].
Supervised machine learning techniques do not perform as well in such instances. The
inevitable drop in performance can induce a sub-optimal workload reduction for the safety
analysts that use the text classification machine learning models to alleviate their work [15].
Finally, according to [14], one of the criteria that indicates a good benchmark is reliable
annotation.

As such, we made the choice to select the metadata associated with the 14 subcategories
of the “Anomaly” attribute, which belongs to the “Events” entity (following the taxonomy
described in Section 2.1 and Figure 2) as our expected outputs, resulting in 14 different text
classification (TC) problems.

This choice is based on the assumption that analysts converge more easily on the
identification of anomalies (metadata attached to the “Anomaly” attribute) than Human
Factors issues. This strong hypothesis is driven by the difference in nature of the two groups
of metadata. In the work of [13], the author introduces the distinction between metadata
that support the factual description of an occurrence, and metadata that operate an analysis
of the accident requiring “expert reasoning and inference to produce”. The former is factual
metadata, while the latter is analytical metadata. Human factors’ categories are strongly
analytical metadata. In contrast, most anomaly subcategories, such as “Ground excursion”
(which can be any of the following: “No”, “Runway”, “Taxiway”, “Ramp”), are factual
metadata. The only noticeable exceptions are for the “Equipment Problem” and “Conflict”
subcategories. In both of these cases, a class comes in two flavors: critical and less Severe,
as seen in Table 1. We made the assumption that choosing between the two alternatives
required less expert inference than predicting Human Factor issues because of a higher
chance of convergence in the training of the annotators.

Aerospace 2022, 9, 591 7 of 22

With regard to the second choice, we created a training and a testing dataset for each
anomaly subcategory. The narratives are the inputs, and the manually coded metadata
values are the expected outputs. To simplify the interpretation of the data (e.g., homogeneity
of reporter vocabulary and issues faced), we only used reports produced by reporters that
filled the general form, as done in the work of [18]. More importantly, they constitute the
majority of the occurrences, with 74.2% of the total number of reports being filed through
the general form. We only worked on events that occurred after 2009 to avoid having two
different writing styles in our documents.

The training datasets consist of 30,293 reports from 2009 to 2018 included. The testing
datasets consist of 1154 reports from 2019. As mentioned in the work of [13], “safety is a
lot about responding to such change and dealing with novel and unseen combinations of
factors before they start resonating and create an unsafe state [20]”. Part of the complexity
faced by practitioners when classifying new reports is the evolving nature of safety. This
means that, with time, new safety threats can emerge. This is why, in the spirit of replicating
real-world field conditions, we chose to chronologically split the data between the training
and testing datasets.

By selecting these 14 different text classification problems, we tried to reflect the different
facets of predicting aviation occurrences with data diversity. Some of these TC problems are
multi-classification problems, meaning that there are at least three classes (see Table 1); others
are binary classification problems (see Table 2). For instance, predicting the subcategory
“Aircraft Equipment Problem” is a multi-classification problem with three classes: critical,
less severe, and no (meaning “No anomaly of this kind”). The number of classes of our TC
problems varies from 2 to 11.

Table 1. Anomaly subcategories that are multi-classification problems.

Name Composition Shannon
Equitability Index

Aircraft Equipment Problem No (54.66%), Critical (24.39%), Less Severe (20.95%) 0.912

Conflict
No (85.32%), NMAC (6.2%), Airborne Conflict (4.5%), Ground Conflict,

Critical (2.39%), Ground Conflict, Less Severe (1.59%) 0.374

Deviation—Altitude
No (91.2%), Excursion From Assigned Altitude (4.35%), Overshoot
(2.37%), Crossing Restriction Not Met (1.62%), Undershoot (0.46%) 0.249

Deviation—Procedural

No (51.16%), Published Material/Policy (27.76%), Clearance (12.09%),
FAR (4.01%), Maintenance (1.45%), Other/Unknown (1.29%), MEL
(0.79%), Weight In addition, Balance (0.63%), Hazardous Material

Violation (0.34%), Landing Without Clearance (0.28%), Security (0.19%)

0.55

Flight Deck/Cabin/Aircraft
Event

No (92.32%), Smoke/Fire/Fumes/Odor (3.51%), Other/Unknown
(2.63%), Illness (1.25%), Passenger Misconduct (0.24%), Passenger

Electronic Device (0.05%)
0.201

Ground Event/Encounter

No (91.03%), Other/Unknown (3.1%), Loss Of Aircraft Control
(1.94%), Ground Strike—Aircraft (1.6%), Object (0.98%), Gear Up

Landing (0.4%), Vehicle (0.4%), Person/Animal/Bird (0.23%), Aircraft
(0.2%), FOD (0.12%)

0.2

Ground Excursion No (96.89%), Runway (2.58%), Taxiway (0.47%), Ramp (0.06%) 0.112

Ground Incursion No (96.38%), Runway (2.26%), Taxiway (1.35%) 0.163

Inflight Event/Encounter

No (76.97%), Weather/Turbulence (7.3%), CFTT/CFIT (3.07%), Fuel
Issue (2.93%), Loss Of Aircraft Control (2.48%), Wake Vortex

Encounter (2.17%), Other/Unknown (1.85%), Unstabilized Approach
(1.83%), Bird/Animal (0.49%), Object (0.48%), VFR In IMC (0.43%)

0.417

Aerospace 2022, 9, 591 8 of 22

Table 2. Anomaly subcategories that are binary classification problems.

Name Composition Shannon Equitability Index

ATC Issue No (86.51%), All Types (13.49%) 0.571

Airspace Violation No (97.44%), All Types (2.56%) 0.172

Deviation—Speed No (96.89%), All Types (3.11%) 0.2

Deviation—Track/Heading No (92.14%), All Types (7.86%) 0.397
No Specific Anomaly Occurred No (98.77%), All Types (1.23%) 0.096

As described in Tables 1 and 2, the proportion of documents per class can be very
unevenly distributed depending on the TC problem, which is also a sign of diversity. When
the data sparsity is high, the data are said to be imbalanced. This is further characterized in
the two tables with the Shanon equitability index [21]:

EH =
H

log(K)
, (1)

with:

H = −
K

∑
i=1

ci
n

log(
ci
n
), (2)

where K is the number of classes, ci is the number of elements in class i, and n is the total
number of elements. The result is a number between 0 and 1. The higher the score, the
more balanced the dataset is. To give an example, the lowest value of 0.096 is for the “No
Specific Anomaly Occurred” anomaly in Table 2. This anomaly is made up of two classes,
and the majority class represents 98.77% of the documents. In our case, values range from
0.096 to 0.912.

2.2.3. Selection of Metrics to Compare the Models—Performance

In the context of TC performance, many evaluation metrics exist. They all have
different pros and cons [22]. After considering the literature on evaluation metrics for
classification problems, we chose the Matthews correlation coefficient (MCC) score [23] as our
performance metric. After a brief presentation of the metric, we justify our choice.

Let Ĉ = (ĉi,j)0≤i,j≤K−1 be the empirical confusion square matrix obtained by a classifi-
cation model on a K classes TC problem, on a testing set of N elements:

ĉi,j =
N−1

∑
n=0

Xn(i, j) (3)

with
Xn(i, j) = 1kn=i

1ln=j
, (4)

where, for each text n, the true class is ln, and the predicted class is kn.
Then, the empirical Matthews Correlation Coefficient (M̂CC) metric is defined by:

M̂CC =
N ×∑K−1

k=0 ĉk,k −∑K−1
k=0 (∑

K−1
i=0 ĉi,k ×∑K−1

j=0 ĉk,j)√
N2 −∑K−1

k=0 (∑
K−1
i=0 ĉi,k)2 ×

√
N2 −∑K−1

k=0 (∑
K−1
j=0 ĉk,j)2

. (5)

The MCC computes the correlation coefficient between the actual labels and the
predicted ones. When the classifier is perfect, we obtain 1. When its output is random, we
obtain 0.

Now that we have defined the MCC metric, let us give the different reasons that
prompt us to choose this metric as opposed to the other popular metrics: precision, recall,

Aerospace 2022, 9, 591 9 of 22

F1-score, and accuracy. To add clarity, we will be using examples of confusion matrices.
A confusion matrix is a convenient way to visualize how many of our predictions are
correct for each class. In Table 3, we show an example of a confusion matrix for a binary
classification problem, with a negative and positive class. TP corresponds to True positive;
it is the number of times the model predicts correctly that a sample belongs to the class
positive. Similarly, FP stands for False positive, FN for False negative, and TN for True
negative.

Table 3. Confusion matrix of a binary classification problem.

Predictions
Classes Postive Negative

Positive TP FP

Negative FN TN

In this context, we have that:

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

F1− score =
2× Precision× Recall

Precision + Recall
, (8)

Accuracy =
TP + TN

TP + FP + TN + FN
. (9)

The first advantage of the MCC score is that it is symmetric: in a binary setting with
a positive and negative class, the MCC score will remain the same when swapping the
two classes. That stands in contrast with the precision, the recall, or the F1-score, as can be
deduced from their formula.

In addition, its score is not biased towards classes with more samples, as for the accuracy or
F1-score metrics. To show this effect, let us consider the two confusion matrices in Tables 4 and 5.

Table 4. Confusion matrix A.

Predictions
Classes Postive Negative

Positive 15 20

Negative 40 1

Table 5. Confusion matrix B.

Predictions
Classes Postive Negative

Positive 24 32

Negative 400 10

The two confusion matrices have the same proportion of correct predictions for each
class (respectively 3 to 4 for positive predictions and 1 to 40 for negative predictions).
However, in the case of matrix A, there are 55 samples in the positive class, and 21 samples
in the negative class, which is roughly two times less than in the positive class. In contrast,
for matrix B, there are 424 samples in the positive class and 42 samples in the negative class,
which is 10 times less than in the positive class.

Aerospace 2022, 9, 591 10 of 22

When we calculate the MCC score, the F1-score and the accuracy score in each case, we
obtain the scores shown in Table 6.

Table 6. Comparison of the performance metrics for matrices A and B.

Score
Matrix A B

MCC 0.60 0.62

F1 0.33 0.1

accuracy 0.21 0.07

As can be seen with this example, the MCC is much less affected by the number
difference between the classes. For the other performance metrics, the final performance
score is heavily influenced by the majority class. Because the MCC score is not biased
towards any class, we chose the MCC score as our metric to indicate performance.

2.2.4. Selection of Metrics to Compare the Models—Efficiency

We define efficiency as the amount of computational work required to generate a
result with our machine learning models. In the work of [24], the authors advocate that
efficiency should be an evaluation criterion for research in machine learning because of
the carbon footprint and financial cost of deep-learning models such as Transformer-based
language models. Additionally, there are several works where the authors argue that lack
of efficiency constitutes a barrier to the use of algorithms in real-world applications [25–27].
This is why we compare the efficiency of the two models.

Different efficiency metrics exist. Following the work of [24], we favour reporting the
total number of floating point operations (FLOPs) required to generate our results (both for
pre-training and for inference).

FLOPs provide a measure of the amount of work done when executing a specific
instance of a model. It is tied to the amount of energy consumed and is strongly correlated
with the running time of the model. However, unlike other metrics such as electricity usage
or elapsed real time, this metric is not hardware dependent. It allows for a fair comparison
between models.

Additionally, to obtain a sense of the amount of memory required to run the models,
we provide the number of parameters.

2.3. Pre-Training and Fine-Tuning Procedure
2.3.1. Language Models

We studied two language models. The powerful Transformer-based language model
RoBERTa, and a compact version of RoBERTa, called ASRS-CMFS (for Aviation Safety
Reporting System—Compact Model pre-trained From Scratch). We chose RoBERTa as our
base model because it is a well-studied and sturdy transformer-based model with good
performance in the Natural Language Understanding landscape [8].

As mentioned in the Introduction, RoBERTa re-uses the Transformer architecture, a
multi-layered neural network. Each layer is characterized by the following parameters,
which we will not review in detail: hidden dimension size, FFN inner hidden size, and the
number of attention heads.

To create a compact model out of the RoBERTa model, one can either reduce the depth,
which corresponds to the number of layers, or the width, which corresponds to the size of
a single layer. The latter is proportional to the parameters we have mentioned above.

Following the work of [28], when building the ASRS-CMFS model from the initial
RoBERTa architecture, we favored maintaining depth, while reducing the width, to obtain
the best performances.

The difference in size between the two models is well-shown through the various
architecture parameters in Table 7.

Aerospace 2022, 9, 591 11 of 22

Table 7. Comparison of the architecture of the two models.

Architecture ASRS-CMFS RoBERTa

Layers 12 12
Hidden dimension 256 768

FFN inner hidden size 1024 3072
Attention Head 4 12
of parameters 18 M 125 M

Maximum input length 512 512

2.3.2. Pre-Training Data

As mentioned in the Introduction, our interest with language models in the context of
their use for in-domain NLU tasks with little in-domain data availability for pre-training.
In our case, we define our available in-domain pre-training data as all the textual data in
the ASRS dataset that ranges from 2009, and before 2019.

We avoid using reports from before the 2009 era that are very different, as mentioned in
Section 2.1. To modify the data before the 2009 era so that they are up to today’s standards
would be a challenge in its own right. We would have to convert the text back to mixed
upper/lowercase, add missing words, and “un-abbreviate” the non-standards abbreviated
words. However, some of the abbreviations can map to multiple possible words. For
instance, depending on the context, the word “RESTR” could mean restriction, restrictions,
restrict or restricted [29].

We obtain a very small set of data. As indicated in Table 8, our pre-training corpus is
roughly 2000 times smaller in size than the one used by RoBERTa.

Table 8. Comparison of amount of textual data used for pre-training.

Architecture ASRS-CMFS RoBERTa

Data ASRS 2009–2019 Web Crawl
Size 74.5 MB 160 GB
Type Aviation-related English Standard English

If we wanted to pre-train from scratch RoBERTa on ASRS 2009–2019 using the same
parameters as for the freely accessible fully pre-trained RoBERTa model, it would result
in 126,356 repetitions. This high number of repetitions discourages us from applying the
pre-training from scratch approach on this model.

With the pre-training parameters of our model shown in the Pre-training procedure
section, the ASRS-CMFS has only 3015 repetitions during pre-training. This is why we
chose to compare ASRS-CMFS pre-trained from scratch against the already pre-trained on
general-domain data RoBERTa language model.

2.3.3. Pre-Training Procedure

For our compact model’s main pre-training hyperparameters (see Appendix B), we
have used another transformer-based language model, Electra-small [30], as our reference.
Hyperparameters are the particular parameters that characterize the learning process
configuration. For example, the training batch size is an instance of a hyperparameter.
Our choice of using Electra-small for reference when choosing hyperparameters is guided
by the sizes of the two models that are comparable: 18 M for our model and 14 M for
Electra-small.

Our model’s pre-training lasted for 14 days on the eight total GPUs available in our
lab (see Appendix A for details on hardware).

2.3.4. Fine-Tuning Procedure

We separately fine-tuned the models on 14 different text classification tasks derived
from the ASRS corpus. The fine-tuning data selection is described in Section 2.2.2.

Aerospace 2022, 9, 591 12 of 22

As mentioned in the Introduction, a pre-requisite to fine-tuning our language models
on the classification tasks is to add a linear layer on top of them. The added layer allows the
models to produce categories as outputs. Its internal parameters are generated randomly
and converge to their final values during training. Upon initializing the added layer, one
can manually choose a seed which will generate a particular set of internal parameters
for the layer. Distinct seeds will result in substantial performance discrepancies for the
different randomly-initiated models [31]. For this reason, we do the fine-tuning with five
different seeds and report the average result for each model–task combination.

For the ASRS-CMFS model, we used the same fine-tuning hyperparameters as the ones
used for Electra-Small, when fine-tuned on the GLUE benchmark tasks. This is because the
sizes of the two models are comparable and our downstream tasks are NLU tasks, similar
to the GLUE benchmark tasks.

In the work of [2], the authors systematically tried six different configurations of
hyperparameters to fine-tune RoBERTa on the GLUE benchmark tasks. As ASRS-CMFS
used only one configuration, we randomly chose one of the six possible configurations
(learning rate of 1× 10−5 and batch size of 16) to ensure fairness. Additionally, as each
configuration requires averaging over five runs with different randomization of the final
layer, this decision minimizes prohibitively expensive resource consumption. Both sets of
fine-tuning hyperparameters are available in Table 9.

Table 9. Comparison of fine-tuning hyperparameters.

Hyperparameters ASRS-CMFS RoBERTa

Learning rate 3× 10−4 {1× 10−5, 2× 10−5, 3× 10−5}
Weight Decay 0 0.1

Batch size 32 {16, 32}
Max Train Epoch 3 10

Warmup ratio 0.1 0.06

To take into account the imbalanced nature of the classification datasets, we used
the “class weight” feature of Simpletransformer [32]. Simpletransformer is a library built
on the Hugging Face Transformer library [3] that eases the use of Transformer-based
language models. The “class weight” feature allows for assigning weights to each label
and is a commonly used tactic to deal with an imbalanced dataset in the context of the text
classification task [33]. The weight of each label was calculated as the inverse proportion of
the class frequency.

The max input length of RoBERTa and ASRS-CMFS is 512 tokens, but some documents
are four times longer. To mitigate this length problem, we used the “sliding window”
feature of SimpleTransformers [32]. When training a model with the sliding window
feature activated, a document that exceeds the limit of input of the classification model is
split into sub-sequences. Each sub-sequence is then assigned the same label as the original
sequence, and the model trains on the sub-sequences. During evaluation and prediction, the
model predicts a label for each window or sub-sequence of an example. The final prediction
for a given long document was originally the mode of the sub-sequences’ predictions. We
changed the code so that the final prediction was the means of the predictions of the
sub-sequences. We did that to prevent having a default value proposed in the case of a tie.

2.4. Summary

To help summarize the content in this section, we provide a visual description of the
NLP pipeline for ASRS-CMFS in Figure 5. The datasets are in light blue, and the dark blue
boxes represent the different stages of training of ASRS-CMFS: the first box is the untrained
model. The second box is the PLM using the pre-training dataset, which consists of all the
textual data extracted from the ASRS corpus after 2009 included. The third box corresponds
to the 14 ASRS-CMFS models separately fine-tuned on the 14 text classification training
datasets, which are also extracted from the ASRS corpus.

Aerospace 2022, 9, 591 13 of 22

Figure 5. NLP pipeline.

3. Results
3.1. Performance of the Two Models

In Table 10, we provide the five seeds MCC average of our models on each anomaly.
When we average all the scores to obtain a sense of the performance difference between
the two models on a higher level, we obtain that the ASRS-CMFS model retains 92%
of the performance of the RoBERTa model. However, as we will see in the following
analysis, there is no strong statistical evidence that RoBERTa and the ASRS-CMFS model
perform differently.

Table 10. The results for the different classification problems, the best results are in bold.

Anomaly 5 Seed MCC Average

ASRS-CMFS RoBERTa

ATC Issue 0.627 0.664
Aircraft Equipment Problem 0.579 0.572

Airspace Violation 0.559 0.719
Conflict 0.726 0.736

Deviation—Altitude 0.412 0.43
Deviation—Procedural 0.372 0.411

Deviation—Speed 0.531 0.636
Deviation—Track/Heading 0.64 0.715

Flight Deck/Cabin/Aircraft Event 0.662 0.689
Ground Event/Encounter 0.556 0.594

Ground Excursion 0.725 0.806
Ground Incursion 0.505 0.45

Inflight Event/Encounter 0.494 0.554
No Specific Anomaly Occurred 0.099 0.124

AVERAGE 0.535 0.579

As can be seen in Table 10, in most cases, the RoBERTa model has the upper hand,
although to a varying degree. Remarkably, for the “Aircraft Equipment Problem” and
the “Ground Incursion” anomalies, the ASRS-CMFS model outperforms RoBERTa, which
invalidates the potential narrative that RoBERTa is clearly better than the ASRS-CMFS
model. This impression is reinforced when we take into consideration the distributions of
the two models’ performance scores across the five seeds.

In Figures 6 and 7, we use boxplots to show these distributions. Because there are five
samples in each distribution, the extremities of the boxplots are respectively the minimum
and the maximum scores. The median value which is the vertical bar in the box represents

Aerospace 2022, 9, 591 14 of 22

the third highest score, while the respective extremities of the box represent the second and
fourth highest scores. In red, we have the performance scores of RoBERTa and, in blue, the
performance scores of ASRS-CMFS.

Figure 6 shows overlapping distributions, while Figure 7 shows the classification
problems where the distribution of scores does not overlap between models.

Figure 6. Distributions of the performance scores with overlaps between the two models, across the
different text classification problems.

We see that only 4 out of the 14 classification problems have distributions with no
overlaps between the two models. It shows that the models are competitive to a degree.

Aerospace 2022, 9, 591 15 of 22

To obtain a deeper understanding of how significant the performance difference is
between the two models depending on the anomaly, we use statistical hypothesis testing.
The statistical study framework is described in details in the Supplementary Materials.

We test H0 : MCCtrue1 = MCCtrue2 against H1 : MCCtrue1 6= MCCtrue2, where
MCCtrue1 is the true MCC value for the RoBERTa model, and MCCtrue2 is the MCC value
for the ASRS-CMFS model.

For each anomaly, we conduct 25 tests with a 0.05 level of significance. We pair each
of the five randomly-initiated RoBERTa models with each of the five randomly-initiated
ASRS-CMFS models. We report the values of H1

Total for each anomaly in Table 11. H1
Total

is the ratio between statistical tests that leads to H1 and the total number of statistical
tests. For clarity, we have sorted the rows of Table 11 by values of H1

Total , from the highest
value to the lowest.

Figure 7. Distributions of the performance scores without overlaps between the two models across
the text classification problems.

Table 11. Statistical hypothesis testing to study the significance of the performance gap between the
two models for each anomaly.

Anomaly H1/Total

Inflight Event/Encounter 0.88
No Specific Anomaly Occurred 0.76

Airspace Violation 0.68
Deviation—Procedural 0.6

Deviation—Track/Heading 0.6
ATC Issue 0.48

Deviation—Speed 0.48
Ground Excursion 0.48

Conflict 0.44
Deviation—Altitude 0.32

Flight Deck/Cabin/Aircraft Event 0.32
Ground Event/Encounter 0.28

Ground Incursion 0.2
Aircraft Equipment Problem 0.04

When we consider Table 11, we notice that H1 is the less frequent outcome (H1
Total < 0.5)

for a majority of the anomalies. In nine of the fourteen cases, the most frequent outcome

Aerospace 2022, 9, 591 16 of 22

is that we cannot conclude whether the difference in performance between the two mod-
els is statistically significant. Additionally, the averaged ratio across the anomalies is
0.47 < 0.5. These observations reinforce the impression that the two models do not perform
significantly differently.

In Figure 8, we show what happens when we lower the level of significance of our hy-
pothesis testing from 0.05 to 0.01 with incremental steps of 0.005. The x-axis represents the
confidence level (which is equivalent to 1—level of significance), and the y-axis represents
the value of H1

Total .
We see that, for a test level of 0.01, H1

Total is 0.316. It means that the two models are
statistically different in only one-third of the cases when the test level is 0.01.

To better understand how the change of test level affects the value of H1
Total of the

different anomalies, we trace in Figure 9 a bar plot. Its x-axis is divided into four range of
values: 0 to 0.25, 0.25 to 0.5, 0.5 to 0.75 and 0.75 to 1. The y-axis represents the number of
anomalies for which the associated ratio falls within one of the four ranges. We respectively
plot in blue and orange the values for test levels of 0.05 and 0.01. For instance, one can see
in the bar plot that, for a test level of 0.05 (in blue), there are seven anomalies for which the
value of H1

Total is within the range of 0.25 to 0.5.

Figure 8. H1 decision outcome ratio vs. 1—test level.

Figure 9. Bar plot of number of anomalies per quartiles.

Aerospace 2022, 9, 591 17 of 22

We notice that, when the test level diminishes to 0.01, the number of anomalies for
which H1

Total < 0.5 increases from nine to twelve. H1 occurs more frequently for only
two anomalies when the test level is 0.01: “Inflight Event/Encounter” and “No specific
Anomaly occurred”.

The case of “No specific Anomaly occurred” in particular is interesting. In Figure 10,
we plot the boxplots of the score distributions of the two models over the five seeds. We
notice that models are extremely unreliable for this anomaly, and there is a strong outlier in
the distribution of RoBERTa, where one of the models obtains a performance score of 0.5
while three of the other models obtain a performance score of 0. This high variability might
be due to the extreme lack of balance in the class distribution, with the lowest Shannon
equitability index of 0.096, as can be seen in Table 2. These observations lead us to believe
that we should disregard the anomaly “No specific Anomaly occurred” in our analysis.

In the end, when considering the results on all of the anomalies, there is no conclusive
statistical evidence that RoBERTa and ASRS-CMFS perform differently.

Figure 10. Boxplot for the anomaly “No specific Anomaly occurred”.

3.2. Efficiency of the Two Models

Results are reported in Table 12. To count the FLOPs, we have re-used the code
produced in the work of [30]. The assumptions we made are the same as those presented in
the article and the corresponding code.

Table 12. Efficiency of the two models.

Models # of
Parameters FLOPS FLOPS Ratio

Pre-Training Inference Pre-Training Inference

ASRS-CMFS 18 M 2.35× 1018 2.17× 1010 1× 1×
RoBERTa 125 M 1.15× 1021 1.38× 1011 489× 5.1×

ASRS-CMFS is seven times smaller than the regular RoBERTa model. With regard to
FLOPs, ASRS-CMFS beats the RoBERTa model by a factor of 489 for pre-training, and 5 for
inference.

The gain in efficiency is particularly impressive in the case of pre-training. For practi-
tioners, it is a good indication of the relative cost between pre-training a full-sized model
from scratch and pre-training a compact model from scratch.

The speedup in inference is more modest. Still, the ASRS-CMFS model is more compute-
efficient and consumes less memory, which can be critical in the context of real-world applications.

4. Discussion
4.1. Efficiency vs. Performance

The data we worked with have two main defining features. Firstly, it is highly domain-
specific. Secondly, its volume is vastly below the standard of what is usually required to
pre-train a full-sized language model. In this context, we tried to compare two approaches:
a pre-trained from scratch compact language model and an off-the-shelf PLM. We made the
comparison based on the criteria of performance and efficiency. From a strict performance
point of view, the off-the-shelf language model seems to have the upper-hand, although

Aerospace 2022, 9, 591 18 of 22

there is no conclusive statistical evidence that it is the case. From an efficiency point of
view, the compact model has the upper hand.

The drawback of this approach relative to using an off-the-shelf model is the initial
cost of pre-training the model. This cost is mitigated partly by the cheaper subsequent uses
in terms of speed and memory requirements.

Another advantage of the compact model is that fine-tuning is also cheaper. Dur-
ing hyperparameter tuning, a compact model can sample the space of hyperparameter
combinations using fewer computing resources. This characteristic of compact models
seems highly advantageous when considering how much the seed-parameter that we have
described before can influence the downstream performance of the PLMs.

These advantages might truly shine in usage scenarios where frequent fine-tuning
of a PLM is needed. For instance, in the work of [15], the authors propose the following
approach to support the browsing of the ASRS corpus: a safety analyst assigns an arbitrary
category to a group of reports that interest him, and uses a TC algorithm to find other
similar reports on the fly: “we start with a rough estimation of what the expert considers
as the target (positive) reports. We train a classifier based on this data, and then apply
it to the entire collection. Due to the nature of classification algorithms (and their need
for generalisation), this classifier provides a different set of positive reports. Using the
error margin (or probabilistic confidence score) provided by the classifier, we can identify
borderline reports, on both sides of the decision: we select these few fairly positive and
fairly negative items and submit them to the expert’s judgement. Based on his decisions,
we obtain a new approximation of his needs, and can train another classifier, and so on until
the expert reaches a satisfactory result.” This approach requires training a TC algorithm
iteratively every time one defines a custom category. In this scenario, if one wanted to use
a PLM to classify the occurrence reports, efficiency might be a critical factor to obtain good
results quickly and in a cost-efficient manner.

4.2. Hypothesis Testing

We have used hypothesis testing to compare our two PLMs. It could also be used to
evaluate the impact of any distinctive feature of occurrence reports on the classification
performance of a single model. This could be especially useful for documents that have
metadata, which is the case of the ASRS occurrence reports. As an example, one could
investigate if a model performs significantly differently on occurrences depending on the
value of reporter-generated metadata, such as the flight phase. It provides a simple tool to
add understanding on what aspect of an occurrence impacts a model’s performance. We
leave exploring this option for future work.

4.3. Overlap between the Pre-Training Data and Fine-Tuning Data

Because the domain-specific data volume was small, we included our fine-tuning
training data set narratives in our pre-training data. To the best of our knowledge, there
are currently no studies on the potential beneficial or adverse effects of such large overlaps
between the pre-training data and the fine-tuning data in the context of NLP.

Interestingly, in the work of [34], the authors found that, in the context of image
classification in computer vision, “performance on the target data can be improved when
similar data are selected from the pre-training data for fine-tuning”.

In the light of our model’s relatively good performance, it might be worth considering
investigating if this result holds true in the context of NLP.

5. Conclusions

We constituted a benchmark that reproduced as much as possible field conditions for
the task of classifying aviation occurrence reports following a pre-established taxonomy.
Through the comparison on the benchmark, we found that the ASRS-CMFS model was
competitive with the regular RoBERTa model that is seven times larger, and also more
efficient. For performance in particular, we used statistical hypothesis testing to reinforce

Aerospace 2022, 9, 591 19 of 22

our assessment. Finally, we proposed that pre-training a compact model from scratch was
a good strategy in the particular context of low-resource domains (in-domain data scarcity
and/or lack of computing resources).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/aerospace9100591/, statistical study of MCC.

Author Contributions: S.K.: Conceptualization, Methodology, Software, Writing—Review and
Editing, Writing—Original Draft, Investigation. T.K.: Supervision, Formal analysis, Validation. L.L.:
Supervision, Resources, Validation. All authors have read and agreed to the published version of the
manuscript.

Funding: This research is supported by the ENAC Safety Management Chair funded by Airbus,
Grant No. ENAC/2018/DID/RED/PA/068—FDD/2018/3.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data used in this paper were collected from https://asrs.arc.nasa.
gov/search/database.html (accessed on 11 September 2022). Researchers can request the data from
the ASRS, or they can download it from the website.

Acknowledgments: The authors would like to thank Corinne Bieder, Emeline Ledu, and Lila Verdier
for advising on the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NLU Natural Language Understanding
ASRS Aviation Safety Reporting System
ASRS-CMFS Aviation Safety Reporting System—Compact Model pre-trained From Scratch
PLM Pre-trained Language Model
PF Pre-training + Fine-tuning
GLUE General Language Understanding Evaluation benchmark
NASA National Aeronautics and Space Administration
FAA Federal Aviation Administration
ATC Air Traffic Control
TC Text Classification
MCC Matthews Correlation Coefficient
FLOP Floating Point Operation

Appendix A. Hardware

We used a server hosting 8 GeForce RTX 2080 Ti GPUs for computing power. We used
Pytorch for parallelization [35].

Appendix B. Main Pre-Training Hyperparameters

Table A1. Comparison of pre-training hyperparameters.

Hyperparameters ASRS-CMFS RoBERTa

Learning rate 5× 10−4 6× 10−4

Train batch size 64 8 k
Gradient accumulation steps 2 -

Pre-training steps 800 k 500 k

Appendix C. Example of Data

Other examples can be found at: https://asrs.arc.nasa.gov/search/dbol.html, (ac-
cessed on 29 September 2022).

https://www.mdpi.com/article/10.3390/aerospace9100591/
https://www.mdpi.com/article/10.3390/aerospace9100591/
https://asrs.arc.nasa.gov/search/database.html
https://asrs.arc.nasa.gov/search/database.html
https://asrs.arc.nasa.gov/search/dbol.html

Aerospace 2022, 9, 591 20 of 22

Narrative (written by the reporter):

Approximately 8 h into our flight, my ears started to block. I swallowed to clear them,
but it came back repeatedly. I spoke with 3 other flight attendants and they said they had
the same symptoms. I called the cockpit and talked with the flight crew about the situation.
They informed me that everything checked out all right. We were informed about a “PAC”
being “out” during the Captain to crew, pre-flight briefing. I questioned flight crew if this
had anything to do with our ears being blocked. Captain told me that the PAC that was
out was like having a “spare tire”. I questioned him because he informed the crew that
the temperature in the cabin might be a problem. I asked him if the PAC situation had
anything to do with air circulation or filtration, due to COVID transmittal. He said it was
not going to affect the pressurization, air circulation or filtration. The ear blockage lasted
for 15–20 min and didn’t return the rest of the flight. Captain asked if we needed MedLink
and we declined.

Synopsis (written by analysts)

Flight Attendant reported having ear blockage problems during flight and questioned
if it had to do with one Pack being “out”.

Aircraft related

Aircraft Operator: Air Carrier
Make Model Name: Commercial Fixed Wing
Crew Size.Number Of Crew: 2
Operating Under FAR Part: Part 121
Flight Plan: IFR
Mission: Passenger
Flight Phase: Cruise

Person related

Reference: 1
Location Of Person.Aircraft: X
Location In Aircraft: General Seating Area
Reporter Organization: Air Carrier
Function.Flight Attendant: Flight Attendant (On Duty)
Qualification.Flight Attendant: Current
ASRS Report Number.Accession Number: 1772104
Human Factors: Distraction
Human Factors: Physiological—Other

Events related

Anomaly.Aircraft Equipment Problem : Less Severe
Anomaly.Flight Deck/Cabin/Aircraft Event : Illness
Detector.Person: Flight Attendant
When Detected: In-flight
Result.General: None Reported/Taken

Assessments related

Contributing Factors/Situations: Aircraft
Primary Problem: Aircraft

Appendix D. Example of Occurrence Report from the 1987 to 2008 Era

Narrative (written by the reporter):

Aerospace 2022, 9, 591 21 of 22

APCH CTL ISSUED ILS RWY 28R AND VECTORED US TO FINAL APCH CTLR. HE
DSNDED US TO 3000 FT AND GAVE US AN INTERCEPT HDG AND ISSUED APCH
CLRNC. I INTERCEPTED LOC AND TURNED INBOUND. THE CTLR SAID IT AP-
PEARED WE WERE INTERCEPTING ILS RWY 28R WHICH WE WERE. HE INDICATED
WE SHOULD BE ON APCH FOR ILS RWY 28L. HE THEY ISSUED US THE ILS FREQ
111.7 FOR ILS RWY 28R. WE ASKED HIM IF WE SHOULD BREAK OFF THE APCH
AND HE ISSUED US A CLRNC FOR ILS RWY 28R THEN. WE WERE BEING VECTORED
FOR R DOWNWIND WHICH IS USUAL FOR ILS RWY 28R, WHICH GAVE US MORE
VERIFICATION FOR THE ILS RWY 28R. THE FINAL CTLR MAY HAVE THOUGHT
WE WERE ISSUED AND EXPECTED RWY 28L, WHICH I DO NOT BELIEVE WE WERE.
THERE WERE NO CONFLICTS. THERE WERE SNOW SQUALLS OVER THE AREA. I
THINK MAYBE A MISUNDERSTANDING BTWN THE 2 APCH CTLRS DEVELOPED
AS THERE WAS A HEARBACK AND READBACK FROM THEM EVERY TIME. THIS
THING HAPPENS AND IN A HIGH TFC AREA WITH REDUCED VISIBILITY IT IS VERY
IMPORTANT FOR THE CTLR AND PLT TO GET GOOD COMS ON IDENT OF THE RWY
TO LAND ON. MAYBE A PROC FOR THE FINAL CTLR TO RENAME THE ILS AND
GET A FINAL READBACK CLRNC FROM THE PLT PRIOR TO THE FINAL INTERCEPT
HDG IS GIVEN, AND THE FINAL ILS CLRNC IS ISSUED. THE PLT WOULD THEN BE
GIVEN A SECOND CHANCE TO CORRECT ANY ERROR THAT MIGHT EXIST.

Synopsis (written by analysts)

FLC OF A DC9-30 LINED UP WITH THE WRONG PARALLEL RWY RESULTING IN
APCH CTLR INTERVENTION TO PROVIDE THEM WITH THE LOC FREQ FOR THE
ASSIGNED PARALLEL RWY TO WHICH THEY BELIEVED THAT THEY WERE HEADED.

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
2. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly

Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692v1.
3. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:

State-of-the-art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online, 16–20 November 2020; Association for Computational Linguistics: Stroudsburg, PA,
USA, 2020; pp. 38–45. [CrossRef]

4. Han, X.; Eisenstein, J. Unsupervised Domain Adaptation of Contextualized Embeddings for Sequence Labeling. arXiv 2019,
arXiv:1904.02817.

5. Gu, Y.; Tinn, R.; Cheng, H.; Lucas, M.; Usuyama, N.; Liu, X.; Naumann, T.; Gao, J.; Poon, H. Domain-Specific Language Model
Pretraining for Biomedical Natural Language Processing. ACM Trans. Comput. Healthc. 2022, 3, 1–23. [CrossRef]

6. Chalkidis, I.; Fergadiotis, M.; Malakasiotis, P.; Aletras, N.; Androutsopoulos, I. LEGAL-BERT: The Muppets straight out of Law
School. arXiv 2020, arXiv:2010.02559.

7. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. arXiv 2019, arXiv:1910.10683.

8. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. arXiv 2018, arXiv:1804.07461.

9. Micheli, V.; d’Hoffschmidt, M.; Fleuret, F. On the importance of pre-training data volume for compact language models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 8–12 November 2020;
Association for Computational Linguistics: Stroudsburg, PA, USA, 2020. [CrossRef]

10. Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling Laws
for Neural Language Models. arXiv 2020, arXiv:2001.08361.

11. International Civil Aviation Organization. International Standards and Recommended Practices Annex 13 to the Convention on
International Civil Aviation Aircraft Accident and Incident Investigation; International Civil Aviation Organization: Montreal, QC,
Canada, 2016.

12. Barach, P. Reporting and preventing medical mishaps: Lessons from non-medical near miss reporting systems. BMJ 2000, 320, 759–
763. Available online: https://www.bmj.com/content/320/7237/759.full.pdf (accessed on 29 September 2022). [CrossRef]
[PubMed]

13. Tulechki, N. Accident. Ph.D. Thesis, Université Toulouse le Mirail—Toulouse II, Toulouse, France, 2015. [CrossRef]

http://doi.org/10.18653/v1/2020.emnlp-demos.6
http://dx.doi.org/10.1145/3458754
http://dx.doi.org/10.18653/v1/2020.emnlp-main.632
https://www.bmj.com/content/320/7237/759.full.pdf
http://dx.doi.org/10.1136/bmj.320.7237.759
http://www.ncbi.nlm.nih.gov/pubmed/10720361
http://dx.doi.org/10.5040/9781472577283.00518

Aerospace 2022, 9, 591 22 of 22

14. Bowman, S.R.; Dahl, G.E. What Will it Take to Fix Benchmarking in Natural Language Understanding? arXiv 2021,
arXiv:2104.02145.

15. Tanguy, L.; Tulechki, N.; Urieli, A.; Hermann, E.; Raynal, C. Natural language processing for aviation safety reports: From
classification to interactive analysis. Comput. Ind. 2016, 78, 80–95. [CrossRef]

16. Madeira, T.; Melício, R.; Valério, D.; Santos, L. Machine Learning and Natural Language Processing for Prediction of Human
Factors in Aviation Incident Reports. Aerospace 2021, 8, 47. [CrossRef]

17. Kierszbaum, S.; Lapasset, L. Applying Distilled BERT for Question Answering on ASRS Reports. In Proceedings of the 2020 New
Trends in Civil Aviation (NTCA), Online, 23–24 November 2020. [CrossRef]

18. Boesser, C.T. Comparing Human and Machine Learning Classification of Human Factors in Incident Reports From Aviation.
Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2020.

19. Geva, M.; Goldberg, Y.; Berant, J. Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural
Language Understanding Datasets. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November
2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 1161–1166. [CrossRef]

20. Hollnagel, E. Barriers and Accident Prevention; Routledge: London, UK, 2016. [CrossRef]
21. Fath, B.D. Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 340–341.
22. Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv

2020, arXiv:2010.16061.
23. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef] [PubMed]
24. Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. arXiv 2019, arXiv:1907.10597.
25. Ethayarajh, K.; Jurafsky, D. Utility is in the Eye of the User: A Critique of NLP Leaderboards. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 8–12 November 2020; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 4846–4853. [CrossRef]

26. Dima, A.; Lukens, S.; Hodkiewicz, M.; Sexton, T.; Brundage, M.P. Adapting natural language processing for technical text. Appl.
AI Lett. 2021, 2, e33. [CrossRef]

27. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019,
arXiv:1910.01108.

28. Turc, I.; Chang, M.W.; Lee, K.; Toutanova, K. Well-Read Students Learn Better: On the Importance of Pre-training Compact
Models. arXiv 2019, arXiv:1908.08962.

29. Kuo, S. 37000 Feet. Available online: http://www.37000feet.com/about (accessed on 12 September 2022).
30. Clark, K.; Luong, M.T.; Le, Q.V.; Manning, C.D. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.

arXiv 2020, arXiv:2003.10555.
31. Dodge, J.; Ilharco, G.; Schwartz, R.; Farhadi, A.; Hajishirzi, H.; Smith, N. Fine-Tuning Pretrained Language Models: Weight

Initializations, Data Orders, and Early Stopping. arXiv 2020, arXiv:2002.06305.
32. Rajapakse, T.C. Simple Transformers. Available online: ttps://github.com/ThilinaRajapakse/simpletransformers (accessed on

29 September 2022).
33. Zhu, M.; Xia, J.; Jin, X.; Yan, M.; Cai, G.; Yan, J.; Ning, G. Class Weights Random Forest Algorithm for Processing Class Imbalanced

Medical Data. IEEE Access 2018, 6, 4641–4652. [CrossRef]
34. Liu, Z.; Xu, Y.; Xu, Y.; Qian, Q.; Li, H.; Ji, X.; Chan, A.; Jin, R. Improved Fine-Tuning by Better Leveraging Pre-Training Data. arXiv

2021, arXiv:2111.12292.
35. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA,
2019; pp. 8024–8035.

http://dx.doi.org/10.1016/j.compind.2015.09.005
http://dx.doi.org/10.3390/aerospace8020047
http://dx.doi.org/10.23919/ntca50409.2020.9291241
http://dx.doi.org/10.18653/v1/d19-1107
http://dx.doi.org/10.4324/9781315261737
http://dx.doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
http://dx.doi.org/10.18653/v1/2020.emnlp-main.393
http://dx.doi.org/10.1002/ail2.33
http://www.37000feet.com/about
ttps://github.com/ThilinaRajapakse/simpletransformers
http://dx.doi.org/10.1109/ACCESS.2018.2789428

	Introduction
	Materials and Methods
	The ASRS Corpus
	Constituting the Benchmark
	The Task
	Dataset
	Selection of Metrics to Compare the Models—Performance
	Selection of Metrics to Compare the Models—Efficiency

	Pre-Training and Fine-Tuning Procedure
	Language Models
	Pre-Training Data
	Pre-Training Procedure
	Fine-Tuning Procedure

	Summary

	Results
	Performance of the Two Models
	Efficiency of the Two Models

	Discussion
	Efficiency vs. Performance
	Hypothesis Testing
	Overlap between the Pre-Training Data and Fine-Tuning Data

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

