
1 Statistical study of MCC

1.1 General framework

Let T = (Tn)0≤n≤N−1 be a corpus of N texts we want to classify into K classes.
We have at our disposal a classifier that associates to each text its predicted
class kn, ln denotes the true class of the text Tn.
Let Ĉ = (ĉi,j)0≤i,j≤N−1 be the empirical confusion square matrix of size K
defined by

ĉi,j =

N−1∑
n=0

Xn(i, j) (1)

with
Xn(i, j) = 1kn=i1ln=j , (2)

and let P̂ = (p̂i,j) be the proportion matrix defined by P̂ = 1
N Ĉ.

Assumption 1

For all (i, j) ∈ {1, ...,K}2, the elements of the sequence (Xn(i, j))0≤n≤N−1 are
i.i.d random variables of the same law as X(i, j) with:

P(Xn(i, j) = 1) = 1− P(Xn(i, j) = 0) = pi,j . (3)

Remark 1. pi,j represents the probability that a text categorized in the i-class
belongs to the j-class. By the strong law of large number we have

p̂i,j
a.s.−−−−→

N→∞
pi,j (4)

1.2 Quantifying the efficiency of the classifying procedure

Definition 1. The empirical Matthews Correlation Coefficient (MCC) metric
is defined by:

M̂CC =
N ×

∑K−1
k=0 ĉk,k −

∑K−1
k=0 (

∑K−1
i=0 ĉi,k ×

∑K−1
j=0 ĉk,j)√

N2 −
∑K−1

k=0 (
∑K−1

i=0 ĉi,k)2 ×
√
N2 −

∑K−1
k=0 (

∑K−1
j=0 ĉk,j)2

. (5)

and the true MCC is defined by

MCCtrue =

∑K−1
k=0 pk,k −

∑K−1
k=0 (

∑K−1
i=0 pi,k ×

∑K−1
j=0 pk,j)√

1−
∑K−1

k=0 (
∑K−1

i=0 pi,k)2 ×
√
1−

∑K−1
k=0 (

∑K−1
j=0 pk,j)2

. (6)

Remark 2. Note that by multiplying the numerator and denominator of (5) by
1

N2 , we have

M̂CC =

∑K−1
k=0 p̂k,k −

∑K−1
k=0 (

∑K−1
i=0 p̂i,k ×

∑K−1
j=0 p̂k,j)√

1−
∑K−1

k=0 (
∑K−1

i=0 p̂i,k)2 ×
√
1−

∑K−1
k=0 (

∑K−1
j=0 p̂k,j)2

. (7)
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Hence, by Equation (4)

M̂CC
a.s.−−−−→

N→∞
MCCtrue. (8)

In practice, we only have access to the empirical value M̂CC. It is desirable
to quantify how far M̂CC is from MCCtrue. One classical way to answer this
question is to provide a confidence interval for MCCtrue. Moreover, if one
wants to compare two different classification procedures, one can compute for
each procedure the associated M̂CC1 and M̂CC2, and investigate whether there
is statistical evidence that:

M̂CC1 ≤ M̂CC2(resp. ≥) =⇒ MCCtrue1 ≤ MCCtrue2(resp. ≥).

This can be done thanks to a confidence interval for M̂CC1 − M̂CC2 which
is classically derived from a joint Central Limit Theorem for (M̂CC1, M̂CC2).

1.2.1 Vectorial central limit theorem for M̂CC and application to
confidence interval

Let Pn be the square matrix of size K, where the variable at the column j and
line i is Xn(i, j). We obtain that

P̂ =
1

N

N−1∑
n=0

Pn. (9)

Let MK be the space of all the square real matrices of size K, and g be the
application defined by:

g : MK → R
(xi,j) 7→ g((xi,j)),

where

g((xi,j)) =

∑K−1
k=0 xk,k −

∑K−1
k=0 (

∑K−1
i=0 xi,k ×

∑K−1
j=0 xk,j)√

1−
∑K−1

k=0 (
∑K−1

i=0 xi,k)2 ×
√
1−

∑K−1
k=0 (

∑K−1
j=0 xk,j)2

. (10)

Theorem 1.1. If Assumption 1 holds, then

1. √
N((M̂CC −MCCtrue)

L−−−−→
N→∞

N1(0 , σ1), (11)

where σ1 =
√
DgtΣDg, and Σ is the covariance matrix of size K2

Σ =

 Cov(X(0, 0), X(0, 0)) ... Cov(X(0, 0), X(K − 1,K − 1))
... ... ...

Cov(X(K − 1,K − 1), X(0, 0)) ... Cov(X(K − 1,K − 1), X(K − 1,K − 1))

 ,

and Dg = ( ∂g
∂xi,j

)(i,j)∈{0,K−1}2 is the gradient at the coordinates P̂ of the

application g.
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2. Let 0 ≤ α ≤ 1 and σ̂1 a consistent estimator of σ1, then

lim
N→∞

P

(
M̂CC − qα × σ̂1√

N
≤ MCCtrue ≤ M̂CC +

qα × σ̂1√
N

)
= 1− α

(12)
where qα is such that P (−qα ≤ N (0, 1) ≤ qα) = 1− α.

Remark 3. In particular, the confidence interval with a 95% confidence level
is given by

]M̂CC − 1, 96× σ̂1√
N

, M̂CC +
1, 96× σ̂1√

N
[. (13)

Remark 4. Closed formula for Dg and Σ̂ provided in the Appendix.

Proof 1. 1. According to the vectorial central limit theorem, we have

√
N(

1

N

N−1∑
n=0

(Pn − E[Pn])
L−−−−→

N→∞
NK2(0 ,Σ)

Now setting σ1 =
√
DgtΣDg, the Delta method ensures

√
N((g(P̂ )− g(

1

N

N−1∑
n=0

E[Pn]))
L−−−−→

N→∞
N1(0 , σ

2
1)

2. According to the Slutsky Lemma

√
N((g(P̂ )− g( 1

N

∑N−1
n=0 E[Pn]))

σ̂1

L−−−−→
N→∞

N1(0 , 1)

where,

σ̂1 =

√
DgtΣ̂Dg (14)

and Σ̂ any consistant estimator of Σ.

1.2.2 Application to statistical test

In this Section, we aim to provide statistical evidence that two models’ perfor-
mance differ significantly. To do so, we test H0 : H0 : MCCtrue1 = MCCtrue2

against H1 : H1 : MCCtrue1 ̸= MCCtrue2, where MCCtrue1 is the true MCC
value for model 1, and MCCtrue2 is the MCC value for model 2.

Let X1(i, j), ..., Xn(i, j) be i.i.d variables and of the same law as X(i, j).
Let Pn be the square matrix of size K, where the variable at the column j and
line i is Xn(i, j).
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Let Y1(i, j), ..., Yn(i, j) be i.i.d variables and of the same law as Y (i, j).
Let Qn be the square matrix of size K, where the variable at the column j and
line i is Yn(i, j).

Let Un be the vector of such that Un is the juxtaposition of Pn and Qn.
Let UN be defined by:

UN =
1

N

N−1∑
n=0

Un. (15)

We define the functions J and f by

J : MK ×MK −→ R2

(x, y) 7−→ (g(x), g(y)).
f : R2 −→ R

(x, y) 7−→ x− y.

(16)

Theorem 1.2. Under H0,

√
N(M̂CC1 − M̂CC2)

L−−−−→
N→∞

N (0 , σ2
2). (17)

where
σ2 =

√
Df tΣbDf, (18)

Df is the gradient of the application f, and Σb = DJ tΣaDJ with DJ the gra-
dient of the application J, and Σa = Cov(Un) is a covariance matrix of size 2K2.

Remark 5. Hence, we will reject H0 as soon as |M̂CC1 − M̂CC2| > qα. The
threshold qα is qualified thanks to Theorem 1.2 and the slutsky Lemma. For
example the threshold for a test of level α = 5% is given by 1.96σ̂2√

N
.

Remark 6. Note that the framework developed in Section 1 can be applied on
any of the classical metrics such as precision, recall, or f1 score.

Remark 7. Closed formula for DJ and Σa is in the Appendix.

Proof 2. According to the vectorial central limit theorem

√
N(

1

N

N−1∑
n=0

(Un − E[Un])
L−−−−→

N→∞
N2K2(0 ,Σa),

where Σa = Cov(Un) is a covariance matrix of size 2K2. According to the
delta method,

√
N((J(UN )− J(

1

N

N−1∑
n=0

E[Un]))
L−−−−→

N→∞
N2(0 ,Σb).

where Σb = DJ tΣaDJ . Now since J(UN ) = (M̂CC1, M̂CC2) we have
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√
N(

[
M̂CC1

M̂CC2

]
−
[
MCC1true

MCC2true

]
)

L−−−−→
N→∞

N2(0 ,Σb).

Applying again the delta method, we get

√
N((M̂CC1 − M̂CC2)− (MCC1true −MCC2true)

L−−−−→
N→∞

N (0 , σ2
2).

where σ2 =
√

Df tΣbDf, with Df the gradient of the application f
Under H0, we have

√
N(M̂CC1 − M̂CC2)

L−−−−→
N→∞

N (0 , σ2
2).

APPENDIX:

Calculating Σ̂

For elements in the diagonal of Σ, we have:

Cov(Xl1,m1
, Xl1,m1

) = E(X2
l1,m1

)− E(Xl1,m1
)2

= pl1,m1
× (1− pl1,m1

).
(1)

We obtain that a consistent estimation for Σ̂ is: p̂l1,m1
× (1− p̂l1,m1

).

For elements outside the diagonal, we obtain that:

Cov(Xl1,m1
,l2,m2

) = E(Xl1,m1
×Xl2,m2

)− E(Xl1,m1
)× E(Xl2,m2

)

= −pl1,m1 ∗ pl2,m2 .
(2)

We obtain that a consistent estimation for Σ̂ is: −p̂l1,m1
∗ p̂l2,m2

.

Calculating Dg

We introduce the following notation for the purpose of clarity in our calcula-
tions: Let p̂i,. designates the sum of the elements of row i of P̂ .

Let p̂.,j designates the sum of the elements of column j of P̂ .

Let p̂i,−[j0,...jA] with A ∈ [0,K − 1] designates p̂i,. −
∑A

a=0 p̂i,ja
Let p̂−[i0,...iA],j with A ∈ [0,K − 1] designates p̂.,j −

∑A
a=0 p̂ia,j

Let Tr(p̂) designates the sum of the elements in the diagonal of P̂ .
We must obtain ∂g

∂p̂i,j
. We distinguish between the case where i = j and i ̸= j.

When i = j, we have:

g(xl,l) =
xl,l + a− (b+ x2

l,l + xl,l × c)√
1− d− (xl,l + e)2 ×

√
1− f − (xl,l + g)2

. (3)
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Then we have:

∂g

∂xl,l
=

(1− 2× xl,l − c)×A×B + ((xl,l + e)× B
A + (xl,l + g)× A

B )× (xl,l + a− (b+ x2
l,l + xl,l × c))

A2 ×B2

with:

A =
√
1− d− (xl,l + e)2 and B =

√
1− f − (xl,l + g)2.

When the input for g is our matrix P̂ , we have:

a = Tr(p̂)− p̂l,l, b =

K−1∑
k ̸=l

(p̂.,j ∗ p̂i,.) + p̂−[l],l × p̂l,−[l], c = p̂−[l],l + p̂l,−[l]

d =

K−1∑
k ̸=l

p̂2.,k, e = p̂−[l],l, f =

K−1∑
k ̸=l

p̂2k,.

g = p̂l,−[l] and xl,l = p̂l,l.

When i ̸= j, we have:

g(xl,m) =
a1 − (b1 + (xl,m + ĉ1)× d1 + (xl,m + e1)× f1)√
1− g1 − (xl,m + h1)2 ×

√
1− i1 − (xl,m + j1)2

, (4)

then we have:
∂g

∂xl,m
=

−(d1 + f1)A1B1 + ((xl,m + h1)B1/A1 + (xl,m + j1)A1/B1)(a1 − (b1 + (xl,m + ĉ1)d1 + (xl,m + e1)f1)

A2
1B

2
1

with:

A1 =
√
1− g1 − (xl,m + h1)2 and B1 =

√
1− i1 − (xl,m + j1)2.

When the input for g is our matrix P̂ , we have:

a1 = Tr(p̂), b1 =

K−1∑
k ̸=(l,m)

(p̂.,k ∗ p̂k,.), c1 = p̂l,−[m]

d1 = p̂.,l, e1 = p̂−[l],m, f1 = p̂m,.

g1 =

K−1∑
k ̸=m

p̂2.,k, h1 = p̂−[l],m, i1 =

K−1∑
k ̸=l

p̂2k,.

j1 = p̂l,−[m] and xl,m = p̂l,m.
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calculating Σ̂a

We have 6 cases:

• Cov(Xl1,m1
, Xl2,m2

)

• Cov(Xl1,m1
, Xl1,m1

)

• Cov(Yl1,m1 , Yl2,m2)

• Cov(Yl1,m1
, Yl1,m1

)

• Cov(Xl1,m1
, Yl1,m1

)

• Cov(Xl1,m1 , Yl2,m2)

with (l1,m1) ̸= (l2,m2).

The four first cases are already covered by our previous work on confidence
intervals.
For the two next cases, we obtain that:

Cov(Xl1,m1
, Yl1,m1

) = E(Xl1,m1
× Yl1,m1

)− E(Xl1,m1
)× E(Yl1,m1

) (5)

We obtain that a consistent estimation for Σ̂a is:∑N−1
n=0 Xn(l1,m1) × Yn(l1,m1)

N
− p̂l1,m1 × q̂l1,m1

Cov(Xl1,m1 , Yl2,m2) = E(Xl1,m1 × Yl2,m2)− E(Xl1,m1)× E(Yl2,m2) (6)

We obtain that a consistent estimation for Σ̂a is:∑N−1
n=0 Xn(l1,m1) × Yn(l2,m2)

N
− p̂l1,m1

× q̂l2,m2

Notice that when Xn(i1, j1) = 1, it means that j1 is the true label for the
nth text. As such, Yn(i2, j2) = 0 when j1 ̸= j2. This means that for cases

where j1 ̸= j2, a consistent estimation for Σ̂a is:

−p̂l1,m1
× q̂l2,m2

Calculating DJ

We obtain:

∂DJ1(x, y)

∂y
=

∂g(x)

∂y
= 0,

∂DJ2(x, y)

∂x
=

∂g(y)

∂x
= 0
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