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Abstract: The aero-engine is the heart of an aircraft; its performance deteriorates rapidly due to
the high temperature and high-pressure environment during flights. It is necessary to predict the
remaining useful life (RUL) to improve the reliability of aero-engines and provide security for reliable
flights. In previous flights, the sensors collected a lot of performance parameter data and formed
a database regarding the aero-engine degradation process. These performance parameters cannot
reflect the degradation process directly. In this paper, fuzzy clustering is applied to divide the
degradation stages of the aero-engine, construct the health indicator, and describe the degradation
process. Time-series decomposition modeling is applied to predict the degradation process of the
health indicator. Based on the idea of similarity comparison, the RUL is predicted by comparing
the similarity of time series through example learning. The method is verified and analyzed on the
dataset published by National Aeronautics and Space Administration (NASA), and the mean square
error (MSE) is 528. The result is better than the comparative method.

Keywords: aero-engine; remaining useful life prediction; time-series decomposition; fuzzy clustering;
similarity comparison

1. Introduction

As the core component of the aircraft, the aero-engine is always in extremely high tem-
peratures, pressure and a high-frequency vibration environment during its work. And the
aero-engine is shown in Figure 1. In this environment, the functions of various components
of the engine continue to deteriorate with time, and the remaining useful life (RUL) also
decreases. It is difficult for the engine with degraded functions to perform its tasks well,
and sometimes the degradation even causes serious consequences. Therefore, for a long
time, scientific researchers have been studying and putting forward the prediction methods
of the RUL of aero-engines.

At present, the RUL prediction methods are mainly divided into three categories:
(1) methods based on physical failure models; (2) data-driven models; (3) a mixed model
of the above two methods [1]. The method based on the physical failure model combines
the prior knowledge of the component composition, working principle and degradation
mechanism of the equipment with the sensor detection data to build a physical or math-
ematical model to characterize the function degradation process of the equipment, thus,
predicting the RUL of the aero-engine, such as the Paris Erdogan model [2], the nonlinear
cumulative damage model [3] and the Wiener random process model [4]. This prediction
method has high accuracy, but its model is not universal and the modeling process is
complex. The data-driven method mines the health status information and degradation law
of equipment from the monitoring data, and then builds the mapping relationship between
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the monitoring data and RUL. Although the prediction accuracy of this technology is not
as high as that of the physical degradation model, it is more versatile and flexible to use.
The hybrid model is an organic combination of two methods, such as the combination of
the exponential regression model and correlation vector machine [5]. This method cannot
avoid the problem that the physical regression model is difficult to establish. Therefore, the
data-driven model is the most commonly used RUL prediction method.
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Figure 1. Aero-engine.

In practical applications, data-driven degradation prediction methods can be di-vided
into two categories: (1) machine-learning prediction models biased towards statistical learn-
ing; (2) machine-learning prediction models biased towards deep learning. In academic
circles, it is generally believed that statistical learning and traditional machine learning are
essentially the same two concepts. Both of them study the information contained in the data,
but statistical learning pays more attention to interpretation, while traditional machine
learning pays more attention to prediction. Statistical learning is the machine learning
of computer systems to improve the system performance by using data and statistical
methods [6]. In statistical learning, it is assumed that similar data have certain statisti-
cal regularity. Therefore, the machine-learning prediction model for prediction biased
towards statistical learning establishes a statistical model based on empirical knowledge
according to health monitoring data containing the health degradation information [7].
Zaidan et al. [8] introduced the deterministic approximation of Bayesian inference into the
general two-level hierarchical linear model, assuming the conjugate prior distribution for
engine predictions. Liu et al. [9,10] proposed a parametric p-order polynomial model and
verified it on the degradation dataset of an aircraft gas turbine engine. Statistical methods
are also widely used in multivariate regression modeling and predictions. Cui et al. [11]
used the fast DTW method to improve the speed-of-similarity calculation, obtain the best
classification results by searching the optimal hyperparameter K of K-Nearest Neighbor,
and extract the effective features in turn. In [12], the fault time and multisensor data are
combined by a novel potential linear model to construct a general health indicator (HI). In
order to improve the accuracy of a real-time RUL prediction during a system operation,
Zhang et al. [13] proposed a real-time RUL modeling method based on the adaptive kernel
window width density. In this method, the kernel density estimation of known samples
recursively updates the kernel density estimation of samples with the real-time changes
of monitoring data. The machine-learning prediction model biased towards statistical
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learning can establish the degradation model of the system without massive data and has
good universality, thus, the research is very extensive.

Deep learning is a superset of machine learning. Deep learning deepens the hidden
layer, with large parameters and weak interpretability. It is like a "black box". Its model is
built on data and is more dependent on data. Therefore, the feature of machine-learning
prediction models biased towards deep learning is that it requires a large amount of data
and can automatically extract features and construct models based on massive data for the
RUL prediction. For example, the deep belief network (DBN) or the DBN-based fusion
model proposed in [14–16] is used to automatically extract useful features from raw data.
The convolutional neural network (CNN) is also applied to mechanical RUL predictions
because of its strong feature extraction ability, parameter sharing and excellent characteris-
tics of partial network parallelism [17]. Jiao et al. [18] used the recurrent neural network
(RNN) to extract features to estimate health indicators (HI) and predict the RUL of the
system. For a small-sample RUL prediction, Fu et al. [19] proposed a prediction method
using data augmentation (DA) and a deep bidirectional gate recursive unit (DBGRU), and
Cui et al. [20] designed the prediction model based on the sliding window and grey neural
network. Han et al. [21] used the online transfer learning method to transfer knowledge
under different conditions to improve the accuracy of RUL predictions. More methods inte-
grate different deep learning models and learn from each other to improve the prediction
accuracy, such as the combination of LSTM and RNN [22]; the combination of CNN and
superimposed bidirectional and unidirectional LSTM networks [23]; the combination of
the one-dimensional convolutional neural network (1D-CNN) and bidirectional long- and
short-term memory (Bi-LSTM) [24]; and the combination of CNN, timing convolutional
neural networks (TCN), and multi-head attention mechanism [1]. Although the machine-
learning prediction model biased towards deep learning can extract deeper features, its
interpretability is poor. Because it relies too much on data, the accuracy of its prediction
may also decrease when the training data changes. Therefore, at present, the machine-
learning prediction models biased towards statistical learning have stronger usability and
higher research values.

This paper presents an RUL prediction method based on time-series decomposition
modeling and similarity measurements, which belong to the machine-learning prediction
model biased towards statistical learning. The multi-dimensional monitoring performance
parameters of aero-engines contain a lot of engine health information. The degradation
process can be divided into different degradation stages through fuzzy clustering, and
can construct HI based on clustering results. Aero-engines have accumulated a lot of
HI degradation tracks. Through the similarity measurement method, high similarity
segments can be matched from the degradation track database, and the RUL prediction
can be completed with dynamic weight. Considering that the degradation trajectory only
reflects the degradation condition of the aero-engine running to the current state, the
degradation trajectory is predicted by time-series decomposition modeling by introducing
the predictive similarity measurement method. The method is verified and analyzed
on the dataset published by NASA (National Aeronautics and Space Administration),
and the mean square error (MSE) is 528. The result is better than the comparative test.
The prediction results have safety bias, which provides a strong support for aero-engine
health management.

The following chapters are arranged as follows: Section 2 explains the relevant basic
theories of the proposed method for the convenience of later understanding. In Section 3,
the proposed method is described in detail, and the implementation of the algorithm is
introduced. In Section 4, the algorithm verification and comparison tests are carried out
based on the dataset published by NASA. Section 5 summarizes this paper.
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2. Preliminaries
2.1. Fuzzy C-Means (FCM)
2.1.1. Basic Principles

Cluster analysis refers to the process of applying mathematical methods to classify
things according to their similarities. In traditional clustering analysis, because of the
properties of each set, it is a hard division with clear boundaries. However, in reality,
many analysis objects do not have strict attributes, that is, the relationship between them
has fuzzy characteristics [25–27]. Traditional hard clustering analysis cannot be used to
study these objects with fuzzy relations, and the fuzzy set theory provides a tool for the
distinction of objects with unclear boundaries [28,29]. Fuzzy clustering analysis generally
has the following steps. Firstly, construct the fuzzy matrix according to the attributes of the
research object. Secondly, determine the clustering relationship according to a certain degree
of membership. This method quantitatively determines the fuzzy relationship between
samples with the method of fuzzy mathematics to cluster objectively and accurately.

2.1.2. Computational Steps

Fuzzy C-means is mainly divided into the following steps:

(1) Define clustering objects.

Let the universe U = [u1, u2, · · · , un]
T be a space with n samples, each ui sample has

m features, namely ui = [xi1, xi2, · · · , xim](i = 1, 2, · · · , n), so the original data matrix is

U =


u1
u2
...

un

 =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

...
xn1 xn2 · · · xnm

 (1)

where xnm is the original data of the mth feature of the nth classification object.

(2) Data standardization.

In practical problems, the dimensions of data are generally different, thus, it is nec-
essary to deal with the data in dimensions so that they can be compared with each other.
Here, the data standardization regards transforming the data into the interval [0, 1] to meet
the requirements of the fuzzy matrix. Data standardization usually includes translation
standard deviation transformation, translation range transformation and logarithmic trans-
formation. In this paper, the maximum and minimum normalization method is used for
standardization. The formula is:

x′′ik =
x′ik − min

16i6n

{
x′ik
}

max
16i6n

{xik} − min
16i6n

{xik
′} (2)

where k = 1, 2, · · · , m, i = 1, 2, · · · , n.

(3) Eablish fuzzy similarity matrix.

The fuzzy similarity matrix constructed from the original data is an important basis
for later clustering, and the correctness of clustering depends entirely on this matrix. At
present, there are 13 methods to construct the fuzzy similarity matrix, including the Ham-
ming distance method, Euclidean distance method, Chebyshev distance method, included
angle cosine method, maximum and minimum method, etc. [30]. According to the research,
the selection of the fuzzy similarity matrix construction method should follow the follow-
ing three principles: correctness principle, invariability principle and distinguishability
principle. After making a comprehensive comparison of 13 fuzzy similarity matrix con-
struction methods, the maximum and minimum method is most suitable for constructing
the fuzzy similarity matrix. In this paper, the maximum and minimum method is selected
to construct the fuzzy similarity matrix, and the calculation formula is:
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R =
{

rij
}

, rij =

m
∑

k=1

(
xik ∧ xjk

)
m
∑

k=1

(
xik ∨ xjk

) (3)

where ∧ is the operation of “taking the small”; ∨refers to the “larger” operation.

(4) Clustering.

Common clustering analysis methods include the direct clustering method based on
the fuzzy similarity matrix, the clustering method based on fuzzy clustering equivalence
(transfer closure method, Boolean matrix method) and the fuzzy clustering analysis method
based on objective functions. The first two methods can receive the classification of each
measurement unit under different thresholds through calculation, but the second method is
more mature, while the third method generally needs to determine the number of clusters
before calculation. Considering the actual situation, this paper adopts the FCM fuzzy
clustering algorithm in the third one. FCM algorithm does not need human intervention
in the process of algorithm implementation. It is an unsupervised data clustering method
based on the optimization of the objective function. The clustering result is the membership
degree of each data point to the clustering center, which is expressed by a numerical value.
The algorithm allows the same sample to belong to multiple different classes.

The objective function is:

minJFCM(U, V) =
C
∑

k=1

N
∑

k=1
um

ki‖xi − vk‖2

s.t.
N
∑

k=1
uki = 1, uki ∈ [0, 1]

(4)

where C is the number of clusters and N is the number of samples. U is the membership
matrix and V is the cluster center.

(5) Determine the optimal threshold λ.

Select different thresholds in clustering λ, and different classifications can be obtained.
The higher λ is, the greater the number of classifications is, and vice versa [31]. In practical
problems, we need to choose the appropriate one λ to determine the number of clusters
of samples, and generally use an empirical method and F statistics to determine the
best threshold λ.

1© Empirical method: The threshold is adjusted by several experienced experts according
to the actual situation λ to select the appropriate classification number.

2© F statistics: Assume that the threshold is λ when the number of classifications is r and
the number of samples is n, the F statistic follows the F distribution with degrees of
freedom of r−1 and n−r, and the formula of F statistic is

F =

r
∑

j=1
nj

∥∥∥u(j) − u
∥∥∥2/(r− 1)

r
∑

i=1

nj

∑
j=1

∥∥∥u(j)
i − u(j)

∥∥∥2/(n− r)
(5)

where the molecule represents the distance between different classes; the denominator
represents the distance between samples within the class. The larger the value of
the F statistic, the smaller the difference within the class and the larger the differ-
ence between classes, that is, the better the classification effect. At the significant
level α, if F > F α (r−1, n−r), according to the statistical principle, it is reasonable to
classify under this significant level, therefore, the difference between different classes
is significant.
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2.2. Seasonal Trend Decomposition Procedure Based on LOESS (STL)

The seasonal trend decomposition procedure based on LOESS (STL) was first proposed
by Cleveland et al. [32] to decompose the time-series data of the monthly atmospheric
carbon dioxide concentration. At present, many scholars use STL to decompose time-series
data (such as UCR) to obtain more valuable information in time-series data [33].

For a given time series Y(t), STL can decompose it into three additive components:
trend component T(t), seasonal component S(t), and residual component R(t), namely:

Y(t) = T(t) + S(t) + R(t) (6)

Among them, the seasonal component S(t) refers to the cyclical component (such as
12 months, 4 quarters, etc.). STL contains two nested cycles—inner cycle and outer cycle. In
the inner cycle, the trend component T(t) and seasonal component S(t) are mainly extracted
through LOESS. In the outer loop, the residual component R(t) is calculated, and the sample
robust weight Pr is calculated according to the residual component to reduce the influence
of outliers on the smoothing result of LOESS.

First, assume that the number of cycles of the inner cycle is i = 1, 2, . . . , I and initialize
the trend component: T(0)(t) = 0. For each inner cycle, there are the following six steps:

Step 1: Remove the trend component. By subtracting the trend component T(i−1)(t)
obtained from the previous cycle from the original sequence Y(t), the time series T̃(i)(t) of
de trend is obtained, i.e.:

T̃(i)(t) = Y(t)− T(i−1)(t), t = 1, 2, . . . , T (7)

Step 2: Periodic subsequence smoothing. Extract periodic subsequences from T̃(i)(t);
then, use loess LOESS(K1) to smooth each periodic subsequence, and extend one cycle for-
ward and one cycle backward at the same time. Then, arrange these periodic subsequences
in chronological order to form sequence C(i)(t). Note that the length of time series here
extends from T to T + 2L.

Step 3: Low channel filtering. Make three moving averages of length L (i.e., one cycle
length), L, and 3 for Sequence C(i)(t) in turn, and finally use LOESS(K2) smoothing to
obtain sequence E(i)(t), t = 1, 2, . . . , N. Note that the length of time series here changes
from T + 2L of C(i)(t) to T of E(i)(t).

Step 4: Calculate seasonal components. Calculate the seasonal component S(i)(t)
according to the following formula:

S(i)(t) = C(i)(t)− E(i)(t), t = 1, 2, . . . , T (8)

Step 5: Remove seasonal ingredients. Subtract the seasonal component S(i)(t) from
the original sequence Y(t) to obtain the time series S̃(i)(t) without seasonal components:

S̃(i)(t) = Y(t)− S(i)(t), t = 1, 2, . . . , T (9)

Step 6: Calculate the trend component. Use LOESS(K3) to smooth the seasonal
component S̃(i)(t) and get the trend component T(i)(t).

When the above six steps are completed, the trend component T(t) and seasonal
component S(t) can be obtained.

In the external circulation, first calculate the residual component R(t) according to the
following formula:

R(t) = Y(t)− T(t)− S(t) (10)

The residual component R(t) is used to reflect the abnormal deviation of the original
data. When the residual component at time t is large, it indicates that the abnormal
condition of the sample is serious, which will affect the smoothing effect of loess in the
internal circulation process. In order to solve this problem, the sample robust weight ρt is
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introduced. Due to the influence of correcting outliers, the calculation formula of ρt is
as follows:

ρt = B
(

R(t)
6×median(|R(t)|)

)
(11)

where, B(t) =

{(
1− t2)2,

∣∣∣t∣∣∣≤ 1
0, others

, median(|R(t)|) represents the median of the absolute

value of the residual component R(t). After obtaining the robust weight of all samples, in
the next inner loop, all the LOESS smoothing processes in steps 2 to 6—after finding the
adjacent points—multiply the value of the adjacent points by the robust weight ρt. From the
above formula, it can be seen that when the residual component R(t) of the sample at time
t is large, the robust weight ρt of the sample is smaller. When R(t) ≥ 6 median(|R(t)|), the
robust weight of the sample is ρt = 0, thus, indicating that this point will not be considered
in the process of loess smoothing.

When the outer cycle also ends, three decomposition components of the original
sequence Y(t) can be obtained: the trend component T(t), the seasonal component S(t) and
the residual component R(t).

3. Proposed Methods
3.1. RUL Predictions Based on STL Modeling and Similarity Measurements

The overall framework for RUL predictions based on STL modeling and similarity
comparisons is shown in Figure 2. The method is divided into two modules: offline degra-
dation trajectory database construction, and online degradation trajectory modeling and
RUL prediction. The offline module includes two parts: preprocessing and HI construction.
The online module includes three parts: HI prediction, degradation trajectory prediction
and RUL prediction.
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In the offline stage, data preprocessing, feature selection and feature extraction are
carried out. Additionally, fuzzy clustering is employed to divide the degradation stage and
construct HI. The aero-engine monitoring data have different types and magnitudes. In
order to facilitate the subsequent calculation and processing, the minimum and maximum
normalization is used for standardization.

x∗i =
xi − xmin

xmax − xmin
, i ∈ 1, 2, · · · , n (12)

For high-dimensional monitoring data, the features should be selected through the
statistics method. In this paper, filter feature selection is used for its strong versatility and
simple calculation. The statistics and correlation coefficients of each dimensional feature
are used as the evaluation criteria to select a feature subset with better performance. The
main criteria include variance, Pearson coefficient and Spearman’s coefficient.

D(X) = E(Xt − X)
2
=

n

∑
i=1

(xi − X)
2 (13)

rp =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

(14)

where x and y are the mean value of X and Y, respectively.

rs =

n
∑

i=1
(ri − r)(si − s)√

n
∑

i=1
(ri − r)2

√
n
∑

i=1
(si − s)2

(15)

where ri and si are the ranks of xi and yi, respectively.
The dimension after feature selection is still high. In order to facilitate fuzzy clus-

tering and better observe the clustering effect, PCA is used for feature extraction. After
data preprocessing, the performance data obtained by feature extraction at different
times are clustered by fuzzy clustering. The degradation process is divided into health
stage, degradation stage and near-failure stage, and the clustering center point is ob-
tained. Taking the cluster center as the evaluation benchmark, combined with the
performance data at each time, the health degree is measured by distance. The HI trans-
formation model is designed to construct the historical degradation trajectory database
of an aero-engine.

The online stage includes the health prediction of online data, degradation modeling
and degradation trajectory prediction of single engines based on STL decomposition, and
RUL prediction based on similarity comparison. For online data, the membership degree
of the health stage is predicted by the clustering center of historical data, and then the
transformation of HI is completed. Through STL decomposition, the degradation trajectory
is decomposed into trend term, seasonal term and random term. The trend item is modeled
by the Autoregressive Integrated Moving Average model (ARIMA); the random term is
generated by kernel density estimation (KDE) and acceptance-rejection sampling. The
three items are modeled and predicted, respectively, then added to complete the prediction
of degradation trajectory. The degradation trajectories of HI contain noise, and moving
average filtering is used to smooth the trajectories. By comparing the similarity between
the measurement segment and sliding window of historical trajectories, several segments
in the historical database that are closest to the online track are selected, and the RUL is
obtained by the dynamic weighting prediction.
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3.2. HI Construction Based on Fuzzy Clustering

The degradation process of an aero-engine is a continuous process. It can be divided
into the health stage, degradation stage and near-failure stage. In the health stage, the
engine is in good health and runs smoothly, and the user does not need to carry out special
treatment. In the degradation stage, the components’ performance begins to degenerate
due to dynamic load and other factors. The users need to regularly observe its running
state, but the engine can still run normally and complete the task. In the near-failure stage,
the internal parts of the engine are near fatigue failure, and the engine can run but there
is a risk of shutdown. Users need to pay close attention or replace components to ensure
normal use. Figure 3 shows each degradation stage of an aero-engine.
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Figure 3. Degradation stages of an aero-engine.

Figure 4 shows the algorithm of HI construction based on fuzzy clustering, including
fuzzy clustering, degradation stage division, health state assessment, HI transformation, etc.

The performance parameters obtained by feature extraction have a certain spatial
position relationship with the change in the degradation stage. The input data are two-
dimensional time series X.

XN×2 =


x1
x2
· · ·
xN

, xi ∈ R2 (16)

Through the FCM fuzzy clustering algorithm, the number of clusters is set as three
categories, and the clustering center matrix C and membership matrix U are obtained.

C =

 c1
c2
c3


U =

 u11 · · · u1N

u21
. . . u2N

u31 · · · u3N


(17)
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Among them, C is composed of three cluster centers (i = 1, 2, 3), and U represents the
membership degree data to the cluster center.
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According to the membership degree to the three stages, each time corresponds to the
three stages to complete the division of degradation. To satisfy the definition of HI, this
paper selects the clustering center in the health stage as the benchmark and denotes it as ĉ.

After the benchmark is selected, the distance between current state and the benchmark
is calculated, and each engine will obtain a health-state change curve. In the whole
degradation process, the health-state change curve should show an upward trend.

Di =

√
(xi −

^
c)

2
, i = 1, 2, · · · , q (18)

where q represents the flight cycles of an aero-engine.
In order to make the HI meet the relevant definitions, the distance measurement

results obtained are transformed into the health degree represented by the values in the
[0, 1] interval. The conversion expression between its distance to the benchmark and the
HI is as follows:

HI = 1− Di − Dmin

Dmax − Dmin
(19)
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3.3. Degradation Path Prediction Based on STL Decomposition

The degradation trajectory of an aero-engine only represents the health-state in the
historical flight process. In order to make the life prediction based on similarity more
for-ward-looking and predict RUL in a safer way, the degradation path prediction based
on STL modeling is introduced. Through STL decomposition, the original trajectory is
decomposed into three parts: the trend term representing the overall degradation trend,
the seasonal term representing engine characteristics, and the random term representing
dynamic characteristics. Different methods are used for accurate modeling of degradation,
and multi-step prediction is used to predict HI in the future. For the trend item, the ARIMA
model is used for modeling and multi-step predictions. For the seasonal term, Fast Fourier
Transformation (FFT) is used and the frequency with high-energy proportion is extracted
for the inverse transformation to model the seasonal term. For the random item, the
probability density function is obtained by KDE, and the random items are generated by
acceptance-rejection sampling. The algorithm is shown in Figure 5.
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The trend term reflects the historical health-state changes of an aero-engine. Since
its amplitude is the largest, trend term modeling is also the most important part in the
three terms, which largely determines the prediction accuracy. The ARIMA (p, d, q) model
is an extension of the ARMA (p, q) model. It is widely used in time-series modeling and
predictions for stationary no white noise series data. It can be expressed as(

1−
p

∑
i=1

φiLi

)
(1− L)dXt =

(
1 +

q

∑
i=1

θiLi

)
εt (20)

where L is the lag operator, d ∈ Z+.
The seasonal term contains some noise, and removing the noise can better reflect the

seasonal information caused by the driving operation. FFT is one of the most basic methods
in time domain to frequency domain transform analysis. FFT is an optimized discrete
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FT algorithm. The frequency spectrum of the original periodic signal can be obtained by
FFT. Filtering the weak frequency can effectively extract important seasonal information
and complete the seasonal-term modeling.

There are strong random terms in the degradation process, but the random terms still
obey certain statistical laws. Without losing generality, the probability distribution of the
random term can be obtained by estimating the kernel density of the random term. In the
process of prediction, the discrete distribution is obtained by acceptance–rejection sampling
from the distribution, and the random term is generated. Finally, the modeling and
prediction results of the three items are added to complete the degradation path prediction.

3.4. RUL Prediction Based on Similarity Comparison

As a piece of equipment with long-term service and a complete monitoring sensor,
the aero-engine has a lot of history data. The life prediction method based on trajectory
similarity is an example learning method. The naive modeling assumption is that similar
performance degradation segments have similar RUL. As shown in Figure 6, the overall
framework of the algorithm includes two main steps: trajectory similarity measurement
and the weighted combination of RUL. This method does not need to establish a complex
prediction model and takes the health assessment results as the input. The more cases
accumulated, the stronger the generalization performance of the method. In order to
improve the prediction ability of the model and reduce the risk of exceeding the actual life,
the prediction results of the time-series decomposition modeling are added to the observed
degradation trajectory.
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Due to the noise fluctuation in the degenerate trajectory, the moving average filter-
ing method is used to smooth the degenerate trajectory, and the boundary symmetric
continuation method is used to solve the problem of boundary smoothing.

There are X = {x1, x2, . . . , xm} degradation trajectories to be predicted with a length
of m, and there are historical degradation trajectories {Y1, . . . , Yi, . . . , Yn}, whose lengths
are q1, q2, · · · , qn, respectively.

As shown in Figure 7, select the segment at the end of the degradation track to be
predicted with length p and the prediction segment obtained from the time-series decom-
position modeling to form X′; then measure the similarity with the segment intercepted
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by the sliding window on each historical track. For the degradation track to be predicted,
the sliding window length with the best overall prediction effect is selected according to
its data length and the accuracy of the prediction result. For each historical degradation
track, the similarity of the segments intercepted by the sliding window at each position
is compared, and the most similar segments of each historical degradation track are po-
sitioned and matched. In this paper, the Euclidean distance of two tracks is calculated
to measure their similarity. The Euclidean distance has low computational complexity
and can reflect the degradation position in the degradation process, which is better than
dynamic time warping (DTW). The distance measurement expression for the segment
X′ and Z′ is as follows:

D(X′, Z′) =

√√√√ p

∑
i=1

(xi − zi)
2 (21)
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For the trajectory Yi, a total of mi = qi − p + 1 segments can be intercepted, then
mi similarity values can be calculated for Yi. The segment with the minimum Euclidean
distance calculated is the most similar segment, and the minimum distance is set as di,
and the RUL corresponding to this segment is ri. By performing the same operation on
the historical degradation trajectories in the degradation database, minimum distances
d1, d2, . . . , dn and the corresponding remaining useful life can be obtained, forming a set
RS = {i : [di, ri]|i = 1, 2, · · · , n}.

By sorting the measurement results, the number of reservations is dynamically filtered
according to the prediction effect. At the same time, three weighting strategies are designed
to predict the service life. Strategy A is the naive average method, and the k candidate
results obtained by screening are directly averaged to predict the remaining life.

RULA =
1
k
×

k

∑
1

ri (22)
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Strategy B is weighted by softmax, and its weight is obtained by the similarity calculation:

wi =
ed−1

i

∑k
j=1 ed−1

j
(23)

RULB =
k

∑
1

ri · wi (24)

Strategy C is weighted by defining an inverse proportional weighting function, and
its weight is obtained by the similarity calculation:

wi =
d−1

i

∑k
j=1 d−1

j

(25)

RULC =
k

∑
1

ri · wi (26)

4. Experiment and Analysis
4.1. Introduction of the Aero-Engine Dataset and Preprocessing

In this experiment, the NASA Aeroengine CMAPSS dataset [34] is selected to verify
the proposed algorithm. The CMAPSS software simulates the operation of the engine
system, the fault and performance degradation process of the main rotating parts, and
outputs the performance parameters with noise. Because of its high fidelity and high data
quality, it is widely used in the field of RUL prediction.

The aero-engine monitoring data includes temperature, pressure, speed, etc., with a
total of 26 parameters. The first parameter represents the ID of the aero-engine. The second
represents the number of flight cycles. The third to fifth parameters are working condition
parameters, and other fields are the running status parameters.

Table 1 summarizes the monitoring parameters that can characterize the failure of
the key components of an aero-engine. This dataset includes the temperature, pressure,
flow and other parameters of an aero-engine, thus, reflecting the degradation state of
an engine.

Table 1. Key components of the aero-engine and the monitoring parameters characterized the failure.

Part Name Monitoring Parameters Characterize Failure

1 Aero-engine blade Fan speed, fan inlet pressure, temperature, etc.
2 Aero-engine main bearing Rotor speed, gas path pressure, turbine flow, etc.
3 Connecting bolt of the aero-engine rotor Rotor speed, gas path pressure, temperature, etc.

Table 2 shows the variance of each field of normalized data. The variance of s1, s5,
s6, s10, s16, s18 and s19 is less than 0.02, which is significantly less than the variance
of other fields and can be eliminated. To investigate the correlations between different
features, Pearson correlation analysis and Spearman correlation analysis can be used [35].
As shown in Figure 8, the correlation heatmap shows that the Pearson coefficient and
Spearman coefficient of S9, S14 and RUL are significantly smaller than those of other
features, thus, representing that the correlation between S9 and S14 and RUL is the
smallest. At last, the features including s1, s5, s6, s9, s10, s14, s16, s18 and s19 are removed
from the original data.
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Table 2. Variance of normalized parameters.

Parameters Variance Parameters Variance

s1 0.005532 s12 0.157257
s2 0.150615 s13 0.105761
s3 0.133660 s14 0.098440
s4 0.151931 s15 0.144302
s5 0.005215 s16 0.007783
s6 0.010709 s17 0.129060
s7 0.142523 s18 0.005741
s8 0.107551 s19 0.006879
s9 0.099086 s20 0.140110
s10 0.015037 s21 0.149473
s11 0.158977
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4.2. Experiment Results and Analysis
4.2.1. HI Construction Results and Analysis

According to the analysis of the original data, the data after feature selection are
fused through PCA dimension reduction. For dimension reductions, different dimension
reduction methods including PCA and Locality Preserving Projections are tried in the
experiment. Additionally, the two-dimensional data obtained through PCA are easy to
observe and have the best prediction effect. The center of health stage, rapid degradation
stage and near-failure stage are (−4.29× 10−1, 4.24× 10−4), (5.04× 10−2,−1.13× 10−3)
and (6.90× 10−1, 2.28× 10−3) respectively found through FCM clustering. The clustering
results of historical data are shown in Figure 9a. Taking the engine 1 as an example, the
membership degree change curve of each degradation stage is shown in Figure 9b.
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Figure 9. Fuzzy cluster result and membership degree curve.

The figure shows that the degradation process is well divided by fuzzy clustering,
and the three membership degree curves represent the membership degree of different
stages, thus, indicating that the method proposed in this paper can identify the degradation
stage well.

As the degradation process and failure mechanism of engines are different, the degra-
dation benchmark and failure benchmark are not suitable as the measurement benchmark.
In this paper, the health benchmark is selected as the measurement benchmark. The dis-
tance to health base curve of historical data is shown in Figure 10a. With the increase in
cycle times, the engine gradually deviates from the healthy state. In order to facilitate the
follow-up study, the health-base distance is converted into HI, as shown in Figure 10b. The
constructed health factor improves the problem of using the membership degree as the HI,
and meets the three requirements of the monotonicity, robustness and divisibility of HI.
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Figure 10. Distance to health base and health indicator.

The prediction is made according to the relevant parameters learned by the fuzzy clus-
tering. The prediction results are shown in Figure 11a. The data distribution is consistent
with the historical data. Similarly, the health factors to be predicted are constructed, and
the relevant degradation trajectories are obtained, as shown in Figure 11b.
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Figure 11. FCM predict results and predicted HI paths.

4.2.2. STL Modeling Results and Analysis

In order to solve the problem of poor predictions based on historical data, the time-
series decomposition modeling and predictions are introduced. First, the STL decompo-
sition is implemented on the data to be predicted. Taking engines 3 and 4, for example,
the decomposition results of the trend term, seasonal term and random term are shown
in Figure 12. The influence of the random term is removed from the trend term after
decomposition, which is convenient for modeling and predictions. Each engine’s seasonal
term and random term are different, so independent modeling is also required.
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Figure 12. Degradation trajectory decomposition.

Taking engines 1, 2, 3 and 4, for example, ARIMA is used to model the trend term of
each engine. The model parameters and evaluation results are shown in Table 3, and the
prediction results of the trend term are shown in Figure 13a.

Table 3. ARIMA models.

Engine ID Model Log Likelihood AIC BIC HQIC

1 SARIMAX(0, 2, 0) 143.074 −284.149 −282.781 −283.721
2 SARIMAX(0, 1, 1) 216.029 −428.057 −424.315 −426.643
3 SARIMAX(1, 1, 1) 673.926 −1339.852 −1328.539 −1335.256
4 SARIMAX(0, 1, 3) 564.176 −1118.351 −1105.081 −1112.974
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For the random term, KDE is used to estimate the random-term’s distribution. Taking
engine 3, for example, the random term distribution, histogram and KDE curve is shown
in Figure 13b. For each engine, the random term is modeled by this method, and then the
predicted random term is generated by acceptance–rejection sampling. For the seasonal
term, taking engines 1, 2, 3 and 4, for example, the amplitude and phase angle of each
frequency are obtained by FFT. As shown in Figure 13c, the imaginary number represents
the amplitude and phase angle of each frequency for each engine. The modeling of the
seasonal term is completed by selecting several frequencies with large modulus values.
The synthesis results of the final three models are shown in Figure 13d. It can be found
that the multi-step prediction results conform to the degradation trend and have a good
imitation of the periodicity and randomness of degradation.

4.2.3. RUL Prediction Results and Analysis

The HI degradation trajectory constructed by fuzzy clustering and predicted by STL
decomposition modeling have noise. The sliding average filtering is used to smooth them
to facilitate the subsequent similarity measurement and improve the accuracy of the RUL
prediction. As shown in Figure 14, the degradation tracks after filtering are smooth and
have obvious characteristics, which is convenient for similarity comparisons.

There are usually two kinds of evaluation indexes for the RUL prediction of an aero-
engine: mean square error (MSE) and score. MSE is applicable to all kinds of prediction
problems, and the score is the RUL prediction evaluation index proposed by the data
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publisher. In addition, the true RUL is obtained from the NASA repository. The calculation
formula is as follows:

MSE =
1
N

N

∑
t=1

(rt
ture − rt

predict)
2

(27)

s =


n
∑

i=1
e−(

d
a1
) − 1, d < 0

p
∑

i=1
e(

d
a2
) − 1, d > 0

(28)

where d = rture − rpredict, a1 = 13, a2 = 10.
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The method proposed is tested on the dataset, and the prediction results are shown
in Table 4. In the two indicators, the proposed model is better than the model without
degradation decomposition. The specific prediction results of each engine are shown in
Figure 15. In fact, only a few engines’ prediction results have a certain deviation, and most
of the predictions are consistent with true RUL. The RUL has bias towards safe prediction.

The change curves of MSE of the two methods under the different numbers of most
similar trajectories are shown in Figure 16. The RUL prediction method with STL decompo-
sition modeling performed better generally. The effectiveness of the proposed algorithm
is illustrated.

To illustrate the effectiveness and accuracy of the proposed method, the support vector
machine (SVM), ARIMA-SVM, multilayer neural network (MLP), long short-term neural
network (LSTM) and other algorithms are selected for the comparative test. The proposed
method is denoted as FCM-STL-TSBP. The detailed results are shown in Table 5.

The prediction results of deep learning, such as LSTM, are better than shallow learning
results, such as SVM and MLP. The proposed method performs better on MSE, and the
score is close to LSTM. Additionally, the proposed method has great advantages. And
the history HI database can update dynamically with the increase in flight data and the
model can learn online. The MSE improved 8.0% and the score improved 9.5% compared
to FCM-TSBP.

Table 4. RUL prediction results.

MSE Score

Prediction without the STL model 570 1401
Prediction with the STL model 528 1280

Improved degree 8.0% 9.5%
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Table 5. Comparison test results.

Method MSE Score

SVM [36] 1658 N/A
ARIMA-SVM [37] 1575 N/A

MLP [38] 1411 N/A
LSTM [39] 541 1116
FCM-TSBP 570 1401

FCM-STL-TSBP 528 1280

5. Conclusions

This paper presents a method to predict the RUL for an aero-engine based on time-
series degradation modeling and similarity comparisons. This paper mainly considers the
following three issues: the construction of HI of multi-dimensional monitoring data, the
accurate modeling of the single engine degradation trajectory and the similarity comparison
method of the degradation trajectory. The first problem is solved by fuzzy clustering and
HI transformation. The second problem is solved by STL decomposition, and each item
is modeled respectively. And the third problem is solved by similar segment positioning
and dynamic weight predictions. In particular, the introduction of the predictive degrada-
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tion trajectory improves the original prediction accuracy. Finally, the effectiveness of the
proposed method is verified by experiments on the dataset from NASA.
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