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Abstract: For periodic time-varying systems, a method of parameter identification based on the
block-pulse function is presented. Firstly, the state-space equation of the system was expanded using
the block-pulse function, then the recursion formula of the parameter identification of a time-varying
system was obtained, according to the irrespective and orthogonal characteristics of the block-pulse
function. This study provides a wide range of applications by saving time in calculation with a highly
accurate method. The parameter identification was carried out by including the numerical simulation
model of a three-degree freedom system and the vibration experiment results of an asymmetrical
rotor system. The state space wavelet method and EMD method were compared cross-sectionally
with the proposed method; this shows that the proposed method is accurate and effective, which
makes it valuable in numerous applications. It also has a certain application value for several related
projects.

Keywords: periodic time-varying system; parameter identification; block-pulse function; asymmetric
rotor

1. Introduction

The time-varying characteristics of parameters exist in a large number of engineering
structural systems, for example, the time-varying stiffness characteristics of gear transmis-
sion systems, with a change in meshing position and degree during the meshing process,
along with the time-varying characteristics of the mass and stiffness of the system during
the rotation of an asymmetric or cracked rotor system. The time-varying nature of the
structural parameters may cause significant changes in the dynamics of the structure and
may even affect the stability of system operation. Therefore, analysis of the effects of
time-varying system vibration characteristics and time-varying parameters has received
extensive research attention.

Traditional research on the identification of the dynamical parameters of time-invariant
systems has matured [1] (pp. 119–130), while the corresponding research on time-varying
systems is more difficult and remains at the forefront of research in the field of mechanics [2]
(pp. 171–180). Since the 1950s, scholars have conducted systematic theoretical research on
periodic knowledge-variable systems [3]; this preliminary research has mainly used differ-
ential higher-order equations to describe and solve the stability of periodic time-invariant
systems. For example, P. L. Chow and K. L. Chiou [4] (pp. 315–326) proposed stability crite-
ria for periodic solutions in nonlinear systems. With the development of control theory and
electronic computers, the state space method, which is more applicable to numerical com-
putation, has received considerable attention from scholars. The state space method started
to take off in the late 1980s [5,6] (pp. 165–169, pp. 143–157) and was gradually applied to
the identification of time-varying structural parameters. First, Tasker [7] (pp. 797–808) et al.
verified that the state space method shows good identification speed and broad engineering
application prospects by estimating the online modal parameters of 4 × 4 truss structures,
then Liu [8] (pp. 149–167) extended the modal concept of linear time-varying systems and
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proposed pseudo-modal parameters based on discrete time-state space models and applied
them to the parameter identification of linear time-varying systems. To further speed up
the state space method for the parameter identification of time-varying systems, James
Durbin [9] proposed a time series analysis of state space models, then Poinot and Trige-
assou [10] (pp. 2319–2333) proposed an approximate fractional integrator with recursive
poles and zeros, which, in turn, derives the integer state space equations for fractional
systems; however, the matrices are still large, leading to computational complexity. In an
example analysis of a periodic time-varying system, Shen [11] (pp. 82–87) analyzed the
response state of a tie-rod rotor system with transient periodic motion in the mid-to-high
speed range, considering the inter-disk contact effects.

Scholars have dedicated a great deal of research to solving state space equations,
among which the selection of the impulse function as the expansion function can greatly
reduce the computational effort of solving state space equations [12]. As early as the 1960s,
R.E. Kalman [13] (pp. 152–159) pointed out that the determination of linear dynamic sys-
tems can be achieved via the impulse response matrix. Leang-San Shieh [14] (pp. 383–392)
first proposed to solve the state space equations via the block-pulse function, which has the
properties of orthogonality and irrelevance and can reduce the computational demands
of the numerical calculation of state space equations further. Murali Bosukonda [15] pro-
posed an algebraic method for approximating the simplified state space with fractional
equivalence, based on block-pulse functions, which greatly simplifies the computation in
low-order linear systems; however, as the frequency in linear systems increases, the number
of primary functions required for parameter identification increases and the problem of
tight dynamical properties at high frequencies cannot be solved. For the use of the block-
pulse function in parameter identification, Bouafoura [16] proposed a fractional-equivalent
approximation to simplify the state space algebraic method, which greatly simplifies the
calculation in low-order linear systems; however, with the increase in frequency in linear
systems, the number of primary functions required for parameter identification increases,
and the problem of tight dynamical properties at high frequencies cannot be solved. In the
field of the engineering applications of block-pulse functions for parameter identification,
Yaser Hosseini [17] applied the block-pulse function to the dynamic parameter monitor-
ing of buildings, based on continuous-time state space estimation, and proposed that the
numerical calculation method of block-pulse functions has the advantages of low computa-
tional cost and high accuracy. At present, in the field of control engineering and system
engineering, the research applications of block-pulse functions have become increasingly
mature [17–20]. In the field of rotating machinery, there are few studies about the use of the
block-pulse function for parameter identification. Liao [21] (pp. 71–76) proposed a method
to identify rotor unevenness, based on nonlinear support parameters. Li [22] used the mode
synthesis method to analyze the geometric disorder of blade disc vibration, considering
pre-stress. The use of a block-pulse function for rotating machinery in vibration parameter
identification needs further research.

In this paper, we focus on the parameter identification of periodic time-varying sys-
tems in the field of mechanical vibration. First, we use the block-pulse function to expand
the state-space equations of the system, then we obtain the recurrence formula for the pa-
rameter identification of time-varying systems, based on the irrelevance and orthogonality
characteristics of the block-pulse function, which truncates the vibration data periodically
and quickly solves the state-space equations. Subsequently, the recurrence formula is used
to solve the three-degrees-of-freedom periodic time-varying system and cracked rotor
experimental system, respectively.

2. A Parameter Identification Theory and Algorithms

Structural dynamics problems include incentives, the structure itself (including the
various parameters), and response, which are called the input, systems, and output, ac-
cording to the control theory argument. The parameter identification problem belongs
to the first category of inverse problems of structural dynamics, which refers to finding
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the various parameters describing the characteristics of a system with known inputs and
outputs.

A general linear time-varying n-DOF system can be described using the following
state equation:

.
x(t) = A(t)x(t) + B(t)u(t), x(0) = x0 (1)

where x(t)∈Rn×1 is the state vector, A(t)∈Rn×n is the time-varying system matrix, B(t)∈Rn×r

is the time-varying control matrix, and u(t)∈Rr×1 is the input vector. Parameter identi-
fication, in the scenario when x(t) and u(t) are known, is used for the parameters of A(t)
and B(t). Based on the initial state of the system free-response data to identify A(t), we set
u(t) = 0.

2.1. Expansion of Functions by Block-Pulse Series

In the interval [0, T), an absolute integrable function can be expanded into a set of
block-pulse series [23] (pp. 569–571):

f (t) ≈ f1φ1(t) + f2φ2(t) + · · ·+ fmφm(t) =
m

∑
i=1

fiφi(t) (2)

where φi(t) is the ith item of the block-pulse function, which is defined as:

φi(t) =
{

1 (i− 1)h ≤ t ≤ ih, i = 1, 2, · · · , m
0 others

(3)

where h = T
m is known as the step, m is the number of segments in [0, T), fi is the coefficient

of the ith item, and:

fi ≈
1
h

∫ T

0
f (t)φi(t)dt =

1
h

∫ ih

(i−1)h
f (t)dt (4)

When f (t) is smooth and h is sufficiently fine, we keep the first item to approximate,
then:

fi ≈
1
2
[ f ((i− 1)h) + f (ih)] (5)

where f ((i − 1)h) and f (ih) are the function value of the (i − 1)th and the ith step. We
expand x(t), x0, A(t) in Equation (1), respectively, as the block pulse function, and let m > n,
so that:

x(t) =


x1(t)
x2(t)

...
xn(t)

 ≈


x11 x12 · · · x1m
x21 x22 · · · x2m

...
... · · ·

...
xn1 xn2 · · · xnm




φ1(t)
φ2(t)

...
φm(t)

 (6)

or we write it as:

x(t) ≈ x·1φ1(t) + x·2φ2(t) + · · ·+ x·mφm(t) =
m

∑
i=1

x·iφi(t) (7)

where x·i =
[
x1i x2i · · · xni

]T .
Similarly, we write x0, A(t) as:

x0 ≈ x0φ1(t) + x0φ2(t) + · · ·+ x0φm(t) =
m

∑
i=1

x0φi(t) (8)

A(t) ≈ A1φ1(t) + A2φ2(t) · · ·+ Amφm(t) =
m

∑
i=1

Aiφi(t) (9)
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where x0 =
[
x10 x20 · · · xn0

]T, and:

A(t) =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
... · · ·

...
an1(t) an2(t) · · · ann(t)



Ai =


a11(i) a12(i) · · · a1n(i)
a21(i) a22(i) · · · a2n(i)

...
... · · ·

...
an1(i) an2(i) · · · ann(i)


where i = 1, 2, . . . , m.

2.2. Identifying the Time-Varying System Matrix A(t)

When u(t) = 0, we integrate the items of the left and right sides in Equation (1), to get:

x(t)− x(0) =
∫ t

0
A(τ)x(τ)dt (10)

We expand each wave pulse function into Equation (10), according to the de-correlation
of the wave pulse function:

φi(t)φj(t) =
{

φi(t),
0,

i = j
i 6= j

(11)

Then, Equation (10) can be expressed as:

m

∑
i=1

(x·i − x0)φi(t) =
m

∑
i=1

∫ t

0
Aix·iφi(τ)dτ (12)

since:

∫ t

0
φi(τ)dτ ≈ h

0 · · · 0F
1
2
↑
i

1F · · · F1




φ1(t)
φ2(t)

...
φm(t)

 (13)

Hence:
m

∑
i=1

(x·i − x0)φi(t) = h
m

∑
i=1

(
1
2

Aix·i +
i−1

∑
j=1

Ajx·j

)
φi(t) (14)

When t∈[0, T), the above equations are true for any value, we make sure that the
corresponding coefficients are equal on both sides of the equal, and obtain:

x·i − x0 = h

[
1
2

Aix·i +
i−1

∑
j=1

Ajx·j

]
, i = 1, 2, · · · (15)

when i = 1, x·1 − x0 = h
2 A1x·1, where x·1 and x0 are n-dimensional column vectors, and A1

is n × n matrix. Because n of independent equations cannot be solved for n unknowns, we
merely choose an n linearly independent initial state vector:

x(1)0 : h
2 A1x(1)·1 = x(1)·1 − x(1)0

x(2)0 : h
2 A1x(2)·1 = x(2)·1 − x(2)0

...
x(n)0 : h

2 A1x(n)·1 = x(n)·1 − x(n)0

(16)
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Therefore:
h
2

A1X1 = X1 −X0 (17)

where:
X·1 =

[
x(1)·1 x(2)·1 · · · x(n)·1

]
, X0 =

[
x(1)0 · · · x(n)0

]
For each of the different initial state vectors, the m subintervals status response can be

calculated. Since X0 is an n× n full-rank matrix, X·i can be proved with an n× n full-rank
matrix. Using Equation (17), A1 can be solved:

A1 =
2
h
(X·1 −X0)X−1

·1 (18)

since:
h
2

A1X·i = (X·i −X0)− h
i−1

∑
j=1

AjX·j (19)

The recursive formula of system matrix Ai can be obtained, as follows:{
A1 = 2

h (X·1 −X0)X−1
·1

Ai+1 =
[

2
h

(
X·(i+1) −X·i

)
−AiX·i

]
X−1
·(i+1)

(20)

2.3. Identification of the Stiffness and Damping Matrix of the Periodic Time-Varying Vibration
System A(t)

A dynamic differential equation of n-degrees of freedom with a damping and stiffness
cycle time-varying vibration system can be shown as follows:

M
..
z + C(t)

.
z + K(t)z = f (21)

where z is the displacement column vector of the order p× 1, and M, C, and K are the mass,
damping, and stiffness matrices of the order p× p. In Equation (21), C(t) = Cc + Cv(t),
K(t) = Kc + Kv(t), and Kc, Kv are the constant and time-varying parts, respectively, and
Kv(t) = Kv

(
t + T̃

)
, T̃ is the time-varying period in a damping analogy.

For a free vibration system, we describe Equation (21) in a state equation to be:

.
→
z (t) = A(t)

→
z (t),

→
z (0) =

→
z 0,
→
z =

[
z

.
z
]T (22)

A(t) =
[

0 I
−M−1K(t) −M−1C(t)

]
(23)

where A ∈ Rn×n, z̃ ∈ Rn×1, and n = 2p.
A square matrix is formed by n linearly independent state vectors

→
z i (i time):

Z·i =
[
→
z
(1)
·i

→
z
(2)
·i · · · →

z
(n)
·i

]
(24)

It can be seen from Equation (23) that the last p lines of A are the parameter to be
calculated. To reduce the amount of calculation and improve the speed, the matrix can be
divided into blocks:

Ai =

[
A11,i A12,i
A21,i A22,i

]
, Z·i =

[
Z11,·i Z12,·i
Z21,·i Z22,·i

]

Z−1
·i =

[
Ẑ11,·i Ẑ12,·i
Ẑ21,·i Ẑ22,·i

]
, Ajk,i, Zjk,·i, Ẑjk,·i ∈ Rp×p
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According to Equation (20), the damping and stiffness parameter identification recur-
sive Equations (25)–(28) can be obtained, as follows:

K1 = −2
h

M
[
(Z21,·1 − Z21,0)Ẑ11,·1 + (Z22,·1 − Z22,0)Ẑ21,·1

]
(25)

C1 = −2
h

M
[
(Z21,·1 − Z21,0)Ẑ12,·1 + (Z22,·1 − Z22,0)Ẑ22,·1

]
(26)

Ki+1 =
[
− 2

h M
(

Z21,·(i+1) − Z21,·i
)
− (KiZ11,·i + CiZ21,·i)

]
Ẑ11,·(i+1)

+
[
− 2

h M
(

Z22,·(i+1) − Z22,·i
)
− (KiZ12,·i + CiZ22,·i)

]
Ẑ21,·(i+1)

(27)

Ci+1 =
[
− 2

h M
(

Z21,·(i+1) − Z21,·i
)
− (KiZ11,·i + CiZ21,·i)

]
Ẑ12,·(i+1)

+
[
− 2

h M
(

Z22,·(i+1) − Z22,·i
)
− (KiZ12,·i + CiZ22,·i)

]
Ẑ22,·(i+1)

(28)

According to the theory of Sylvester and Fourier, the spectrum of the free response of
a parametrically excited system is established by Equation (29):

f c
d,i =

∣∣∣ f d + i · f̃
∣∣∣, i = 0,±1,±2, · · · (29)

where f c
d,i and f d are the freedom frequency response and the natural frequency of a para-

metric system, respectively, and f̃ represents the parametric excitation frequency [24,25].
It is easy to see that a parametrically excited system has multi-frequency characteristics.
When i is larger, an f c

i value corresponding to the free vibration of the system is very small.
When frequency components are appropriately cut off, the free vibration response of the
system is still approximately cyclical, so few cycles can be used to identify the parameters.
There is, then, no need to perform the whole calculation, thus greatly reducing the amount
of computation necessary.

3. Parameter Identification of Multi-Degree of a Freedom Simulation System

As shown in Figure 1, a three-degree-of-freedom spring-mass-damping time-varying
structure with mass blocks, where the mass of blocks (m1 = 1 kg, m2 = 2 kg and m3 = 1 kg)
do not vary with time. Stiffness can be shown as k1 = 2× 105 N/m, k2 = 2× 105 N/m,
kc = 1× 105 N/m, and kv = 2× 104 N/m, stiffness varying frequency, Ω = 25.13 rad/s,
and initial phase ϕ = π/2. The time-varying stiffness is k3 = kc + kv cos(Ωt + ϕ). To
highlight the study of stiffness variation, damping is assumed to be c1 = c2 = c3 = 0 and
the external excitation force is assumed to be f1 = f2 = f3 = 0.

Figure 1. Three-degree-of-freedom system with stiffness cycle changing.

We assume that the initial situation is x1(0)= 0.001 m,
.
x1(0)= 0 m/s, x2(0)= 0 m/s,

.
x2(0)= 0 m/s, x3(0)= 0.005 m, and

.
x3(0)= 0 m/s. The dynamic response of the system is

solved using the Newmark-β method, taking the step size as h = 10−4s; the displacement
response is shown in Figure 2 and the velocity response is shown in Figure 3.
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Figure 2. Vibration displacement response of a three-degree-of-freedom stiffness periodic time-
varying system.

Figure 3. Vibration velocity response of a three-degree-of-freedom stiffness periodic time-varying
system.

Spectral analysis of the displacement signal is shown in Figure 4.

Figure 4. A three-degree-of-freedom stiffness periodically time-varying system vibration displace-
ment spectrum.
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It can be seen that the free response of the vibration system has such frequency
components as 25.4± 4.0 Hz, 58.4± 4.0 Hz, 58.4± 2× 4.0 Hz, 85.6± 4.0 Hz, and so on, in
accordance with Equation (29), where f 1 = 25.4 Hz is the first-order intrinsic frequency,
f 2 = 58.4 Hz is the second-order intrinsic frequency, f 3 = 85.6 Hz is the third-order
intrinsic frequency, and f̃ = Ω/(2π) = 4.0 Hz is the parametric excitation frequency. It has
been verified that the parametric vibration system has multi-frequency characteristics.

In this paper, a total of six sets of response calculations under different initial states (and
linearly independent) are carried out; the parameter identification program is prepared
using the MATLAB language, according to the recursive Equations (25)–(28), and the
results and relative errors of each stiffness identification are shown as k∗2 (‘∗’ refers to the
identification stiffness) in Figures 5–8.

Figure 5. Time domain identification result (a) and frequency domain identification results (b) of
non-time-varying stiffness k∗2 .

Figure 6. Relative error of the non-time-varying stiffness k∗2 identification results.

From Figures 5 and 6, it can be seen that the parameter identification method proposed
in this paper can better identify the non-time-varying stiffness value of the system, and the
error is small compared with the preset value.
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Figure 7. Time domain identification result (a) and frequency domain identification results (b) of
time-varying stiffness k∗3 .

Figure 8. Relative error of the time-varying stiffness k∗3 identification results.

From Figures 7 and 8, it can be seen that the parameter identification method proposed
in this paper also identifies the time-varying stiffness value of k∗3 well. It can also be seen
from the right-hand panel of Figure 7 that the stiffness k∗3 consists of two parts: one is the
constant value (zero frequency) 1× 105 N/m, and the other is the frequency f = 4.0 Hz,
while the amplitude is 2.001× 104 and its angular frequency Ω̃ = 2π f = 25.13 rad/s is
consistent with the given Ω = 25.13 rad/s. As can be seen from Figure 8, the relative error
in the stiffness identification results is small, with a maximum value of less than 0.05%.

To study the influence of different signal-to-noise ratios and calculation steps on the
accuracy of recognition results, the mean absolute percentage error (MAPE) of recognition
results is defined as:

MAPE =
1
N

N

∑
i=1

∣∣∣∣ p̃i − pi
pi

∣∣∣∣× 100%

where p̃i and pi are the stiffness identification value and the theoretical value at moment
i·h, respectively. N presents the number of samples.

We then add noise interference to the simulation signal. In the step size of h = 10−4 s,
the simulation results and relative errors of time-varying stiffness p̃3 under different signal-
to-noise ratios are shown in Figures 9–11.
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Figure 9. Time domain identification result (a) and relative error (b) of time-varying stiffness p̃3 at
100 dB signal-to-noise ratio.

Figure 10. Time domain identification result (a) and relative error (b) of time-varying stiffness p̃3 at
80 dB signal-to-noise ratio.

Figure 11. Time domain identification result (a) and relative error (b) of time-varying stiffness p̃3 at
50 dB signal-to-noise ratio.



Aerospace 2022, 9, 614 11 of 17

The effects of signal-to-noise ratio and calculation step size on the recognition accuracy
(MAPE) are shown in Tables 1 and 2, respectively.

Table 1. Stiffness identification MAPE at different SNRs.

Signal-to-Noise Ratio (SNR) (dB) Mean Absolute Percentage Error (MAPE) (%)

No noise 0.0223
100 0.0878
80 0.1849
50 0.9703

Table 2. Stiffness identification MAPE at different step sizes without noise.

Calculation Step (s) Mean Absolute Percentage Error (MAPE) (%)

10−3 2.1385
10−4 0.0223
10−5 0.0016

From Tables 1 and 2, it can be seen that the signal noise has a greater impact on the
recognition result, so the signal-to-noise ratio should be improved as much as possible in
the signal acquisition process; the smaller the calculation step, the better the recognition
effect. However, the corresponding calculation volume also increases, so the appropriate
step length should be selected according to the actual requirements.

For the Newmark-β method used in solving the dynamic response of the system, the
calculation step size affects the accuracy of the calculation, as can be seen in Figure 4 in
line 186. The highest order intrinsic frequency of the three-degree-of-freedom system in
this paper is f3 = 85.6 Hz; according to the sampling theorem, the sampling frequency
should be greater than the signal analysis frequency by more than two times so as not to
occur in the mixing. In order to maintain the accuracy of the signal amplitude, sampling
frequency should be much greater than f3. The sampling frequency selected in this paper is
fs = 10, 000 Hz, that is, h = 10−4 s. At the same time, according to the results of Table 2, in
line 230, it can be seen that when h = 10−3 s, the accuracy is poor; when we take h = 10−4 s,
the accuracy has met the requirements, while if we take h = 10−5 s, the computational
volume is large. Taking this into account, we chose h = 10−4 s.

In order to verify the higher accuracy of the proposed method, compared with the
existing methods, a cross-sectional comparison of the identification results of the periodic
time-varying stiffness k1 is presented in the literature [26]. The paper presents and dis-
cusses the identification accuracy of the state space wavelet method for the parametric
time-varying stiffness in the two-degrees-of-freedom simulation example, and shows the
identification accuracy of the periodic time-varying stiffness at four signal-to-noise ratios:
no noise, 50, 80, and 100, where the variation pattern of the periodic time-varying stiffness
k1 is the same as that of the time-varying stiffness k∗3 recognized in this paper. The difference
lies in the fact that the simulation example given in the literature has one less degree of
freedom than this paper.

In contrast, in the case of noiseless and medium-high signal-to-noise ratios, using the
block-pulse function method to identify periodic time-varying stiffness can greatly improve
the identification accuracy, and the higher the signal-to-noise ratio, as shown in Table 3, the
higher the accuracy of the identification results; in the absence of noise, the block-pulse
function method can also identify the time-varying parameters more accurately.

In order to test the improvement of the parameter identification speed of the block-
pulse function method, the parameter identification speed of this method is compared with
that of the state space wavelet method and that of the EMD method; the time required to
identify the time-varying stiffness sequence in a three-degree-of-freedom system using this
method is recorded, while the time required to identify the time-varying stiffness sequence
in the same system without noise is recorded with the same arithmetic power.
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Table 3. Stiffness identification MAPE in two methods at different SNRs.

Signal-to-Noise Ratio (SNR)
(dB)

MAPE in Block-Pulse
Function Method (%)

MAPE in State Space
Wavelet Method (%)

No noise 0.0223 0.0991
100 0.0878 0.3260
80 0.1849 0.4105
50 0.9703 0.6995

By identifying the time-varying stiffness of the same three-degree-of-freedom system,
as shown in Table 4, the time required to identify the time-varying stiffness sequence by
this method is 248 ms, while the time required by the state-space wavelet method is 532 ms,
the time required by the EMD method is 668 ms; the speed of identification by this method
is improved by 53.38% compared to the state-space wavelet method, and the speed of
identification by the EMD method is improved by 62.87%.

Table 4. Calculating time in the three methods used in the same three-degree-of-freedom system.

Method Block-Pulse
Function Method

State Space Wavelet
Method EMD Method

Calculate time 248 ms 532 ms 668 ms

4. Periodic Time-Varying Rotor System Stiffness Identification
4.1. Typical Asymmetric (Square Axis) Rotor Experimental System Construction

In order to experimentally verify the parameter identification method proposed in this
paper, a typical asymmetric (square-axis) rotor experimental system is built, as shown in
Figure 12. The instruments and equipment used in the experiment are shown in Table 5.
After hammering the shaft center by 45 degrees with a horizontal axis, position the next
disc. LMS Test.lab is used for data acquisition and processing.

Figure 12. Experimental system of an asymmetric rotor.
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Table 5. Experimental equipment.

Instrument Name Instrument Model

Multi-channel dynamic testing system LMS SCADAS Recorder (SCR202)
Servo motor 130SM04030

Servo motor controller JYT-SERVO-II
Workstation (Dell laptop) Dell M5810

Eddy current displacement measuring instrument YE5937B
Eddy current displacement sensor CWY-DO-502

Laser speed tester Polytec OFV-5000
PCB acceleration sensor 333B30

PCB hammer 086D05

4.2. Square Shaft Rotor Stiffness Identification

The structure of the square shaft rotor is shown in Figures 13 and 14, the material of
the rotor shaft is 30CrMnSi; the material of the disc is 45# steel, and the relevant parameters
are: l = 300 mm, dshaft = 14 mm, h = 10 mm, ρshaft = 7750 kg/m3, Eshaft = 2.01× 1011 Pa,
µshaft = 0.227, Ddisc = 160 mm, ρdisc = 7890 kg/m3, µdisc = 0.269. In order to achieve
asymmetry in the shaft, a partial cut was made on the shaft so that the bending stiffness in
the two mutually perpendicular directions (η shaft to ξ shaft) was different. In the exper-
iments, the speed controller is adjusted to make the rotor run steadily at n = 720 r/min,
so that the flexural stiffness of the shaft in both horizontal and vertical directions then
varies with the speed; the impact response experiments are performed on the rotor system
with a force hammer, to eliminate the effect of an unbalanced response of the rotor under
centrifugal force by reducing the rotor unbalance and filtering, and to highlight the free
response of the rotor after impulse excitation.

Figure 13. Schematic diagram of the asymmetric rotor.

Figure 14. Experimental system of the asymmetric rotor.

The square shaft rotor system was hammered for several tests, and the vibration
displacement at the shaft center (in both horizontal and vertical directions) was recorded
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using eddy current displacement sensors; the vibration velocity at the shaft center in the
horizontal direction was collected using laser velocity testers, and the vibration acceler-
ation at the rotor support (horizontal, vertical, and axial directions) was recorded using
acceleration sensors. The horizontal displacement and velocity response of a certain test are
shown in Figures 15 and 16, respectively. The horizontal stiffness variation of the square
shaft rotor is shown in Figure 17.

Figure 15. Horizontal displacement response.

Figure 16. Horizontal speed response.

Figure 17. Time domain diagram of the horizontal stiffness variation of the square shaft rotor.
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It can be seen that the horizontal stiffness of the square-axis rotor identified by using
the method in this paper consists of two parts: constant value and periodic time-varying,
and the identified stiffness curve has some burrs due to the presence of noise in the data
acquisition. The frequency domain analysis of the curve is shown in Figure 18.

Figure 18. Square-axis rotor horizontal stiffness spectrum.

As can be seen from Figure 18, the stiffness identified in this paper is consistent with
those values calculated as kc = 2.45× 106 N/m and kv = 0.187× 106 N/m, using the
ANSYS finite element software. The variation of the horizontal stiffness of the square-axis
rotor has obvious periodicity, and the frequency component f = 24 Hz is exactly two
times that of the rotor rotation frequency fn = 720/60 = 12, which is consistent with the
time-varying quadratic stiffness of the rotor rotation.

5. Discussion

(1) The recursive formula for the identification of the periodic time-varying rotor
system parameters derived in this paper has the advantages of concise structure, time-
saving calculation, and high accuracy.

(2) The signal noise has a certain influence on the recognition result, so the signal-to-
noise ratio should be improved as much as possible in the signal acquisition process. In the
case of the Newmark-β method used in solving the dynamic response of the system, the
calculation step length affects the accuracy of the calculation. According to the sampling
theorem, the sampling frequency should be greater than the analysis frequency of the
signal by a factor of two or more, in order to avoid the occurrence of mixing. The smaller
the calculation step, the better the recognition effect, but the corresponding calculation
volume also increases, so an appropriate step size should be selected according to the actual
requirements. At the same time, according to the results of Table 2 in line 230, it can be seen
that when h = 10−3 s, the accuracy is poor; when we take h = 10−4 s, the accuracy has met
the requirements, while if we take h = 10−5 s, the computational volume is large; taking
this into account, we chose h = 10−4 s.

(3) By identifying the parameters of the numerical simulation model and the actual
periodic time-varying rotor system, the time-varying stiffness parameters can be identified
more accurately, thus verifying the correctness and effectiveness of the method. Compared
with the state-space wavelet method and with the EMD method, the recognition accuracy
of this paper is higher under the conditions of noise-free and high signal-to-noise ratios;
the speed of identification by this method is improved by 53.38% compared to the state-
space wavelet method, and the speed of identification by the EMD method is improved by
62.87%.

(4) This paper provides a new method for the parameter identification and fault
diagnosis of engineering machinery structures with periodic time-varying parameters, such
as gears and cracked rotors, which has great engineering application value.
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