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Abstract: Satellite angular motion under the action of the Sdot one-axis magnetic control algorithm is
analyzed. Sdot control stabilizes the maximum moment of inertia axis towards the Sun. Evolutionary
equations that avoid singularity in the required position are derived. Linearization of equations
is performed and new variables that describe the maximum moment of inertia axis oscillations
amplitudes are introduced. The resulting equations are suitable for the averaging method application.
Evolutionary equations for slow variables are solved. Simplified evolutionary expressions are verified
with numerical simulation.
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1. Introduction

An Sdot magnetic attitude control algorithm was proposed in [1]. This one-axis control
was designed for the Chibis-M satellite [2] to provide solar panels attitude towards the Sun
in emergency situation of the reaction wheels failure. Control was successfully used during
the extended mission lifetime in this particular situation [3]. The Sdot control has distinct
advantages and disadvantages. As an emergency control algorithm, it benefits from a very
simple formulation, thus requiring negligible computation efforts in the commanded dipole
moment calculation. Moreover, this control directly utilizes the difference between two
consecutive Sun sensor measurements in a way similar to Bdot [4,5], thus avoiding attitude
determination routines. The disadvantages are ambiguity in the stabilization direction and
low expected accuracy compared to a typical one-axis spin stabilization concept [6–13].
Sdot leads to the satellite rotation. There is no control over the rotation rate since Sun
sensors cannot provide information about the rotation around the Sun direction. Sdot
may be considered as a simple low performance version of spin stabilization suitable for
the Sun’s acquisition in an emergency situation. Similar approach is developed in [14]
where Sun sensors and magnetometer measurements are used for the Sun acquisition on
a Sun-synchronous orbit. In [15], only two magnetorquers are used. In [16], an intuitive
approach is centered around the solar panels’ current output for the control construction.
In [17] the Sun direction vector is utilized for the dipole calculation.

The present paper supplements results developed in [1]. Namely, paper [1] analyzes
the satellite motion in the Sun acquisition phase, which is far from the required one axis
stabilization. Asymptotic behavior is investigated showing that the satellite settles at the
rotation around the maximum moment of inertia axis while this axis aligns with the Sun’s
direction. However, the equations of motion used in [1] have singularity in the required
attitude. Attitude angles of the satellite and its angular momentum that are convenient for
the transient motion analysis cannot be used for the investigation of the motion near the
required attitude. The present paper fills this gap by introducing different evolutionary
equations that are free from singularity in the required attitude. These equations are further
linearized and new variables are introduced to represent the amplitudes of oscillations
near the Sun’s direction. Linearization is widely used to analyze stability with Floquet
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theory, design specific magnetic attitude control, or to find an approximate solution to the
equations of motion [18–22]. In the present paper, the evolution of amplitudes in linear
approximation is investigated using the averaging technique [23,24]. This technique is
well suited for the considered problem. The satellite settles at a constant rotation around
one axis and the control depends on the periodically varying geomagnetic field. Both
situations are extensively studied [25–27] with the averaging approach to establish the
essential evolutionary dynamics of the satellite. The developed approximate solution is
verified with the numerical simulation in the paper.

2. Evolutionary Equations of Motion

Paper [1] utilizes classic evolutionary variables that are also commonly called Beletsky-
Chernousko variables [28]. These variables include the angular momentum magnitude
and two sets of attitude angles describing the momentum vector and satellite position.
Evolutionary equations are convenient for the analysis of spinning satellite dynamics.
The rotation rate is characterized by a single variable. A single angle represents the
angular momentum vector attitude relative to the designated direction in the inertial
space. Similarly, a single nutation angle represents the discrepancy between the angular
momentum vector and the maximum moment of the inertia axis. However, the equations
exhibit singularity when any of these angles is close to zero. Therefore these equations are
well suited for the Sun acquisition motion analysis, but cannot be used in a Sun tracking
mode near the required attitude.

To overcome this problem, another set of angles is introduced in the paper. The general
approach remains the same. First, the angular momentum vector attitude in the inertial
space is established using two angles. Second, the satellite attitude relative to the angular
momentum vector is described with three angles. The difference with classic evolutionary
variables is that two pairs of angles represent the deviation of the angular momentum from
the required direction and the maximum moment of inertia axis deviation from the angular
momentum. As a result, this set of angles is less convenient to represent essential motion
characteristics, but at the same time the singularity is avoided.

2.1. Angular Momentum Vector Attitude

First the inertial reference frame OY1Y2Y3 is introduced. The origin is placed at the
Earth’s center (its motion is neglected on a short time interval of a few hours). Axis OY3 is
directed along the satellite orbit normal, and axis OY1 is directed towards the ascending
node of a keplerian orbit. This reference frame is used to introduce the geomagnetic
induction vector model.

Angular momentum motion is described relative to the inertial reference frame
OX1X2X3. This frame has its OX3 axis directed towards the Sun. This direction is consid-
ered constant since the dynamic analysis is confined to a few hours and Earth’s motion
around the Sun can be neglected. Axes OX1 and OX2 may be chosen at will. Equations
of motion utilize satellite attitude with respect to the OX frame whereas the geomagnetic
induction vector is represented in the OY frame. Constant matrix C: OY→ OX is used for
the transition between these frames. This matrix depends on the current Sun position OX3
relative to the satellite orbit which is described by OY frame axes.

Reference frame OL1L2L3 is associated with the satellite angular momentum. Axis
OL3 is aligned with the momentum vector. The choice of OL1 and OL2 axes is somewhat
arbitrary for the single-axis stabilized satellite. In the present paper this choice is governed
by the requirement of no singularity in the equations of motion when axes OL3 and OX3
coincide. To construct the OL1 axis, consider the OX1L3 plane (Figure 1). The direction that
is perpendicular to OL3 in this plane is designated as OL1. As there are two perpendicular
directions in this plane, the angle between OL1 and OX1L3 should be acute for unambiguity
of the reference frame construction. Axis OL2 is constructed to complement the right-
handed reference frame. The transition from OX reference frame to OL frame is defined by
two consecutive rotations. Corresponding angles are defined in Figure 1. The first rotation
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is performed around the OX1 axis. This rotation aligns OX2 along OL2 axis, and the rotation
angle is designated as ρ. A second rotation by the angle σ around the OL2 axis aligns the
intermediate third axis with the angular momentum direction OL3. The angle between
the angular momentum vector and the maximum moment of inertia axis is defined as
cos β = cos θ cos ϕ.
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Figure 1. Angular momentum vector attitude in the inertial space.

The required Sun-facing satellite attitude corresponds to the alignment of the angular
momentum vector OL3 with the Sun direction OX3 which is characterized by angles
ρ = σ = 0. Unlike classic evolutionary variables, there is no single angle between OL3
and OX3. This complicates the interpretation of the dynamics. On the other hand, this
eliminates singularity in the equations of motions. To derive these equations, the transition
matrix OL→ OX is established,

Q =

 cos σ 0 sin σ
sin ρ sin σ cos ρ − sin ρ cos σ
− cos ρ sin σ sin ρ cos ρ cos σ

. (1)

Designating the angular momentum vector as L and its magnitude as L one arrives at
a simple expression LL = (0, 0, L) in OL frame. Angular momentum vector in the inertial
frame OX is therefore

LX = Q · (0, 0, L) = L(sin σ,− sin ρ cos σ, cos ρ cos σ).

Subscript X refers to the vector expressed in OX frame. Likewise other subscripts
define vectors expressed in different frames further on.

Taking the derivatives of the momentum vector components in the inertial space
and solving for L, ρ, and σ derivatives, equations that represent behavior of the angular
momentum vector magnitude and its attitude in the inertial space are obtained,

dL
dt = M3,

dρ
dt = − 1

L cos σ M2,
dσ
dt = 1

L M1,
(2)

where Mk are the torque components in the angular momentum reference frame OL in the
following analysis.
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2.2. Satellite Attitude Relative to the Angular Momentum

Satellite-fixed reference frame Oz1z2z3 is defined by the principal central axes of inertia.
Satellite reference frame attitude relative to the angular momentum reference frame OL is
represented by the rotation angles ψ, θ, ϕ with rotation sequence 3-2-1 (Figure 2).
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Figure 2. Satellite attitude relative to the angular momentum.

The rotation matrix Oz→OL is

A =

cos ψ cos θ sin ϕ cos ψ sin θ − cos ϕ sin ψ cos ϕ cos ψ sin θ + sin ϕ sin ψ
sin ψ cos θ sin ϕ sin ψ sin θ + cos ϕ cos ψ cos ϕ sin ψ sin θ − sin ϕ cos ψ
− sin θ sin ϕ cos θ cos ϕ cos θ

. (3)

Axis Oz3 is the maximum moment of inertia one further on. As the satellite settles at
the rotation around the maximum moment of inertia axis in the Sun acquisition phase [1],
this means that Oz3 aligns with OL3. The required attitude is therefore ϕ = θ = 0.
Analogous to the angular momentum attitude, the maximum moment of inertia axis
attitude relative to the angular momentum vector is defined by two angles instead of one in
classic evolutionary equations. However, the equations of motion do not exhibit singularity
in the required position.

Equations for the attitude angles require expressions for the angular velocity compo-
nents. Projecting derivatives of angles depicted in Figures 1 and 2 on Oz frame axes yields

ωz1 =
L
A

a31 =
.
ψa31 +

.
ϕ +

.
ρ(cos σa11 + sin σa31) +

.
σa21,

ωz2 =
L
B

a32 =
.
ψa32 +

.
θ cos ϕ +

.
ρ(cos σa12 + sin σa32) +

.
σa22,

ωz3 =
L
C

a33 =
.
ψa33 −

.
θ sin ϕ +

.
ρ(cos σa13 + sin σa33) +

.
σa23,

where A, B, C are the principal moments of inertia of the satellite, aij are matrix A compo-
nents, ωk are angular velocity components along Oz frame axes. Derivatives of the angular
momentum attitude angles ρ, σ are given by (2). Solving equations for the satellite attitude
angles derivatives provides

dϕ

dt
= L sin θ

(
− 1

A
+

sin2 ϕ

B
+

cos2 ϕ

C

)
+

1
L cos θ

(−M1 sin ψ + M2 cos ψ),
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dψ

dt
= L

(
sin2 ϕ

B
+

cos2 ϕ

C

)
+

1
L

M2(cos ψ tan θ + tan σ)− 1
L

M1 sin ψ tan θ, (4)

dθ

dt
= L sin ϕ cos ϕ cos θ

(
1
B
− 1

C

)
− 1

L
(M1 cos ψ + M2 sin ψ).

Equations (2)–(4) fully describe the angular momentum behavior in the inertial space
and satellite rotation relative to the angular momentum.

3. Satellite Environment

The satellite motion is considered in two different scenarios. The first simplified
scenario is utilized to obtain the approximate evolutionary dynamics of the satellite. It is
subjected to the control torque only. Evolutionary equations of motion are solved with an
averaging technique revealing expressions that describe the satellite dynamics. In order
to verify this result, a second scenario is developed. The satellite is exposed to various
disturbance sources in the numerical simulation of initial equations of motion.

3.1. Control Law and Geomagnetic Field Model in Simplified Scenario

The control torque is
M = m× B, (5)

where m is the control dipole moment, B is the geomagnetic induction vector. Sdot control
law expression is [1]

m = k cosα(ω× S), (6)

where k is a positive control gain, S is the direction to the Sun, α is the angle between the
Sun direction and geomagnetic induction vector.

The direct dipole model is used for the geomagnetic field representation. The induction
vector in OY frame is [29,30]

BY = B0

(
−3

2
sin 2ω0t sin i,

(
3
2

cos 2ω0t− 1
2

)
sin i, cos i

)
= B0(B1Y, B2Y, B3Y), (7)

where ω0 is orbital rate, B0 = µ/r3, µ ≈ 7.7245·106 T·km3, r is the satellite radius vector.
Note that the induction vector magnitude is not constant. Its magnitude is

|B| = B0χ(t), (8)

where χ(t) =
√

1 + 3 sin2 ω0t sin2 i with i being the orbit inclination. Unit induction vector
bY and its components are introduced according to

bY = BY/B0χ(t), bkY = BkY/χ. (9)

Despite not being exactly the induction vector magnitude, constant B0 is used as a
general measure of the field intensity (note that 1 ≤ χ ≤ 2).

Control torque, control dipole moment, and geomagnetic induction expressions com-
plete the dynamical model (2)–(4).

3.2. Satellite Motion Framework in the Numerical Simulation

A numerical simulation is performed with classic Euler angles and quaternion
kinematics [31],

Jdω/dt +ω× Jω = M,( .
q0.
q

)
=

1
2

(
q0
q

)
◦
(

0
ω

)
,
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where “◦” is the quaternion multiplication and J is the satellite inertia tensor. The satellite
is subjected to the control torque, gravitational torque, aerodynamic torque, torque due to
the residual dipole moment, and disturbing torque due to the unknown or complex factors.

The control dipole moment (6) is simplified taking into account that dS/dt ≈ −ω× S
for almost constant inertial Sun direction. Further simplifying the derivative as a finite
difference, the actual control becomes

m = −k cos α
Sk − Sk−1

∆t

where two Sun sensor measurements on two consecutive control steps are used. An IGRF
model [32] is used to represent the Earth’s magnetic field for the control torque calculation.

Gravitational torque assumes a central Earth field [31]. Aerodynamic torque is cal-
culated as the sum of torques acting on the sides of a parallelepiped satellite facing the
incoming flow [28]. The residual dipole moment has the constant value of the specified
magnitude along each satellite axis and periodic part with approximately orbital frequency.
Other factors, for example solar radiation pressure, Earth’s oblateness, etc. are generalized
under constant and periodic torques, the latter having orbital and double orbital rates.
Finally, the Sun’s direction is determined with constant bias and normally distributed noise.

4. Evolutionary Equations near the Required Attitude

Equations of motion (2)-(4) are linearized near the required attitude characterized by
small angles ϕ, θ, ρ, σ,

dL
dt

= M3,
dρ

dt
= − 1

L
M2,

dσ

dt
=

1
L

M1,

dϕ

dt
= Lθ

(
1
C
− 1

A

)
+

1
L
(−M1 sin ψ + M2 cos ψ),

dψ

dt
=

L
C
+

1
L

M2(θ cos ψ + σ)− 1
L

M1θ sin ψ,

dθ

dt
= Lϕ

(
1
B
− 1

C

)
− 1

L
(M1 cos ψ + M2 sin ψ).

Linearization implies that quantities of the second order of small angles are ignored in
the series expansion of cosine function and third order is ignored in sine function. As a
result the direction cosines matrices (1) and (3) in the linear approximation become

Q =

 1 0 σ
0 1 −ρ
−σ ρ 1

,A =

cos ψ − sin ψ θ cos ψ + ϕ sin ψ
sin ψ cos ψ θ sin ψ− ϕ cos ψ
−θ ϕ 1

. (10)

Specific expressions for the control dipole moment (6) and control torque (5) are
required to fully expand equations. Recalling that evolutionary equations utilize torque
components in OL frame, the Sun’s direction is calculated as

SL = QT(0, 0, 1) = (−σ, ρ, 1).

Note that linearized matrix Q (10) is used. The angular velocity vector in OL frame is
related to the velocity vector in Oz frame as ωL = Aωz. The angular momentum vector
in Oz frame is related to the angular velocity in the Oz frame and momentum in the OL
frame as Lz = Jωz = AT(0, 0, L). Solving for the velocity in OL frame and using linearized
matrix A provides

ωL = L

− 1
A θ cos ψ− 1

B ϕ sin ψ + 1
C (θ cos ψ + ϕ sin ψ)

− 1
A θ sin ψ + 1

B ϕ cos ψ + 1
C (θ sin ψ− ϕ cos ψ)

1
C

. (11)
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The linearized control dipole moment is therefore

mL = k cos α

 ω2L − ρω3L
−ω1L − σω3L

0

,

where the angular velocity components ωkL are given by (11). Angle α between the Sun
direction and geomagnetic induction vector is calculated in the inertial reference frame.
The unit geomagnetic induction vector bX in OX frame is introduced according to (8) as
BX = B0χ(t)bX . Specific expressions for the induction vector components are given in the
OY frame (7). Transition to the OX frame is performed according to bX = CbY. Without
expanding the transformation expression, bX components are further designated as bk for
the majority of the analysis. Note that the subscript “X” that designates vector components
in the OX frame is omitted for brevity in bk.

Recalling that the Sun is directed along the OX3 axis and taking into account that
bk constitute a unit vector bX, the angle between the Sun direction and the geomagnetic
induction vector is calculated as cos α = b3. The induction vector in the OL frame is
required for the torque calculation,

BL = QTBX = B0χ

 b1 − σb3
b2 + ρb3

b3 + σb1 − ρb2

.

Substituting the dipole moment and induction vector in the control torque expression
(5) provides

ML = kB0χb3L

 −(σω3L + ω1L)b3
(ρω3L −ω2L)b3

(σω3L + ω1L)b1 − (ρω3L −ω2L)b2

.

Introducing this along with ωkL expressions (11) into the linearized equations of
motion yields

dL
dt = kB0χb3L

[
b1

{
1
C (σ + θ cos ψ + ϕ sin ψ)− 1

A θ cos ψ− 1
B ϕ sin ψ

}
−

b2

{
1
C (ρ− θ sin ψ + ϕ cos ψ) + 1

A θ sin ψ− 1
B ϕ cos ψ

}]
,

dρ

dt
= kB0χb2

3

[
1
C
(−ρ + θ sin ψ + ϕ cos ψ)− 1

A
θ sin ψ +

1
B

ϕ cos ψ

]
,

dσ

dt
= −kB0χb2

3

[
1
C
(σ + θ cos ψ + ϕ sin ψ)− 1

A
θ cos ψ− 1

B
ϕ sin ψ

]
,

dϕ

dt
= Lθ

(
1
C
− 1

A

)
+ kB0χb2

3

[
1
C
(σ sin ψ + ρ cos ψ) + ϕ

(
1
C
− 1

B

)]
,

dψ

dt
=

L
C

,

dθ

dt
= Lϕ

(
1
B
− 1

C

)
+ kB0χb2

3

[
1
C
(σ cos ψ− ρ sin ψ) + ϕ

(
1
C
− 1

A

)]
.

Note that bk and χ are time-varying and periodic.
Further analysis of the equations of motion requires small parameter introduction and

dimensionless time. Angular momentum magnitude L0 and attitude angles are constant in
the absence of the torque. The satellite rotates uniformly in this case,

dψ

dt
=

L0

C
= const
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The undisturbed rotation rate L0/C and corresponding rotation period are used as a
base for the dimensionless time τ = L0/C · t. Small parameter ε = kB0/L0 characterizes
the change of the angular momentum relative to its magnitude. The relative change is
slow if the control torque is weak enough, and ε� 1. Finally, the dimensionless angular
momentum magnitude is expressed in terms of the undisturbed value as l = L/L0. Fully
dimensionless equations of motion are

.
l = εχlb3

[
b1

{
σ + θ cos ψ + ϕ sin ψ− C

A θ cos ψ− C
B ϕ sin ψ

}
−

b2

{
ρ− θ sin ψ + ϕ cos ψ + C

A θ sin ψ− C
B ϕ cos ψ

}]
,

.
ρ = εχb2

3

[
−ρ + θ sin ψ + ϕ cos ψ− C

A
θ sin ψ +

C
B

ϕ cos ψ

]
,

.
σ = −εχb2

3

[
σ + θ cos ψ + ϕ sin ψ− C

A
θ cos ψ− C

B
ϕ sin ψ

]
, (12)

.
ϕ = lθ

(
1− C

A

)
+ εχb2

3

[
σ sin ψ + ρ cos ψ + ϕ

(
1− C

B

)]
,

.
ψ = l,

.
θ = lϕ

(
C
B
− 1
)
+ εχb2

3

[
σ cos ψ− ρ sin ψ + ϕ

(
1− C

A

)]
.

5. Linearized Equations Analysis

Equation (12) includes small parameters and therefore l, ρ, and σ are slow variables,
whereas the rotation angle ψ is fast. Angles ϕ and θ represent the maximum moment of
inertia axis attitude relative to the angular momentum vector. Intuitively, the angle between
the maximum moment of inertia axis and the angular momentum changes slowly. This is
formalized in derivatives of ϕ and θ being proportional to their values, which are small
in linear approximation. However, the structure of the equations of motion requires slow
variable derivatives to be proportional to small parameter ε for the averaging technique
application. Equation (12) does not satisfy this requirement. The additional change of
variables is performed to modify these equations.

5.1. Maximum Moment of Inertia Oscillations Amplitude

Angles ϕ and θ should be replaced with new slow variables. Consider the torque free
motion of the satellite for this purpose. In this case ε= 0 and

.
ϕ = −λ2

ϕθ,
.
θ = λ2

θ ϕ,
(13)

where λ2
ϕ = l(C/A− 1), λ2

θ = l(C/B− 1), and the angular momentum magnitude l is
constant. Note that C is the maximum moment of inertia. The solution for (13) is

ϕ = a cos
(
λϕλθτ

)
− b λϕ

λθ
sin
(
λϕλθτ

)
,

θ = a λθ
λϕ

sin
(
λϕλθτ

)
+ b cos

(
λϕλθτ

)
,

(14)

where a = ϕ(0), b = θ(0).



Aerospace 2022, 9, 639 9 of 17

Torque influence on motion (14) results in change of amplitudes a, b and frequency
λϕλθ . To find this change, the derivative of the expression for ϕ is introduced to (12)
leading to

.
ϕ =

.
a cos

(
λϕλθτ

)
− aτ

dλϕλθ

dτ sin
(
λϕλθτ

)
− aλϕλθ sin

(
λϕλθτ

)
−

.
b λϕ

λθ
sin
(
λϕλθτ

)
− b λϕ

λθ
τ

dλϕλθ

dτ cos
(
λϕλθτ

)
− b λϕ

λθ
cos
(
λϕλθτ

)
=

−λ2
ϕ

(
a λθ

λϕ
sin
(
λϕλθτ

)
+ b cos

(
λϕλθτ

))
+ εMϕ+

εχb2
3

(
1− C

B

)(
a cos

(
λϕλθτ

)
− b λϕ

λθ
sin
(
λϕλθτ

))
,

where Mϕ = χb2
3(σ sin ψ + ρ cos ψ). Note that expressions (14) are used for ϕ and θ in (12).

The frequency derivative is

dλϕλθ

dτ
=

d
dτ

(
l
√
(C/A− 1)(C/B− 1)

)
= εξMl ,

where ξ =
√
(C/A− 1)(C/B− 1), Ml is given by the right side of the first equation in (12).

Simplifying yields

.
a cos

(
λϕλθτ

)
−

.
b λϕ

λθ
sin
(
λϕλθτ

)
= εξτaMl sin

(
λϕλθτ

)
+ εξτbMl

λϕ

λθ
cos
(
λϕλθτ

)
+

εMϕ + εχb2
3

(
1− C

B

)(
a cos

(
λϕλθτ

)
− b λϕ

λθ
sin
(
λϕλθτ

))
.

Performing similar operations with θ provides

.
a λθ

λϕ
sin
(
λϕλθτ

)
+

.
b cos

(
λϕλθτ

)
= −εξτaMl

λθ
λϕ

cos
(
λϕλθτ

)
+ εξτbMl sin

(
λϕλθτ

)
+

εMθ + εχb2
3

(
1− C

A

)(
a λθ

λϕ
sin
(
λϕλθτ

)
+ b cos

(
λϕλθτ

))
,

where Mθ = χb2
3(σ cos ψ− ρ sin ψ).

Finally solving for the amplitudes derivatives

.
a = εξτb λϕ

λθ
Ml + εMa + εχab2

3

(
1− C

B cos2(λϕλθτ
)
− C

A sin2(λϕλθτ
))

+

εχbb2
3

λϕ

λθ

(
C
B −

C
A

)
sin
(
λϕλθτ

)
cos
(
λϕλθτ

)
,

.
b = −εξτaMl + εMb + εχbb2

3

(
1− C

B sin2(λϕλθτ
)
− C

A cos2(λϕλθτ
))

+

εχab2
3

λθ
λϕ

(
C
B −

C
A

)
sin
(
λϕλθτ

)
cos
(
λϕλθτ

)
,

Ma = Mϕ cos
(
λϕλθτ

)
+

λϕ

λθ
Mθ sin

(
λϕλθτ

)
,

where
Mb = − λθ

λϕ
Mϕ sin

(
λϕλθτ

)
+ Mθ cos

(
λϕλθτ

)
.

Unlike derivatives of ϕ and θ, derivatives of a and b are proportional to the small
parameter. Treating (14) as the change of variables ϕ, θ→ a, b the equations of motion are
represented in the form

.
l = εχlb3

[
b1

{
σ + θ cos ψ + ϕ sin ψ− C

A θ cos ψ− C
B ϕ sin ψ

}
−

b2

{
ρ− θ sin ψ + ϕ cos ψ + C

A θ sin ψ− C
B ϕ cos ψ

}]
,

.
ρ = εχb2

3

[
−ρ + θ sin ψ + ϕ cos ψ− C

A
θ sin ψ +

C
B

ϕ cos ψ

]
,
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.
σ = −εχb2

3

[
σ + θ cos ψ + ϕ sin ψ− C

A
θ cos ψ− C

B
ϕ sin ψ

]
,

.
a = εξτb

λϕ

λθ
Ml + εMa + εχab2

3

(
1− C

B
cos2(λϕλθτ

)
− C

A
sin2(λϕλθτ

))
+ (15)

εχbb2
3

λϕ

λθ

(
C
B
− C

A

)
sin
(
λϕλθτ

)
cos
(
λϕλθτ

)
,

.
b = −εξτaMl + εMb + εχbb2

3

(
1− C

B sin2(λϕλθτ
)
− C

A cos2(λϕλθτ
))

+

εχab2
3

λθ
λϕ

(
C
B −

C
A

)
sin
(
λϕλθτ

)
cos
(
λϕλθτ

)
,

.
ψ = l,

Note that (15) retain ϕ and θ in the right side of three first equations for brevity.
Expression (14) provides relevant dependency ϕ(a, b) and θ(a, b).

5.2. Averaged Equations of Motion

Equation (15) is suitable for averaging. It contains one fast variable ψ that represents
the satellite rotation around the maximum moment of inertia. Slow variables are the
angular momentum magnitude, its attitude angles in the inertial space, and the amplitudes
of oscillations of the maximum moment of inertia axis relative to the angular momentum
vector. Note that Equation (15) also contains time in bk and χ. However, the geomagnetic
induction vector changes with the orbital rate. Considering that the satellite rotation rate
is significantly higher, Equation (15) is averaged over ψ treating time-dependent terms as
slowly varying parameters,

.
l = εχlb3(b1σ− b2ρ),

.
ρ = −εχb2

3ρ,
.
σ = −εχb2

3σ,

.
a = εξτb

λϕ

λθ
Ml + εχab2

3

(
1− C

B
cos2(λϕλθτ

)
− C

A
sin2(λϕλθτ

))
+ (16)

εχbb2
3

λϕ

λθ

(
C
B
− C

A

)
sin
(
λϕλθτ

)
cos
(
λϕλθτ

)
,

.
b = −εξτaMl + εχbb2

3

(
1− C

B sin2(λϕλθτ
)
− C

A cos2(λϕλθτ
))

+

εχab2
3

λθ
λϕ

(
C
B −

C
A

)
sin
(
λϕλθτ

)
cos
(
λϕλθτ

)
,

where Ml = χlb3(b1σ− b2ρ).
Equations for the angular momentum attitude angles ρ and σ has the form dx/x = f (τ)dτ

and therefore can be directly solved. The exact expression f (τ) and its integral depend
on the geomagnetic induction vector in the OX frame. Recalling from Section 2.1 that
BY = B0χ(t)bY, BX = CBY, and expression (7), we arrive at

χb2
3 = χ

(
B3X
χ

)2
=

1
χ

3

∑
k=1

3

∑
m=1

c3kc3mBkYBmY (17)

Here ckm are transition matrix C elements. Induction vector components BkY are
introduced in (7). However, without specifying the Sun’s direction in the OY frame and
therefore coefficients ckm it is evident that both angles exponentially tend to zero. The
angular momentum magnitude l can be found after ρ and σ directly integrating the first
equation in (16). As ρ and σ tend to zero, the angular momentum magnitude tends to the
constant value. Overall, the angular momentum vector behavior is fully described by the
three first equations in (16), which are independent from the last two equations.
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5.3. Maximum Moment of Inertia Oscillations Amplitudes Evolution

The maximum moment of inertia axis motion is described by the last two equations in
(16) and expressions (14). Unlike the first three equations in (16), the equations for a and b
cannot be directly solved. However, the asymptotic stability of a = b = 0 equilibria can be
established. First, we assume that the angular momentum vector already settled near the
Sun’s direction, so angles ρ and σ are close to zero and therefore Ml ≈ 0. Omitting the first
term in equations for a and b provides

.
a = εχab2

3

(
1− C

B cos2(λϕλθτ
)
− C

A sin2(λϕλθτ
))

+

εχbb2
3

λϕ

λθ

(
C
B −

C
A

)
sin
(
λϕλθτ

)
cos
(
λϕλθτ

)
,

.
b = εχbb2

3

(
1− C

B sin2(λϕλθτ
)
− C

A cos2(λϕλθτ
))

+

εχab2
3

λθ
λϕ

(
C
B −

C
A

)
sin
(
λϕλθτ

)
cos
(
λϕλθτ

)
.

(18)

These equations are independent from the equations describing the angular momen-
tum evolution. The following change of variables is introduced,

α = a

√
λθ

λϕ
, β = b

√
λϕ

λθ
(19)

Equation (18) is expressed as( .
α
.
β

)
= εχb2

3

(
1− C

2A −
C
2B

)(1 0
0 1

)(
α
β

)
+

+ 1
2 εχb2

3

(
C
B −

C
A

)(− cos
(
2λϕλθτ

)
sin
(
2λϕλθτ

)
sin
(
2λϕλθτ

)
cos
(
2λϕλθτ

))(α
β

)
.

(20)

The next nonsingular change of variables is(
α
β

)
=

(
cos
(
λϕλθτ

)
sin
(
λϕλθτ

)
− sin

(
λϕλθτ

)
cos
(
λϕλθτ

))(u
v

)
. (21)

Equation (20) in new variables are( .
u
.
v

)
= εχb2

3

(
1− C

2A −
C
2B

)(1 0
0 1

)(
u
v

)
+ 1

2 εχb2
3

(
C
B −

C
A

)(−1 0
0 1

)(
u
v

)
+

+λϕλθ

(
0 −1
1 0

)(
u
v

)
.

The Lyapunov candidate function for this equation is

V =
1
2

(
u2 + v2

)
.

The derivative of this function is

.
V = εχb2

3

(
1− C

B

)
u2 + εχb2

3

(
1− C

A

)
v2.

This derivative is negative if C is the maximum moment of inertia except for the
origin u = v = 0. Therefore, the origin is asymptotically stable. Moreover, as changes of
variables (19) and (21) are affine, the initial Equation (18) is stable at origin as well.

Equation (18) may be further simplified by applying averaging over time, thus leading
to double averaged equations. Expression χb2

3 is expanded according to (17). The induc-
tion vector components BkY, as well as χ, periodically depend on time with frequency
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η = 2ω0C/L0. The averaging of Equation (18) requires right side expansion into a series of
trigonometric functions. Therefore, 1/χ should be expanded. To do so, expression

1
χ2 =

1
1 + 3 sin2(1/2ητ) sin2 i

=
1√

1 + 3 sin2 i

(
1 + 2

∞

∑
j=1

κ2j cos jητ

)
, (22)

where κ =

(√
1+3 sin2 i−1√

3 sin i

)2
is established first [33]. Note that parameter κ is relatively

small. For example, it is close to 1
4 for inclination 51.7◦. This parameter is present in powers

2j in (22). Only the first term in (22) is retained since even this term is noticeably small due
to κ2 ≈ 0.055. The root of (22) provides expression for 1/χ. Decomposing the root in a
Tailor series with respect to small parameter κ2 yields

1/χ = (1 + 3 sin i)−1/4
(

1 + κ2 cos ητ
)
+ O

(
κ4
)

.

This expression, as well as expressions (7) for BkY, are introduced in (18), providing

.
a = εa

(
1 + 3 sin2 i

)−1/4(
1 + κ2 cos ητ

)
(β0 + β1 cos ητ + fT(jητ))×(

1− C
2B −

C
2A + fT(ζτ)

)
+

εb
(
1 + 3 sin2 i

)−1/4(
1 + κ2 cos ητ

)
(β0 + β1 cos ητ + fT(jητ))×

λϕ

λθ

(
C
B −

C
A

)
fT(ζτ),

.
b = εb

(
1 + 3 sin2 i

)−1/4(
1 + κ2 cos ητ

)
(β0 + β1 cos ητ + fT(jητ))×(

1− C
2B −

C
2A + fT(ζτ)

)
+

εa
(
1 + 3 sin2 i

)−1/4(
1 + κ2 cos ητ

)
(β0 + β1 cos ητ + fT(jητ))×

λθ
λϕ

(
C
B −

C
A

)
fT(ζτ).

Here j = 1, 2, ζ = λϕλθ , fT are trigonometric functions, parameters

β0 = α2
0 + 1/2α2

1 + 1/2α2
2,

β1 = 2α0α1,

α0 = c33 cos i− 1/2c32 sin i,

α1 = −3/2c31 sin i,

α2 = 3/2c32 sin i

are derived from (7).
Functions fT(jητ), fT(ζτ), as well as their products with cos ητ, are zero on average

provided that ζ and η are incommensurable. Therefore the double averaged equations are

.
a = ε

(
1 + 3 sin2 i

)−1/4
(

β0 +
1
2 κ2β1

)(
1− C

2B −
C

2A

)
a,

.
b = ε

(
1 + 3 sin2 i

)−1/4
(

β0 +
1
2 κ2β1

)(
1− C

2B −
C

2A

)
b.

(23)

These equations are independent. They are directly solved revealing the exponential
decay of the maximum moment of inertia axis oscillations amplitudes.

6. Numerical Simulation

Two numerical simulation scenarios are utilized. The first one corresponds to the
simplified framework summarized in Section 3.1 and is used throughout the motion
analysis. The goal of this simulation is to verify simplifications adopted in the analysis
methodology, which is linearization of the equations of motion and their subsequent single
or double averaging. A second simulation scenario is based on the framework of Section 3.2



Aerospace 2022, 9, 639 13 of 17

and includes disturbance sources. This verifies the applicability of developed approximate
results to the realistic formulation of satellite motion.

6.1. Simplified Scenario Simulation

Independent simulations of initial evolutionary Equations (2)-(4), linear Equation (15),
averaged Equation (16), and double averaged Equation (23) are performed. The following
parameters are utilized:

• Inertia moments of the satellite 1.1, 1.3, 1.5 kg·m2;
• Orbit inclination 51.7◦, altitude 550 km (derived parameters are B0 ≈ 24,000 nT, orbital

rate ω0 ≈ 10−3 s−1);
• The Sun’s direction in reference frame OY is defined by two angles, ρS and σS, equal

to 50 degrees each. These angles are introduced similarly to the angular momentum
vector attitude angles ρ and σ in Section 2.1, Figure 1. Accordingly, expression (1) is
used for the transition matrix C calculation;

• Control gain k = 60 kg·m2/s·T.

One of the simplifications utilized in the motion analysis is linearization of the equa-
tions of motion. Attitude matrices Q and A are linearized as well in (10). However, unlike
initial proper transition matrices, the linearized matrices are no longer orthonormal. There-
fore, each time a transition between the reference frame is performed the transformed
vector is slightly “stretched”. Typically, this does not lead to noticeable errors since the
variables tend to zero in linear approximation anyway. In this paper one of the variables
is the angular momentum magnitude which is essentially non-zero in terminal motion.
Instead, it settles at a constant magnitude. This magnitude differs in linear and nonlinear
equations due to the stretching of the momentum vector in linear approximation. The
difference does not exceed the overall accuracy of the linearization assumption. However,
the difference may be reduced by adjusting the initial angular momentum magnitude.
Namely, the initial momentum magnitude is set to be identical in the inertial reference
frame OX in linear and initial equations of motion. Using nonlinear momentum as a base
one, recalling transformation rule LX = QLL, and momentum expression in OL frame
LL(0) = (0, 0, L(0)), the relation between initial conditions becomes

Llinear(0) = Lnonlinear(0)/‖qk3‖ = Lnonlinear(0)/
√

1 + σ2(0) + ρ2(0),

where matrix Q elements qk3 are calculated in linear approximation. Another adjustment
of initial conditions is sometimes required for the averaged equations of motion. Initial
and averaged variables are generally not equal at t = 0, and the averaging procedure is in
fact a change of variables. However, in the present case this adjustment turned out to be
unnecessary while requiring relatively bulky calculations.

Moving to the simulation results, Figure 3 provides the angular momentum magnitude.
Note that the angular momentum behavior is fully covered by the first three averaged
equations in (16). It does not depend on the motion of the maximum moment of inertia
axis oscillations. Therefore, the angular momentum behavior is the same for averaged and
double averaged equations and the latter are not present in Figures 3 and 4.

The angular momentum magnitude remains almost constant according to Figure 3.
The satellite motion in the paper is considered near the required attitude, so it is close to the
required rotation and mainly wobble suppression is performed. The difference between the
averaged and initial equation may seem considerable in Figure 3. However, this difference
doesn’t exceed ε2, which is the general averaging method accuracy.

Angular momentum attitude angles are provided in Figure 4.
Figure 4 indicates good accuracy of averaged equations in describing the angular

momentum evolutionary motion.
Oscillations of the maximum moment of inertia axis relative to the angular momentum

vector are revealed with Figure 5. Note that initial equations of motion (2)–(4) are absent
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in Figure 5 since they lack the oscillations amplitudes and operate with original attitude
angles ϕ and θ instead.
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Figure 5. Satellite oscillations amplitudes relative to the angular momentum.

Figure 5 indicates that the simplest double averaged Equation (23) may be used to
analyze satellite dynamics relative to the angular momentum vector. Equation (23) and
expressions (14) allow angle β between the angular momentum and the maximum moment
of inertia axis (see Figure 1) calculation for the initial nonlinear equations of motion. Figure 6
presents a comparison of this angle in four simulation scenarios.
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Figure 6. Angle between the angular momentum and maximum moment of inertia axis.

Figure 6 presents simulation results for different initial conditions. This was performed
to assess the range of applicability of the linearization assumption. Close-up №2 in Figure 6
indicates that the approximate amplitudes derived from (23)–(14) provide very accurate
prediction of the satellite maximum moment of inertia axis motion for small attitude angles
up to 15 degrees. The accuracy is fairly accurate up to 30 degrees and linear approximation
loses its applicability at about 40 degrees deviation. Close-up № 1 shows this situation.
It is clearly seen that linear equations of motion diverge significantly from the nonlinear
very quickly. Together with the angular momentum behavior reported in Figure 4, Figure 6
provides overall confirmation of the applicability of the analysis method and the results
adopted in Sections 4 and 5.

6.2. Simulation in a Realistic Scenario

Simplified results are further verified with the simulation of satellite motion with
various disturbance sources outlined in Section 3.2. The following parameters are used:

• aerodynamic torque calculation:
• satellite parallelepiped sides are 0.2, 1.1, 1.8 m. This is a simplified geometry of

Chibis-M satellite which was equipped with solar panels;
• center of mass displacement relative to the center of pressure is 4, 6, 8 cm along satellite

frame axes;
• atmosphere density is 1.8 × 10−13 kg/m3 which corresponds to average solar activity

for 550 km orbit;
• residual dipole moment value is approximately 2 × 10−3 A·m2. This corresponds to

its possible estimation accuracy [34–36];
• Sun direction determination error is 1 degree, both for the constant bias and noise;
• unknown disturbance value is approximately half of the gravitational torque;
• control torque calculation and numerical integration steps are one second each;
• orbit is slightly elliptical with eccentricity 0.01.

The simulation result is provided in Figure 7 for the angle between the maximum
moment of inertia axis and the Sun’s direction.

Figure 7 indicates that averaged equations of motion adequately describe satellite
dynamics near the required attitude. Note that disturbance parameters strongly affect this
fact. For example, aerodynamic torque may have a lot higher magnitude during maximum
solar activity. Doubling its magnitude significantly reduces the quality of the approximate
result compared to the numerical simulation. Clearly, the higher that the disturbances
magnitude is, the less is the accuracy of no-disturbance dynamics analysis. Extensive
numerical simulation of satellite motion under Sdot control with significant disturbances
influence is present in [37].
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7. Conclusions

Satellite motion in the Sun tracking mode is investigated. An Sdot magnetic attitude
control algorithm is utilized. Equations of motion suitable for the analysis of satellite
motion near the required attitude are derived. Satellite dynamics is analyzed in linear
approximation with an averaging technique. Simplified equations of motion that can
be directly integrated are obtained. Attitude evolution towards the required motion is
described with an accuracy of less than a degree if initial deviation is in the linear range.
Simplified results are tested against the numerical simulation results for the satellite dy-
namics with various disturbance sources showing an accuracy of a few degrees and the
overall successful prediction of satellite evolutionary motion.
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