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Abstract: To reduce nuisance alarms caused by a fixed forward-looking boundary, this paper proposes
a resilient forward-looking terrain avoidance method. The method constructed the resilient and
adjustable forward-looking boundary model by using roll angle and navigation error, which makes
the terrain data employed by the forward-looking alert closer to the terrain data overflown by the
anticipated flight trajectory, reduces the nuisance alarm, and improves the reliability of the alert.
Using real digital elevation maps and simulated flight testing, the proposed method was observed to
provide alerting that is superior to the traditional forward-looking terrain avoidance technique.
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1. Introduction

According to statistics, the vast majority of major aviation fatalities in the world are
Controlled Flight Into Terrain (CFIT). CFIT means that the aircraft is in a fully airworthy
state prior to and at the time of collision with the ground or water, and the crash results in
serious aircraft damage, injuries, or casualties [1].

The United States took the lead in addressing CFIT by launching the Ground Prox-
imity Warning System (GPWS) [2], and in 1976 agreed to authorize the use of GPWS for
commercial aircraft. The GPWS can provide excessive descent rate warning [3,4], excessive
terrain closure warning [5,6], negative climb rate after take-off warning [7,8], unsafe terrain
clearance warning [9], glide slope warning [10], and other mode alarm functions. Each
mode receives various flight parameters of the aircraft as input data, and compares these
parameters with a variety of internally stored warning thresholds. If any warning threshold
is exceeded, audible and visual warnings are provided to the crew. The deployment of
GPWS significantly improved the safety of aircraft during take-off and approach landing,
and played a key role in reducing the occurrence of CFIT [11,12]. Furthermore, a large num-
ber of scholars have improved the warning capability of GPWS. For example, reference [13]
improved reliability by using warning judgment by weighted fusion of correction altitudes
provided by multiple sensors. Reference [14] generated the terrain clearance floor envelope
enclosing the runway, and suppressed warnings within the envelope to avoid excessive
nuisance warnings during landing. When different mode alarms occur at the same time,
reference [15] proposed a time-based mode switching method. GPWS is a reactive system,
and only when the aircraft enters a hazardous zone will it give a warning. In order to
reduce nuisance warnings, GPWS provides the pilot minimal lead time, requiring swift
action to avert the hazard. A system that provides a preview of ground hazards based on
the projected aircraft trajectory would allow the pilot to anticipate potential danger and
plan evasive action with lower workload.

Since the beginning of the 21st century, with the rapid development of digital map
technology, navigation technology, and satellite positioning technology, the Enhanced
Ground Proximity Warning System (EGPWS) came into being [16]. EGPWS is also known
as the Terrain Awareness and Warning System (TAWS) [17,18]. EGPWS adds Forward
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Looking Terrain Avoidance (FLTA) and terrain display functions in addition to the original
mode alert function. FLTA can provide a “look-ahead” function, which improves the pilot’s
awareness of the surrounding terrain and gives the pilot more time to plan and act prior to
hazard arrival. As the core function of the TAWS, FLTA has received extensive attention
from researchers since it was proposed. Reference [19] designed the FLTA envelope by
establishing the normal trajectory, vertical trajectory, and inclined recovery trajectory of
the helicopter. References [20,21] designed the vertical envelope of FLTA by establishing
the aircraft’s standard vertical avoidance maneuver trajectory. Reference [22] studied the
time threshold of a forward-looking alarm, and analyzed the alarm performance under
different time thresholds. Reference [23] proposed a forward-looking warning method that
uses terrain matching to correct the relative position error between helicopter and terrain.
In addition, for the interference warning, reference [24] proposed a method to adjust the
FLTA envelope according to the Required Navigation Performance (RNP) of aircraft.

Although the proposed methods can provide the FLTA function for the crew, the
traditional FLTA envelope adopts a trapezoidal side boundary. When the aircraft turns, it is
prone to nuisance alarms, which reduces the reliability of the FLTA. To solve this problem,
this paper proposes a resilient forward-looking terrain avoidance warning method. The
method adjusts the beginning width of the FLTA through the navigation error and terrain
resolution. During turning flight, the FLTA side boundary is modified by the roll angle to
construct a resilient adjustable side boundary model, which reduces nuisance alarms and
improves the reliability of the alerts.

2. Helicopter Terrain Awareness and Warning System (HTAWS)

HTAWS is to evaluate whether the aircraft will crash into the ground through the
information provided by airborne sensors such as radio altitude, atmospheric data, attitude,
instrument landing, and terrain/obstacle database, and generate corresponding auditory
and visual signals. HTAWS comprises two functions, the mode alert and the FLTA alert.
The mode alert compares the current state information of the aircraft provided by the
onboard sensor to compare with combinations of states used to define hazardous operation
to inform the alert logic. The mode alert includes 6 modes: excessive descent rate warning
(Mode 1), excessive terrain closure warning (Mode 2), negative climb rate after take-
off warning (Mode 3), unsafe terrain clearance warning (Mode 4), glide slope warning
(Mode 5), and altitude call and excessive roll/pitch warning (Mode 6) [25].

The objective of the FLTA alert is to compute a virtual three-dimensional envelope
in the space of the aircraft’s forward motion based on current flight state. When alerting
is enabled (for helicopters, the activation conditions include when the airspeed is greater
than 21 m/s, the landing gear is retracted or the flight height is greater than 3 m, and the
current altitude is greater than the calculated clipping height) [25], the aircraft automatically
obtains data information such as terrain and obstacles, and compares the spatial position
relationship between the envelope and the surrounding terrain in real time. When the
surrounding terrain penetrates the envelope, an alert is triggered. The schematic diagram
of FLTA flight is shown in Figure 1. The envelopes for FLTA are divided into caution
envelopes and warning envelopes. The construction process of the two envelopes is
identical, consisting of 4 parts, namely, the look-down boundary, the look-ahead boundary,
the look-up boundary, and the side boundary. The safety margin of the warning envelope is
smaller than the caution envelope’s margin [26], and Figure 2 shows FLTA’s implementation
block diagram.

The look-down boundary is mainly determined by the aircraft’s minimum safe altitude
loss ∆H. During cruise flight, ∆H is generally a fixed value. However, during take-off or
landing, ∆H changes with the distance from the aircraft to the nearest runway [26]. To
avoid false alarms when the aircraft flies over the terrain at a relatively low altitude, a
cut-off boundary is set. When the cut-off boundary is larger than the look-down boundary,
the cut-off boundary is used as the new look-down boundary. The cut-off boundary starts
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from a predetermined offset position below the aircraft and extends ahead of flight at a
predetermined cut-off angle. The cut-off angle calculation formula is

θjc = min(γ, θsx)− δb (1)

where γ is the flight path angle. θsx is the upper limit of the cut-off angle. δb is the
base value.

The look-ahead boundary is determined by the look-ahead distance and the corre-
sponding influence coefficient. For the helicopter, the look-ahead distance is equal to the
sum of the reaction distance and the distance from cruise to hover. The look-ahead distance
calculation formula is

DLA =
V2

2g tan α
+ V·T (2)

where V is the flight speed. g is the gravitational acceleration. α is the nominal pitch angle
for hovering. T is the reaction time of the pilot.
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The look-up boundary is determined by the altitude loss, look-up distance, and look-
up extended angle. The look-up distance is equal to the look-ahead distance multiplied by
various coefficients. To avoid hazardous terrain, the aircraft must pull up and. Alerts are
computed using Equation (3), where altitude loss is defined as the vertical distance flown
from maneuver initiation to the start of the climb.{

dHc =
3
4 ∆H + Vz × T1 +

V2
z

2a

dHw = 1
2 ∆H + V2

z
2a

(3)

where dHc represents the loss altitude of the caution alert and dHw represents the loss
altitude of the warning alert. Vz is the vertical speed. a is the acceleration during the
pull-up maneuver.
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The side boundary is defined by the beginning width Bw, the centerline deflection
angle θ, and the side deviation angle δ, as shown in Figure 3. The centerline of the side
boundary starts from the current position of the aircraft and extends to both sides with
a fixed deviation angle to form a trapezoidal side boundary. The trapezoidal boundary
provides the best prediction of hazardous terrain during rectilinear flight (i.e., the radius of
turn is infinite). As the radius of turn decreases, less of the aircraft’s projected trajectory
will lie within the trapezoidal boundary, increasing the likelihood of a mismatch between
anticipated and actual terrain height. When the aircraft turns, the accuracy of terrain
awareness will be reduced.
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Figure 3. Trapezoidal boundary.

Construction of the trapezoidal boundary and the extraction of terrain data within the
boundary consists of the following 5 steps.

(1) Using the current position (c0, r0) of the aircraft, calculate the row and column co-
ordinates of the four endpoints of the trapezoidal boundary on the digital terrain elevation
map as 

r1 =r0 + 1/2 ∗ Bw ∗ cos(θ)
r2 =r0 − 1/2 ∗ Bw ∗ cos(θ)
r3 =r1 − k3 ∗ DLA/ cos(δ) ∗ sin(θ − δ)
r4 =r2 − k3 ∗ DLA/ cos(δ) ∗ sin(θ + δ)

(4)


c1 =c0 + 1/2 ∗ Bw ∗ sin(θ)
c2 =c0 − 1/2 ∗ Bw ∗ sin(θ)
c3 =c1 + k3 ∗ DLA/ cos(δ) ∗ cos(θ − δ)
c4 =c2 + k3 ∗ DLA/ cos(δ) ∗ cos(θ + δ)

(5)

where DLA is the look-ahead distance and k3 is the coefficient of the caution
look-up distance.

(2) Construct a polygonal database from vertex coordinates. Store the maximum
ordinate Rmax, starting abscissa Cmax, and reciprocal of slope k corresponding to each
line segment.

(3) Arrange the coordinate data of the sampling points stored in (2) in ascending order.
Using the scan line method, the terrain between the line segments is retrieved and stored.

(4) For each terrain data element retrieved, calculate the distance dl from the beginning
width Bw. Arrange dl in ascending order, and partition the retrieved terrain data according
to the set distance threshold.

(5) For the forward-looking alert, an alert is issued as long as there is a large terrain
penetration boundary. Therefore, the maximum value of each row in the split terrain data
is compared with the envelope to realize a forward-looking alert judgment.
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FLTA enhances the flight crew’s perception of the surrounding terrain and facilitates
less abrupt maneuvering due to earlier planning. When the aircraft turns, the traditional
trapezoidal boundary centerline increasingly deviates from the real flight trajectory along
the centerline distance. In Figure 3, the red hazardous terrain not in front of the flight will
lead to a false alarm and the yellow hazardous terrain in front of the real flight will cause
a missing alarm. These interference alarms will affect the normal flight of the crew and
reduce the reliability of the FLTA alert.

3. Resilient Forward-Looking Terrain Avoidance Warning Method (RFLTA)

The resilient forward-looking terrain avoidance warning method retains the look-
down boundary, the look-ahead boundary, and the look-up boundary of the traditional
method, and modifies the horizontal boundary. The method combines the current map
resolution and 3 times the real-time estimation error of the navigation system to con-
struct the beginning width. The forward-looking alert envelope is adjusted according to
the aircraft roll angle. When the aircraft is flying in a straight line, the trapezoidal side
boundary is used to extract the terrain data within the envelope, and when the aircraft
is turning, the terrain data are extracted using the pipe-shaped side boundary shown in
Figure 4, where the square represents the terrain grid, the green squares represent terrain
elevation extracted from the side boundary, and the red and yellow squares represent the
hazardous terrain.
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Construction of the pipe-shaped boundary and the extraction of terrain data within
the boundary are described in the following 7 steps.

(1) Using the real-time estimation error σxy provided by the aircraft navigation system
and the resolution res of the map data used by the aircraft, adjust the beginning width Bw
of the boundary as

Bw = 3 ∗ σxy + res (6)

(2) Using the current position of the aircraft (c0, r0), speed V, attitude, and other
information, calculate the radius R of the pipe-shaped boundary, the coordinates of the
center of the circle (xo, yo), the center angle α, and the coordinates of the baseline endpoints
(cs, rs), (ce, re).

R =
V2

g tan ϕ
(7)
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{
x0 =c0 + R sin(θ)
y0 =r0 + R cos(θ)

(8)

α =
k3DLA ∗ 180

πR
(9){

rs =r0 + 0.5 ∗ Bw cos(θ)
re =r0 − 0.5 ∗ Bw cos(θ)

(10){
cs =c0 + 0.5 ∗ Bw sin(θ)
ce =c0 − 0.5 ∗ Bw sin(θ)

(11)

where ϕ is the aircraft roll angle. θ is the angle between the centerline and the east.
(3) Set the sampling number S. Sample the equal central angle of the pipe-shaped

boundary to obtain the coordinates of the sampling point on the arc. Take the endpoint of
the baseline as the fixed point, expand the sampling point according to the set deviation
angle δ, and obtain the coordinates of the sampling point after the deviation.

Set a fixed number of samples NS, and take (cs, rs) and (ce, re) as the starting points (ca,
ra), respectively, to sample along the arc with equal center angle. The sampling coordinate
on the arc is (ci, ri). Expand (ci, ri) with the set deviation angle δ, and calculate the sampling
coordinate on the pipe-shaped boundary as follows.{

c(i) =ca + (ci − ca) cos(δ)− (ri − ra) sin(δ)
r(i) =ra + (ci − ca) sin(δ) + (ri − ra) cos(δ)

(12)

where i represents the i-th sampling point.
(4) Connect each sampling point end to end to construct an approximate pipeline-

shaped polygon. A polygonal database is constructed to store the maximum ordinate
Rmax, the initial abscissa Cmax, and the reciprocal of the slope k corresponding to each
line segment.

(5) Arrange the coordinate data of the sampling points stored in (2) in ascending order.
Using the scan line method, the terrain between the line segments is retrieved and stored.

(6) For each terrain data element retrieved, calculate the distance dl from the starting
width Bw and the distance LR from the center of the circle and compute the corresponding
central angle α and arc length LM. Arrange LM in ascending order, and split the retrieved
terrain data according to the set distance threshold.

(7) For the forward-looking alert, an alert is issued when terrain penetrates the bound-
ary. The maximum value of each row in the partitioned terrain data is compared with the
envelope to realize a forward-looking alert judgment.

4. Experimental Results and Analysis

The resilient forward-looking terrain avoidance warning method is tested and verified
using real terrain elevation data and simulated flight. The size of the digital terrain
elevation map used in the experiment is 540 km × 540 km, and the map resolution is
30 m. The terrain contour map and the three-dimensional simulated flight trajectory are
shown in Figures 5 and 6, respectively. The initial height of the simulated flight trajectory is
518.16 m and the initial speed is 25.72 m/s. The width of the safety corridor generated by
the navigation and positioning error is 90 m. The flight status data are updated at 50 Hz.

The RFLTA caution and warning alert tests are carried out for rectilinear and curvi-
linear flight, respectively. The roll angle, forward-looking distance (DLA), radio altitude,
and remaining impact time are counted as shown in Table 1. The RFLTA caution alert and
warning alert results are shown in Figures 7 and 8.

As can be seen from Figures 7 and 8, when the hazardous terrain ahead of the flight
penetrates the caution envelope, the system issues the alert ”Caution Terrain”. When
the hazardous terrain ahead of the flight penetrates the warning envelope, the system
issues the alert "Warning Terrain". Aside from the mode alert, when the alert occurs, the
method computes the remaining impact time based on the current flight state parameters
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for the flight crew’s reference. As shown in Table 1, for the caution alert shown in Figure 7,
the remaining time for the aircraft to hit the nearest hazardous terrain is 10.46 s. For the
warning alert shown in Figure 8, the time to impact is 5.86 s.
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Table 1. The RFLTA alert results under different alert types.

Alert Type Roll Angle DLA Radio Altitude Time to Impact

Caution Terrain 0◦ 1.62 km 101 m 10.46 s
Warning Terrain 6.32◦ 2.35 km 225 m 5.86 s

To further test the performance of the RFLTA method, under the same time epoch
of the turning flight, the traditional alert envelope and the resilient alert envelope are
used to experiment, respectively, and the experimental results are shown in Figure 9. The
horizontal boundaries of the two methods are drawn on the horizontal flight trajectory
curve, and the terrain elevations extracted by the two methods are compared with the
terrain elevations of the real trajectory, as shown in Figures 10 and 11, respectively. For the
two turning flights in Figure 5, we count the interference alarm and the elevation difference
with the real terrain profile under two methods, as shown in Table 2. The interference
alarm includes false alarm NF and missing alarm NM. If the terrain profile below the real
trajectory does not penetrate the alert boundary, and the extracted terrain profile penetrates
the alert boundary, it is recorded as a false alarm. Conversely, if the terrain profile below
the real trajectory penetrates the warning boundary, and the extracted terrain profile does
not penetrate the alert boundary, it is recorded as a missing alarm. The terrain profile
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information calculates the mean HM and standard deviation HS of the elevation difference
between the extracted terrain profile and the actual terrain profile.

g g p

 
(a) (b) 

Figure 7. RFLTA example for rectilinear flight: (a) horizontal view; (b) vertical view.
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Table 2. The alert results under two methods in turning flight.

Total
Epoch NR

* Boundary
Type NT

* NC
* NF NM Hm (m) Hs (m)

First
turning 471 0

Trapezoid 12 0 12 0 −10.4 35.8
Pipe 0 0 0 0 −2.1 29.9

Second
turning 251 64

Trapezoid 132 43 89 21 −103.9 125.4
Pipe 65 62 3 2 13.1 37.6

* Note: NR represents the number of real alerts. NT represents the total alerts under different methods. NC
represents the number of correct alerts.

It can be seen Figures 9–11 that the traditional FLTA method has a caution alert,
while the RFLTA method does not generate an alert. From the terrain elevation curve
directly below the real flight trajectory, it can be seen that the terrain elevation extracted by
the RFLTA method better reflects the actual overflown terrain than the traditional FLTA
method. As there is no hazardous terrain along the actual flight path, the traditional FLTA
has issued a false alarm. Compared to the trapezoidal boundary, the pipe-shaped boundary
is closer to the trajectory of the aircraft when it turns. Table 2 summarizes the alarms under
two turning flights. The number of false alarms and missed alarms of the pipe-shaped
boundary proposed in this paper is reduced. Moreover, the extracted terrain profile more



Aerospace 2022, 9, 693 10 of 11

accurately reflects the actual overflown terrain, thus providing improved terrain awareness
and reliability of the HTAWS.

5. Conclusions

This paper proposed a resilient forward-looking terrain avoidance method. The RFLTA
method adjusts the forward-looking boundary based on the navigation error and roll angle
of the aircraft. FLTA’s pipe-shaped boundary can reduce the interference alarms under
turning flight, and enhance the pilot’s awareness of potentially hazardous terrain. Actual
digital terrain and simulated flight were used for testing and verification. Compared
with the traditional FLTA method, the terrain profile extracted by the RFLTA method
better reflected the real profile, and the numbers of false alarms and missing alarms are
significantly reduced. Although the RFLTA method can improve the reliability of the
HTAWS, it cannot guarantee flight safety. Action taken by a pilot to evade hazardous
terrain will depend on pilot experience and cognizance of available evasion options. Future
work will examine how to provide the pilot with safe trajectory advisories.
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