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Abstract: Drone expansion needs to be considered as a menace in cases of negligent, illicit, or non-
cooperative use. In the case of airports, a complete protection against drone intrusion should rely on
an intrusion management system, aiming at avoiding the closure of the airport. This system requires
the setting of proper risk assessment methodologies for airport operations, to explicitly consider
the features of drone intrusion, possibly from a quantitative point of view. This work proposes a
methodological framework for the risk assessment of drone intrusions in airports, tailored on drone-
intrusion features, airport features, and current operations, and considering both safety-related and
security-related causes. The framework is based on the combination of model-based and data-driven
approaches in order to: (i) estimate an airport vulnerability index, to measure the susceptibility of the
airport to drone intrusions, based on reference datasets; (ii) specify a set of event trees to evaluate
the risks of the different threat scenarios related to drone intrusions. The proposed methodological
framework is applied to a concrete case study, related to Milan Malpensa airport. The achieved results
show the effectiveness of the approach and elicit further requirements for counter-drone systems in
airports based on the assessed risks.

Keywords: drone intrusions; risk assessment; airport operations; vulnerability assessment; vulnerability
index; event tree analysis

1. Introduction

As the European Commission’s regulations are paving the way for the drone market
growth [1,2] and its associated U-space implementation [3], drone expansion needs to
also be considered as a menace in case of negligent, illicit or non-cooperative use [4],
especially in air traffic nodes such as airports and their surroundings. In that sense, the
European Union Aviation Safety Agency (EASA) published some guidelines [5–7] in which
counter-drone systems are considered in order to mitigate drone intrusion impact on the
airport ecosystem. These systems are also named counter-UAS or c-UAS systems, where
the acronym UAS stands for unmanned aerial system. Instead, the International Civil
Aviation Organization (ICAO) use the acronym RPAS (remotely piloted aircraft system) to
denote drones.

Countering non-cooperative drones has been identified as a challenge after incidents
with commercially available drones showed that even small systems could put a threat
to political leaders, critical infrastructures, and commercial businesses. One of the main
examples is represented by the drone intrusion in London Gatwick airport in December
2018, during which an unknown number of overflying drones caused a 33 h paralysis of
the airport’s operations [8]. In addition to the safety impacts, these episodes may seriously
affect the economic costs of airport and airline operations [9]. EASA guidelines [5] report
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a cost of EUR 64 million in case of the 2018 Gatwick incident, and a delay cost from EUR
325,000 to EUR 514,000 in case of a 30 min runway closure for the ten largest European
airports. Moreover, the occurrences of drones’ unauthorized intrusions are increment-
ing [10] and further increases are expected to be due to the wider diffusion of drones
in future U-space scenarios, which may potentially affect other critical infrastructures
(e.g., vertiports) and may imply a significant addition in the risks of safety and security
incidents related to drone intrusions, as well as of the economic costs of drone incidents.

Thus, a multitude of C-UAS systems are being developed to satisfy the growing
need to defend against intruding drones, especially at low-altitudes and in the operational
envelope of UAS. These systems are designed to detect and then engage the threat, and
so they exploit a reactive paradigm to face drone intrusions. For example, in the case of
airport operations, such a paradigm consists in detecting the threat and in closing the
airport overall until the threat has not been overwhelmed. More in general, considering the
short time available to employ countermeasures, complementary countermeasures should
be chosen to increase the effectiveness of counter-drone systems. Indeed, a comprehensive
C-UAS approach must not only rely on reacting to an imminent threat, but it has to include
preventive countermeasures and proactive countermeasures as well. For example, among
the preventive countermeasures, there are the deterrence and the denial to enter protected
areas. Instead, proactive countermeasures are mainly based on: creating a complete and
timely situational awareness about drone intrusions in the airport; designing procedures
and protocols to manage the intrusions in order to mitigate their impact as much as possible.

In the case of airports, a complete protection against drone intrusion shall rely on
a RPAS Intrusion Management System (RIMS) or Drone Intrusion Management Sys-
tem (DIMS), which leverages the different building blocks, from the detection up to
the mitigation. Indeed, as proposed by EASA in the counter-drone action plan [11],
aerodromes shall:

• support the assessment of the risks related to unauthorized drones;
• mitigate risks from unauthorized drone use;
• implement counter-drone measures from a global safety perspective.

Thus, an effective RIMS has to increase the situational awareness of drone intrusions
and has to establish procedures and protocols to manage them, with minimal impact on
the operations [10]. To exploit a proactive behavior, a RIMS shall try to avoid the closure
of the overall airport even in case of unauthorized drone intrusions by: (i) limiting the
interruption to those operations that are strictly affected by the intruder; (ii) increasing the
resilience of the airport, that is minimizing the performance degradation against drone
intrusions. Accordingly, this requires the setting of proper risk assessment methodologies,
possibly quantitative, which explicitly consider the features of drone intrusions and of the
airport. This methodology should be consistent with the observation that, even if each
drone incident is specific, several common factors may arise and their evaluation may be
applied for risk analysis [5].

ASPRID (airport system protection from intruding drones) project [12] has developed
an operational concept and an enhanced C-UAS system in which risk assessment studies
are crucial to achieve the proactive protection of the airport against drone intrusions in
a safe and efficient way. Our previous work [10] puts forward the basis for a systematic
process of risk management within the RIMS of an airport. In particular, this work describes
a quantitative assessment of the historical features of drone intrusions in airports, using
different public databases with reports about real sightings. The available features are
modelled in terms of probability distributions and machine-learning models. Moreover,
a preliminary analysis is provided for the definition of a vulnerability index against to
drone intrusions. This paper aims at proposing a unified methodological framework for
the risk assessment of airport drone intrusions, leveraging the results achieved in our
previous work [10]. Such framework is based on the combination of two model-based and
data-driven specifications for a given airport:



Aerospace 2022, 9, 747 3 of 24

• a vulnerability index to quantitatively assess the susceptibility of the airport to drone
intrusions, based on reference datasets;

• a set of event trees to quantitatively assess the risks of the different threat scenarios
related to drone intrusions, based on the airport’s vulnerability index.

The proposed approach is applied for a concrete case study, related to Milan
Malpensa airport.

The article is organized as follows. Section 1 presents a brief overview of the issues
related to drone intrusions in airports, highlighting risk assessment as a mandatory tool for
a proactive approach. Section 2 analyzes the related work for the risk assessment of drone
intrusions. Section 3 describes the proposed methodological framework. Section 4 reports
the data-driven specifications of airport vulnerability. Section 5 reports the model-based
specifications of event trees. Section 6 describes the case study and the related results.
Section 7 provides a discussion of the proposed approach, based on the achieved results.
Section 8 provides the conclusions.

2. Related Work

This section provides an analysis of the related work about risk assessment of airport
drone intrusions.

Firstly, the key terms for the risk assessment are introduced in Table 1, highlighting
the applicable reference documents. Such terms are useful for the comprehension of the
objectives of risk assessment in the case of drone intrusions.

Table 1. Key terms for risk assessment.

Term Description Reference

Vulnerability

A weakness of a reference system (i.e., an
infrastructure, an asset, a group of assets, an

organization, etc.) that may result in a temporary or
permanent interruption of the system’s operations.
Thus, vulnerability is the susceptibility of a system

to mishap risks.

[13]

Threat or hazard

Anything that might exploit a vulnerability for the
temporary or permanent interruption of the system’s
operations. In general, a threat may be: (i) accidental,

i.e., unintentional; (ii) malicious,
i.e., hostile and deliberate.

[13]

Vulnerability index

A measure of the susceptibility of people,
communities, or regions to natural or technological
hazards. A vulnerability index represents a measure

of the exposure of the system or the community
under study with respect to the reference hazards.

[14]

Safety threat

A threat that refers to any accidental cause of the
interruption of system’s operations, in the case that
such interruption operation exhibits a safety impact

for the outcome, i.e., if the reference system is
safety-critical. This type of threat is also named just

hazard, which is “a dormant potential for harm
which is present in one form or another within the

aviation system or its environment”.

[15]



Aerospace 2022, 9, 747 4 of 24

Table 1. Cont.

Term Description Reference

Security threat

A threat that refers to any malicious (intentional)
cause of the interruption of system’s operations. It is

often named just threat and it is the equivalent to
hazard in safety. According to the European Union
Agency for Cybersecurity (ENISA), a threat is “any
circumstance or event with the potential to adversely

impact an asset through unauthorized access,
destruction, disclosure, modification of data, and/or
denial of service”. Clearly, a security threat may also

have a safety impact if the reference
system is safety-critical.

[16]

Threat agent or attacker

In case of a security threat, a threat agent or attacker
is an entity (i.e., person, organization, system, etc.)
that has the power to act, cause, carry, transmit, or
support the reference threat. Thus, a threat agent is
the entity which has the intention, the capacity, and

the opportunity to exploit the
vulnerabilities of the system.

[17]

Threat scenario or hazard scenario
The description of how a threat or hazard might

materialize and represents a logic sequence from a
hazard to its consequence

[7]

Risk A vector value combining event likelihood with
event outcome related to a threat scenario. [13]

Risk assessment

A process to identify plausible threat scenarios and
quantifies their level of risk, i.e., by analyzing their
likelihood, reasonable worst-case consequences, the

current mitigating measures, and the remaining
vulnerabilities. Risk assessment may contain safety
elements or security elements, or both. For example,

a security-based risk assessment or security risk
assessment evaluates the security-related

vulnerabilities of the reference system, and the
occurrence probability and the potential impact of

security incidents.

[5]

Security incident

Off-nominal events in the system’s operations that
are caused by an attack of a threat agent and that
have an actual or potentially adverse effect on the

security or performance of the system.

[16]

The differences and the possible relationships between safety risk assessment and se-
curity risk assessment have been studied in some previous works, especially for industrial
control systems [18,19]. However, several guidelines are available for the risk assessment,
dealing separately with safety and security issues. For example, the international organiza-
tion for standardization (ISO) has published a standard document (ISO 31000:2018) for the
managing of risks faced by organizations and for the setup of a generic risk management
process [20]. Instead, ISO and the international electrotechnical commission (IEC) have
jointly provided a standard for the risk management specifically concerning information
security [21].

In the aviation domain, a safety management manual (SMM) is made available by
the ICAO [22]. Such manuals provide detailed guidance on the principles and practices of
aviation safety management, and it is designed to assist States, aircraft operators, aerodrome
operators, and air traffic service providers in implementing safety management systems.
On the other hand, an ICAO restricted manual is available for security risk management in
order to assist the aviation entities that are responsible for implementing security measures
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and for preventing acts of unlawful interference [23]. Also, the validation of new solutions
within air traffic management (ATM) typically requires both a safety assessment and a
security assessment. For example, within the single European sky ATM research (SESAR),
the following documents have to be used as a guideline for the development of new ATM
solutions: (i) the safety reference material [24], which provides an integrated approach to
safety assessments that meet the needs of the SESAR work programme; (ii) the security
reference material [17], which explains the SecRAM methodology as a set of methods, tools,
and techniques to deliver the evidence necessary for a cybersecurity risk assessment related
to ATM. Other guidelines are available for the risk assessment of airports, including the
security perspective, such as: reference [25], the Annex A of which provides a general
process for conducting vulnerability assessments and includes a model for assessing airport
vulnerabilities in Appendix A; reference [26], which has been provided by the Department
of Homeland Security in the United States (U.S.) to determine security needs at different
airport using a risk-based security approach. Instead, in regard to the research perspective,
a relevant example is represented by SATIE (security of air transport infrastructure of
Europe) project [27], which has analyzed the cyber and physical threat scenarios typical
of attacks that threaten airport infrastructures and the results of a risk analysis applied to
these scenarios. Instead, reference [28] presents an example of the data-driven approach for
risk assessment, using radar-tracking data to estimate precursors that may lead to unsafe
outcomes related to traffic separations.

For the specific case of airport drone intrusions, EASA guidelines [5–7] represent the
main reference in which some suggestions are provided for risk assessment [7]. Concerning
research works, reference [29] has studied drone incidents in the vicinity of worldwide
airports to deliver a quantitative and qualitative analyses, proposing possible mitigation
measures. Instead, reference [30] discusses a resilience action plan for airport stakehold-
ers to defend an airport against airborne threats from misused drones. Lastly, several
works provide a detailed analysis of the technological options for counter-drone systems,
e.g., [30–32]. Thus, our proposed work represents the first attempt at defining a joint
data-driven and model-based methodological framework for the risk assessment of airport
drone intrusions, considering both safety and security perspectives.

3. Risk Assessment Framework for Drone Intrusions in Airports

This section describes the proposed methodological framework for the risk assessment
of drone intrusions in airports.

3.1. Problem Statement

As recommended by EASA guidelines [7], the problem of risk assessments of airport
drone intrusions has to include both the aviation safety and the aviation security perspective.
Thus, the issue is to develop a unified methodological framework for the risk assessment
of airport drone intrusions. In detail, it shall be:

• a methodological framework, in the sense of a sequence of steps to complete the
assessment procedure;

• unified, in the sense of a safety–security-integrated approach.

Such issues trigger the following requirements of the methodology:

1. It shall be applicable to a great variety of airports, considering their characteristics;
2. It shall support at least a semi-quantitative evaluation of risks, integrating the eval-

uation with mitigation actions and information about degraded performances in
threat scenarios;

3. It shall use formalisms that may be easily understood by stakeholders;
4. It shall support (possibly automated) what-if analyses for the computation of qualita-

tive/quantitative values of interest about risk-related figures and performance metrics;
5. It shall allow a reuse across multiple systems and objects (e.g., different airports,

different airport assets, different drone models, etc.);
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6. It shall effectively consider possible historical or statistical data (if available) about
drone intrusions at a local level (i.e., for the specific airport) or at an aggregated level
(i.e., for a specific region or State).

More in general, in case of security-related intrusions (i.e., deliberate attacks by means
of drones), the methodology should explicitly consider the possible classes of drone in-
trusions [33]: (i) physical attack, i.e., attack of a physical threat with a physical impact;
(ii) cyber-physical attack, i.e., attack of a physical threat with a cyber impact; (iii) cyber-
physical threat, i.e., attack of a cyber threat with a physical impact; (iv) cyberattack, i.e.,
attack of a cyber threat with a cyber impact. With reference to this classification, being
drones a physical threat, their possible malicious intrusions may be: (i) a physical attack,
also named drone physical-intrusion, that is a malicious physical interference or collision
with an asset; (ii) a drone cyber-physical attack, also named drone cyber-intrusion. How-
ever, for the purposes of this work, only drone physical-intrusions are considered as a
reference threat in the stated problem.

3.2. Approach

To solve the stated problem, this work proposes a model-based and data-driven
methodological framework. Indeed, it is:

• model-based, since it applies modelling techniques for the specification of the reference
aspects of the target system, e.g., failure-oriented behaviors, success-oriented behaviors;

• data-driven, since it exploits available datasets for the characterization of the suscepti-
bility of an airport with respect to the phenomenon of drone intrusions.

In detail, Figure 1 illustrates the proposed methodological framework for the risk
assessment of drone intrusions for a specific airport. Such figure highlights both the activity
flow and the related interfaces by reporting:

• input data (yellow blocks);
• activities (green blocks);
• outcomes (blue blocks), in terms of both intermediate and final outcomes.
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Figure 1. Proposed methodological framework for the risk assessment of airport drone intrusions.

The proposed framework prescribes the following activities:

• Threat analysis. This activity aims at identifying the possible threats and the related
threat scenarios about airport drone intrusions, considering both safety-related (i.e.,
accidental) and security-related (i.e., malicious) intrusions. It is possibly fed by his-
torical data about intrusions. It is performed by exploiting a detailed analysis of the
reference airport, for example, considering the configuration of the following assets:
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runways, terminals (both passenger and cargo), taxiways, traffic control tower, aircraft
hangars, aprons, communication, navigation and surveillance (CNS) systems, etc.
Clearly, general features of possible intruding drones (e.g., maximum speed, mass,
endurance, radio coverage, etc.) should be used as a reference for the analysis. For
the purposes of the methodological framework, a threat is any unauthorized flight
activity of a drone in the airspace or in the vicinity of an airport. Note that this choice
is in line with EASA guidelines [7]. Then, threat scenarios are inferred by considering
the possible physical interference of an intruder drone with respect to a given airport’s
asset. In principle, such behavior may be traced to two main classes of drone’s inter-
ference: (i) fly-by and (ii) collision. In detail, given an airport’s asset: (i) the fly-by
refers to the proximal presence of a drone, wherein proximal means at a distance
less than a specific threshold or inside an airspace (typically centered on the asset)
with an agreed shape; (ii) the collision refers to the crash of the drone with the asset,
usually implying a damage to the asset according to the kinetic energy of the drone
itself. Note that these main classes may be further split in sub-classes, for example:
different proximity thresholds for the fly-by, which can lead to different interferences
of the drone; different categories of collision according to its kinetic energy, which can
lead to different damage levels; etc. All these sub-classes are associated with specific
threat scenarios. In the case of fly-by, examples of threat scenarios are: unauthorized
operations of a drone in the arrival path of a runway; unauthorized operations of
a drone in the departure path of a runway; unauthorized operations of a drone in
proximity of boarding/de-boarding passengers; unauthorized operations of a drone
affecting an aircraft on the ground; unauthorized operations of a drone affecting the
air traffic tower; etc.

• Airport vulnerability assessment. This activity aims at evaluating an Airport Vul-
nerability Index (AVI) to quantify the exposure or susceptibility of an airport with
respect to drone intrusions [10]. Such index may be assessed by explicitly considering
the influence of different dimensions of the airport’s context (e.g., social, economic,
etc.). Thus, the AVI may be used to provide estimations and predictions about drone
intrusions in an airport, based on the exposure of the airport itself.

• Event Tree Analysis (ETA). This activity aims at providing a quantitative assessment
of the risk associated with each threat scenario by means of event trees. Indeed, event
trees help to assess the acceptability of a risk related with a threat scenario fired by a
drone interference (fly-by or collision) with an airport’s asset.

Note that the proposed framework is fully compliant to the requirements stated in the
previous section, since it:

1. may implicitly manage different airports or different airport aggregations (i.e., at a
region level or State level), considering their specific features by means of the input
data (yellow blocks in Figure 1);

2. delivers a qualitative and quantitative assessment of risk levels for each threat scenario
(considering the possible presence of mitigation means in both AVI and ETA), whereas
threat analysis is on a qualitative basis (i.e., it is performed by means of the experience
of human assessors);

3. exploits event trees, which are commonly used for risk analysis;
4. may provide what-if analyses, based on the tuning of input data (yellow blocks

in Figure 1);
5. effectively considers different airports, assets, drone models, etc., based on the identi-

fied threat scenarios;
6. considers the airport’s historical data about drone intrusions as an essential input for

the risk assessment.

The remainder of this work describes the data-driven activities and the model-based
activities of the methodological framework in Figure 1, i.e., the airport vulnerability assess-
ment and the ETA, respectively. Instead, the threat analysis has a qualitative nature and it
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is based on the experience of human assessors, on the features of the considered airport,
and on the knowledge of drone features.

4. Airport Vulnerability Assessment

This section describes in detail the data-driven approach for airport vulnerability
assessment, also based on our previous work [10].

Firstly, note that a vulnerability index shall consider the versatile nature of vulner-
ability by a acknowledging its different dimensions [14]. Indeed, generally speaking,
vulnerability is influenced by a set of conditions and processes resulting from physical,
social, economic, and environmental factors, which increase the susceptibility of a sys-
tem or a community to the impact of hazards. Moreover, vulnerability encompasses the
response and coping capability, being influenced also by the potential of the system or
of the community to mitigate and react with respect to the occurrence of a feared event.
For all these reasons, a vulnerability index is an “umbrella”, i.e., it may be defined as
a multidimensional ensemble of multiple indicators. Such indicators are expressions of
the different dimensions of vulnerabilities and are combined in a single composite index
to possibly:

• compare the vulnerability of different systems and communities;
• compare different policies or options of the same system;
• evaluate potential complications for recovery planning in case of occurrence of the

feared event.

In particular, the ESPON hazards project [14] defined an approach for the measurement
of the vulnerability of places as a combination of hazard exposure and social response
within a specific geographic region, recognizing the following three dimensions for the
vulnerability assessment: (i) economic dimension; (ii) social dimension; (iii) ecological or
environmental dimension. Moreover, according to this approach, hazard exposure may be
represented as a combination of: hazard likelihood, i.e., the probability of the hazard event;
hazard mitigation, i.e., the effectiveness of the measures to reduce the likelihood of the
hazard or its impacts. The combination of both variables provides the hazard tolerability.

Coherently with these basic concepts, a study has been performed to verify the possibil-
ity of defining an airport vulnerability index (AVI) to quantify the exposure or susceptibility
of an airport against drone intrusions [10]. Such study has aimed also at highlighting possi-
ble additional data that would provide an added value for the identification of a complete
“operational picture” underlying the processing of the AVI.

With respect to the definitions in the previous section, a tailoring has to be performed
in order to adapt the generic vulnerability index to the reference context. Thus, for the sake
of this analysis, the target is represented by the threat of drone intrusions in airports, which
replaces the hazard concept in the previous section.

An exhaustive definition of the AVI shall address the quantification of a drone-
intrusion exposure or drone-intrusion susceptibility of an airport, by breaking it down into
the following components:

• the drone-intrusion likelihood;
• the drone-intrusion mitigation.

In this way, the following relationship shall hold for the AVI:

AVI = f (Pdrone(·), Mdrone(·)), (1)

wherein:

• Pdrone(·) is the likelihood function of a drone intrusion in the reference airport;
• Mdrone(·) is the mitigation function of a drone intrusion in the reference airport;
• f (·) is the combination function of the likelihood and the mitigation, and quantifies

the exposure of the airport in regard to drone intrusions.
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Given that the definition of a vulnerability index has to address the different vulnera-
bility dimensions, both Pdrone(·) and Mdrone(·) may be expressed as a multidimensional
combination of different functions, each one related to a single dimension. For example,
the likelihood function may be modelled as:

Pdrone(·) = g(dsoc(·), decon(·), decol(·), · · ·), (2)

wherein the functions dsoc(·), decon(·), and decol(·) represent multiple indicators to be used
as dimensional influence variables for the AVI, each of which quantifies the influence of a
given dimension of the airport’s context (e.g., social, economic, etc.) on the exposure with
respect to drone intrusions. For example, dsoc(·) may address the influence of relevant social
factors of the community around the airport, such as the presence of drone regulations
and the average level of compliance to the regulations themselves. Instead, decon(·) may
address the economic aspects related to the trends of drone market in the area.

In regard to Mdrone(·), this function quantifies the success likelihood of the available
counter-drone systems/procedures of the airport in case of drone intrusion. In general,
such systems and procedures rely on three main technical capabilities: the capability to
detect, identify, and track a drone; the capability to assess whether a detected drone could
cause a risk and decide the best mitigations to be undertaken; and the capability to mitigate
a drone threat. For the latter capability, the expression “mitigate a drone threat” is intended
as: (i) the neutralization of the intruder drone; and/or (ii) the execution of an operational
procedure to reduce the impact of the drone intrusion (e.g., airport closure, halt of most
critical operations, etc.). Clearly, the assessment of Mdrone(·) requires data quantifying the
efficiency of all three capabilities, as further discussed in Section 5 in regard to the ETA and
in Section 6.1.3 in regard to the available data for the case study.

In the remainder of this section, the assessment of Pdrone(·) is discussed. The previous
work in [10] has validated the proposed definition of the AVI resorting to available public
record databases about drone intrusions in airports. In detail, the online database of
the federal aviation administration (FAA)—FAA UAS sighting reports [34]—has been
used for the AVI validation. As prescribed by Equation (2), in addition to sighting data,
some additional data are required to be used as dimensional influence variables, i.e., the
economic-dimension influence, the social-dimension influence, etc. In this case, some
public socio-economic data have been found to be useful for the validation in regard to
the FAA reports: the population of the States in the USA, and the number of registered
drones for each State in the USA. In this way, the AVI has been validated in terms of a
function of socio-economic indicators (i.e., population and number of registered drones).
The validation has considered only the likelihood function P(drone), without the mitigation
function M(drone), since the available FAA reports directly show only information about
the occurrences of drone sightings, whereas they do not show information about the
impacts and the mitigation actions in regards to the airports.

Thus, an estimator P̂(drone) of the function P(drone) has been achieved in [10] by
means of the following expression:

P̂drone(·)|State=s = g
(

p|State=s, nreg_drones|State=s

)
, (3)

wherein:

• s is the reference State;
• P̂drone(·)|State=s is the estimator of the number of drone intrusions for the airports in

the reference State s;
• p|State=s is the population of the reference State s;
• nreg_drones|State=s

is the number of officially registered drones in the reference State s.

The stated definition of Pdrone(·) in (2), jointly with the proposed evaluation of the esti-
mator P̂drone(·)|State=s in (3), sets a modelling framework for the drone-intrusion likelihood
as a part of the drone-intrusion exposure. More generally, it also contributes to the risk
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assessment of drone intrusions in airports. In fact, a risk R may be expressed as the product
of the occurrence probability P of a feared event and the impact I of such occurrence, i.e.:

R = P · I. (4)

In the case of airport drone intrusion, the probability P coincides with the likelihood
function P(drone). Hence, the proposed modelling framework provides a possible input
estimation for the probability of the threat scenario within the risk assessment of drone
intrusions in airports, as addressed in Sections 5 and 6.3.

Finally, the estimator P̂drone(·)|State=s has been modelled over a yearly time horizon
for the FAA data, i.e.:

P̂drone(y)|State=s = g
(

p|State=s, year=y, nreg_drones|State=s, year=y

)
, (5)

wherein:

• y is the reference year;
• P̂drone(y)|State=s, p|State=s, year=y, and nreg_drones|State=s, year=y

, respectively, represent the
yearly estimated number of airport drone intrusions, the population and the number
of registered drones in the State s for the year y.

To check the effectiveness of this modelling framework, the function P̂drone(y)|State=s
function has been designed with a quadratic-polynomial structure, i.e.:

P̂drone(y)|State=s = a1x2 + a2x + a3, (6)

wherein a1, a2, and a3 are the fitting real coefficients, and x is the population p|State=s, year=y
or the number of registered drones nreg_drones|State=s, year=y

in the State s for the year y. As
an example, this structure has been tested with 2020 FAA’s data in order to provide the
following potential models:

1. the correlation fitting between the population and the number of drone sightings in
2020 for each FAA’s State;

2. the correlation fitting between the number of registered drones and the number of
drone sightings in 2020 for each FAA’s State.

For the first model (correlation fitting between the population and the number of
drone sightings in 2020), the following coefficients have been determined by means of the
curve fitting toolbox of MATLAB (Matrix Laboratory), and using the available data for by
state FAA populations and drone intrusions in 2020:

• a1 = 5.559× 10−8;
• a2 = 0.00331;
• a3 = −0.9511.

Figure 2 shows the model in (6) and drawn with the aforementioned coefficients,
comparing it with the observed outcomes (i.e., the real number of drone intrusions in 2020
for each FAA State). Moreover, the accuracy of the model has been assessed by means
of the coefficient of determination R2, which is a statistical measurement quantifying the
accuracy of a model in predicting or explaining an outcome. More precisely, this coefficient
assesses how well a model replicates the observed outcomes by measuring the percentage
of variability within the dependent variable that is explained by the modelled function
of the independent variable. In detail, R2 is 0.8478 for the achieved model, meaning the
estimator P̂drone(y)|State=s in (6) explains about the 85% of the variance of the dependent
variable (the yearly number of drone sightings in the State s for the year y) as a function of
the independent variable (the population of the State s for the year y).
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The results of the proposed fitting model suggest that:

• an estimator P̂drone(y)|State=s according to the population is reasonable and effective
to assess the yearly number of a drone intrusions in the airports of a given State;

• the population p may be considered as a proper influence variable in regard to the
drone-intrusion likelihood and the drone-intrusion exposure.

Indeed, the population is related to the geographical position of an airport and repre-
sents an index of the social context of the airport’s proximity region. Thus, the population
determines an airport socio-geographical vulnerability index for drone intrusions.

The previous work in [10] provides similar validation results for an alternative estima-
tor P̂drone(y)|State=s as a function of the number of registered drones in the State s for the
year y. This estimator has achieved even a greater R2 value (0.8821), confirming that also the
number of registered drones is an influence variable for the drone-intrusion likelihood and
the drone-intrusion exposure. Such influence variable is related to the economic context of
the airport’s proximity region, determining an airport socio-economic vulnerability index
for drone intrusions.

Note that the analysis has been performed at an aggregated State-level (and not at a
local level for the single airports) since the available socio-economic indexes (population
and number of registered drones) refer to a geographical State scale. Of course, different
geographical scales (e.g., regions, metropolitan areas, cities, etc.) may be adopted to model
the drone-intrusion likelihood of different conglomerates of airports (e.g., local airports in
a region, single airports, etc.). In fact, the proposed modelling framework may be tailored
according to the scales of the available data for the reference variables.

5. Event Tree Analysis

ETA provides a qualitative and quantitative analysis of drone intrusions in or near
an airport.

The table in Figure 3 describes the qualitative view of the event tree for drone intrusion
assessments. The table is composed of the following columns:

• “Threat scenario”. The second column of the table describes the threat scenario that
is analyzed: the TYPE of drones refers to authorized, off-nominal, or unauthorized
drone operations; LOCATION refers to a specific place in or near the airport such as
the runway, the taxiway, the departure, or arrival paths; and OPERATION refers to
the affected airport operation by the intrusion such as aircraft landing, aircraft taxi,
aircraft passenger boarding, etc.

• “Is drone intrusion detected?”, “Is drone intrusion assessed?”, “Is drone intrusion
mitigated?”. The three following columns describe the answers to questions about
the efficiency of the three main technical capabilities of a system protecting airport
against drones: the capability to detect, identify, and track a drone; the capability to
assess whether a detected drone could cause a risk and decide the best mitigations to
be undertaken; and the capability to mitigate a drone threat.



Aerospace 2022, 9, 747 12 of 24

• “Bid”. The first column provides branch identifiers. Branch 1 describes a best-case
situation where all three technical capabilities efficiently manage the drone intrusion
whereas branch 8 is the worst-case situation where none of three technical capabilities
are working efficiently. In the latter case, only non-technical means could be used to
protect the airport against drones.

• “Outcome”. The last column describes the safety and operational outcome of the branch.
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Figure 3. Qualitative view of the even tree for the assessment of threat scenarios related to drone
intrusions in airports.

For the outcome, we use the following index ranging from one to five to describe the
possible outcomes of a drone intrusion:

• Outcome 1. The threat scenario causes a catastrophic safety effect or a severe interrup-
tion to airport operations.

• Outcome 2. The threat scenario causes a hazardous safety effect as severe injuries or a
major interruption to airport operations.

• Outcome 3. The threat scenario causes a major safety effect as light injuries or a
moderate interruption to airport operations.

• Outcome 4. The threat scenario causes a minor safety effect as passenger discomfort
or a small interruption to airport operations.

• Outcome 5. The threat scenario does not affect safety or the airport operations.

Note that the aforementioned classification is just an example. The exact definition
of the quantitative criteria for each outcome (e.g., the reference number of delayed or
interrupted operations to classify the outcome as a severe, major, moderate, and small
interruption) may depend on a local risk assessment of the specific airport.

In Figure 3, Branch 1 represents the best-case scenario where all technical means
are efficient in that case we consider that its safety and operational outcome is minor.
Partially-degraded situations in Branches 2, 3, and 5 include the loss of efficiency of only
one capability. We consider that their safety and operational outcome is major (3). Branches
4, 6, and 7 represent more degraded scenarios, where two out of the three capabilities are
not efficient. We consider that they have a hazardous outcome. Finally, branch 8 describes
the worst-case situation having a catastrophic outcome.

Instead, Figure 4 illustrates the table for the quantitative view of the event tree. The
last column, labelled “Branch Probability”, contains the probability of the 8 branches. The
probability is computed using:

• Pts, the probability of the threat scenario;
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• Pd, the probability of efficient detection (or 1 − Pd, the probability of non-
efficient detection);

• Pa, the probability of efficient assessment (or 1 − Pa, the probability of non-
efficient assessment);

• Pm, the probability of efficient mitigation (or 1 − Pm, the probability of non-
efficient mitigation).
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Figure 4. Quantitative view of the even tree for the assessment of threat scenarios related to drone
intrusions in airports.

Once a branch probability is computed, it is compared with the target probability of
its safety and operational outcome. The branch is considered to be unacceptable when-
ever its probability is greater than the target probability with respect to the safety and
operational outcome.

In this paper, we have used the following target probabilities: 5 × 10−3 for a branch
whose outcome is 4; 5 × 10−4 for a branch whose outcome is 3; 5 × 10−5 for a branch
whose outcome is 2; and 5 × 10−6 for a branch whose outcome is 1. These values are the
same of other typical feared events for airport operations, e.g., “thunderstorm close to the
airport” [35].

Additionally, this approach enables a reverse reasoning to allocate the reliability to the
technical means for detection, assessment, and mitigation.

6. Case Study

This section describes the achieved results of the case study about the proposed
methodological framework for the risk assessment of airport drone intrusion.

In detail, Milan Malpensa airport has been chosen as the reference airport for the
case study. The ICAO (International Civil Aviation Organization) airport code is LIMC.
It has been considered a proper reference airport for this study because it is of medium
complexity in the context of European airports.

The airport is located 49 km from central Milan, has two passenger terminals as well
as a dedicated cargo terminal. It presents two runways in a parallel configuration with
various taxiways connecting these with the aforementioned terminals and other airside
areas, as shown in Figure 5.

Lastly, for the case study, the following threat scenario has been used as a reference for
the risk assessment by means of the ETA: “intrusion of a drone in the departure path of the
runways at LIMC”.
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6.1. Available Data

This section describes the input data that have been used for the assessment within
the case study. We have identified the available data sources and processing methods in
order to compute the various elements that have to be detailed in order to: (i) evaluate
the AVI of LIMC for a given timeframe; (ii) build the event trees for risk assessment with
respect to the reference threat scenario.

6.1.1. Drone Intrusion Data

The data presented in this section have been provided by courtesy of the Italian
Aviation Authority, ENAC (Ente Nazionale per l’Aviazione Civile).

Drone intrusions in Italian airports are classified as “interferences of APR (Aeromobili
a Pilotaggio Remoto, remotely piloted aircraft) with manned a/c during take-off or landing”.
The following data have been made available in regard to drone-intrusion statistics in Italy:

• yearly number of drone intrusions in Italian airports (Figure 6);
• yearly number of airport movements in Italy (Figure 7);
• frequency rate of the yearly number of drone intrusions in Italian airports, by normal-

izing such number with respect to 10,000 movements in Italian airports (Figure 8).
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All the data are related to the period 2015–2020.
Moreover, the total number of registered drone operators in Italy was 50,587 in 2021. A

qualitative adopted estimation for the number of APRs in Italy is achieved by multiplying
the number of registered drone operators by 1.5 ÷ 2.

6.1.2. Airport Movement Data

The probability of the threat scenario used in the event tree is based on the AVI
of LIMC, but it has to consider also the occupancy rate of the airport for the various
departure paths.

The Airport Corner website of EUROCONTROL [36] provides data about airport
movements and runway occupancy for European airports, including LIMC. Moreover,
data refer to the frequency of runway configuration usage. At Malpensa, four runway
configurations are used. Three configurations involving departures on runway 35L or
35R, which are used about 97% of the time. The remaining runway configuration with
departures on runway 17R is used 3% of the time.

Consequently, we could specialize the event tree with two cases: one for intrusion in
the 35L or 35R departure path, and the second one dealing with intrusion in the 17R or 17L
departure path.
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6.1.3. Data about the Efficiency of Technical Means

Data about the efficiency of technical means for threat detection, assessment, and
mitigation are also needed in order to evaluate probabilities Pd, Pa, and Pm of the event
tree. As noted in [32], there is little publicly available information on this topic. Recently, a
public benchmark was proposed in [37] for the assessment of the efficiency of detection
means. Reference [38] provides some figures for tested mitigation means.

During ASPRID project, we used the results of tests performed for some Spanish
airports. These test results provided information about the efficiency of detection assess-
ment and mitigation means. In this paper, we illustrate the proposed methodology with
efficiency figures that are consistent with these tests.

In detail, the detection probability Pd depends on the location and the type of the
drone. We suppose that the detection means are located in the airport, and the efficiency
of detection decreases for drones that are distant from the airport. Consequently, we
have considered Pd = 80% when intrusion occurs at less than 1 km from the airport
and Pd = 43% for intrusion taking place at a larger distance. Furthermore, we also have
considered the detection of drones whose operation are authorized in or near the airport,
but they are intruding in the departure path due to a pilot error or a technical problem.
Authorized drones should continuously broadcast their location, so the efficiency of the
technical means for detection is expected to be very good. In that case, Pd = 95% wherever
the intrusion occurs because the drone could be detected by a U-space service provider that
covers a very large area of the airspace.

Then, we have considered that the loss of efficiency of a threat assessment is mainly
related with unavailability of information-technology (IT) equipment supporting this
capability. Thus, Pa is independent from the drone location and type, and it is assumed
Pa =10−2.

Lastly, we have considered that the mitigation means could be mobile and that they
could be moved close to the intruding drone location. Consequently, we have assumed
that their efficiency does not depend on the drone location. Moreover, the mitigation of the
intrusion of an authorized drone might be more efficient than in the case of unauthorized
drones, as there is the possibility to contact the drone’s pilot in order to ask for a trajectory
correction. So, we have assumed that Pm = 60% for non-authorized drones, whereas
Pm = 95% for authorized drones.

6.2. Results about Airport Vulnerability Index

A model has been set for the definition of the AVI of Italian airports, based on the
modelling approach discussed in Section 4. Such model may be useful to estimate the
drone-intrusion likelihood and to lead the ETA for the quantitative and coherent risk
assessment of threat scenarios with the methodological framework shown in Figure 1.

Similar to the AVI modelling for FAA data described in Section 4, this work has
aimed at defining an AVI in Italy as a function of socio-economic indicators. Thus, even
here the addressed estimator is only for the part related to the drone-intrusion likelihood,
whereas this work does not provide further details about the vulnerability in terms of
drone-intrusion mitigation, for which no data are available.

Given the available inputs reported in Section 6.1.1, the proposed estimator seeks to
evaluate the expected yearly number of drone intrusions in Italian airports as a function of
the total number of drones and the yearly number of airport movements, i.e.:

P̂drone(y)|Italy = g
(

ndrones|Italy, year=y
, nmovements|Italy, year=y

)
, (7)

wherein:

• P̂drone(y)|Italy is the estimator of the number of drone intrusions in the Italian airports
for the year y;

• ndrones|Italy, year=y
is the total number of drones in Italy for the year y;

• nmovements|Italy, year=y is the number of airport movements in Italy for the year y.
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Of course, the reference years for the definition of the model are the same of the
available data about drone intrusions, i.e., 2015–2020. In regard to ndrones|Italy, year=y

, given
that the official available data are about the number of registered drone operators in
2021, the number of drones for the period 2015–2020 has been estimated by applying the
following assumptions:

• the number of drones is evaluated by multiplying the number of drone operators
by two;

• the number of drones in the previous years is evaluated with the same approach
in [10], i.e., by considering a linear incremental factor according to the market trends
and by using a trend of +7% per year.

In detail, the following linear and two-dimensional structure has been applied for the
modelling of P̂drone(y)|Italy:

P̂drone(y)|Italy = a10 · ndrones|Italy, year=y
+ a01 · nmovements|Italy, year=y + a00, (8)

wherein a10, a01, and a00 are fitting real coefficients. Using the available data for the period
2015–2020, the following values of such coefficients have been determined by means of the
curve fitting toolbox of MATLAB:

• a10 = 0.0041;
• a01 = 4.942× 10−5;
• a00 = −352.4.

Figure 9 shows the model in (8) and drawn with the aforementioned coefficients.
Instead, Figure 10 illustrates the residual errors of the model with respect to the available
observed outcomes, i.e., the real number of drone intrusions in the Italian airports for the
period 2015–2020.
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Figure 9. AVI model for the Italian the yearly number of drone intrusions as a function of the total
number of drones and the yearly number of airport movements.

In detail, the effectiveness of the fitting results is demonstrated by the residual errors
in Figure 10, which are included in the range [−10, 10]. Moreover, the root-mean-square
error (RMSE) is 11.48 and the normalized RMSE (NRMSE) is about equal to 8%. The
accuracy of the model is confirmed by its coefficient of determination R2, which is equal
to 0.9365. Thus, the achieved estimator explains about the 93.7% of the variance in the
correlation between the input variables (the yearly number of drones and the yearly number
of airport movements in Italy) and the estimated variable (the yearly number of airport
drone intrusions in Italy). This proves that the number of drones and the number of airport
movements determines an effective airport socio-economic index to quantify vulnerabilities
of Italian airports with respect to drone intrusions.
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Note that an alternative model may be developed without considering the data of
2020, which may present anomalies due to the influence of COVID-19 pandemic. However,
the magnitude order of the provided vulnerability estimations (as discussed below) should
not change due to the normalization with respect to airport movement data. Moreover,
the influence of the pandemic was still on-going also in 2021, which is the target year for
our estimations.

Based on the aforementioned results for the definition of an AVI model in Italy, we
have inferred an estimation of the drone-intrusion likelihood in 2021 for our case study (i.e.,
for Milan Malpensa airport) starting from the available data in the period 2015–2020. In
other words, the model in (8) has been adapted as a one-step predictor. Firstly, the inputs
of the model in (8) have been evaluated for the target year by computing the number of
drones and the number of airport movements in Italy during 2021. For this purpose, the
following assumptions have been adopted:

• The number of drones in Italy in 2021. For this input, the value of has been computing
with the previous approach, i.e., by considering a trend of +7% per year.

• The number of movements of Italian airport in 202. This input has been evaluated
by using the EUROCONTROL’s measurement of traffic variation between 2020 and
2021 [39]. Such measurement reports a variation of +29% in regard to the traffic level
of Italy. Thus, the number of movements in 2021 has been predicted starting from the
available data about the number of movements in 2020 (703,751) and by applying a
growth factor of 29%.

With these assumptions, the following estimation has been achieved for the number
of drone intrusions in Italy in 2021:

P̂drone(2021)|Italy = a10 · ndrones|Italy, 2021
+ a01 · nmovements|Italy, 2021 + a00 ∼= 107. (9)

This estimation has been refined for the reference case study of LIMC. In particular,
the model inputs have been reshaped for a local characterization, i.e., to be referred to the
local region of Milan Malpensa airport to quantify their influence and their contribution to
the drone-intrusion exposure of the airport itself. For this purpose, the following further
assumptions have been adopted:

• The number of drones influencing LIMC in 2021. This input has been evaluated by
assuming that the number of drone operators and the number of drones in a region
are proportional to the population of the region. Thus, the percentage of the Italian
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population living in Lombardy (16.3%) has been applied to evaluate the number of
drones in Lombardy in 2021, starting from the national number.

• The number of movements of LIMC in 2021. This input has been evaluated by using
the ratio between the number of movements of Milan Malpensa and the total number
of airport movements in Italy in 2020, which is 13.13%.

Then, the fraction of P̂drone(2021)|Italy related to LIMC has been computed by using
the above percentages and by weighting them according to a10 and a01 coefficients, i.e.:

P̂drone(2021)|LIMC =
1

100
a10 · 16.3 + a01 · 13.13

a10 + a01
P̂drone(2021)|Italy

∼= 17.4. (10)

The value of P̂drone(2021)|LIMC in (10) represents the estimation of the yearly number
of drone intrusions for Milan Malpensa airport in the target year according to the proposed
modelling framework. Thus, such estimation provides a possible prediction according
to the model in (8) fed by the previous observed outcomes, i.e., the data in the period
2015–2020.

Moreover, the achieved result in (10) may be interpreted as an estimation of the
drone-intrusion likelihood of the reference airport as part of the overall AVI (i.e., the drone-
intrusion exposure) of the airport itself. Indeed, it does not consider the part related to
the drone-intrusion mitigation of the reference airport. Clearly, the proposed estimation of
the AVI may better exploit its potential by working also on other additional data for the
identification of a complete “operational picture” underlying the processing of the AVI
itself, as explained in Section 7.

6.3. Results about Event Tree Analysis

Several detailed event trees have been developed for the reference threat scenario of
the case study, i.e., “intrusion of a drone in the departure path of the runways at LIMC”.

In detail, two event trees refer to intrusions in the departure path of runways 35R or
35L when a take-off is occurring: one for intrusion taking place at less from one km from the
airport, and the second one for intrusion taking place at a larger distance. For both event
trees, the probability of the threat scenario is computed using the AVI for LIMC, as provided
in Equation (10), i.e., 17.4 intrusions/year. Such value is transformed into a probability
of intrusion per hour (with the assumption of 12 h/day of operation), considering the
frequency of the runway configurations with departures on runways 35R or 35L (97%).
Figures 11 and 12 show the event trees: the former for the intrusion taking place at less than
1 km from the airport, the latter for the intrusion taking place at a larger distance. They
highlighting in pink the branches that represent an unacceptable risk. In particular, for the
first event tree, the following two branches are unacceptable for the intrusion that occurs
close to the airport: Branch 2 and Branch 6, which both involve the loss of efficiency of the
mitigation capability. Instead, for the second event tree, the following three branches pose
an unacceptable risk: Branch 5, Branch 6, and Branch 8. They are all related to a loss of
efficiency of the detection mean. In addition to this condition, Branch 6 involves a loss of
efficiency of the mitigation capability, whereas Branch 8 involves a loss of efficiency of all
the technical means (including assessment).

The aforementioned considerations clearly show the influence of the efficiencies of the
technical means on the results of the event trees and the related unacceptable branches. For
example, in case of intrusions taking place in the departure path at a larger distance, the
incidence of the detection capability is higher since its loss of efficiency has a significant
value (1− Pd = 0.57). Instead, in case of intrusions taking place in the departure path at
a shorter distance, the mitigation capability has a decisive role since its loss of efficiency
(1− Pm = 0.4) which implies two unacceptable branches.
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Figure 11. Event tree for the intrusion of an unauthorized drone in LIMC 35 departure path (<1 km
from runway) when take-off is occurring.
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Figure 12. Event tree for the intrusion of an unauthorized drone in LIMC 35 departure path (>1 km
from runway) when take-off is occurring.

The event trees for intrusions in the runway 17 departure path are built in a similar
way, but the smaller frequency of this runway configuration (3%) has to be considered when
computing the probability of the threat scenario, jointly with the airport’s AVI. Figure 13
shows one of these event trees, concerning an intrusion taking place at less from one km
from the airport. None of the branches of the event tree are deemed unacceptable. This
is due to the very small frequency of this runway configuration, which helps to keep the
probability of all the branches very low. The event tree for an intrusion further than 1 km
provides similar results.
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Figure 13. Event tree for the intrusion of an unauthorized drone in LIMC 17 departure path (<1 km
from runway) when take-off is occurring.
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The last example of event tree deals with drones whose operation are authorized, as
shown in Figure 14. In that case, only branch 2 is deemed unacceptable.
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Figure 14. Event tree for the intrusion of an authorized off-nominal cooperative drone in LIMC 35
departure path when take-off is occurring.

7. Discussion

This section provides a discussion of the achieved results for the proposed case study.
In regard to the AVI, it has been used to measure the susceptibility of airports with

respect to drone intrusions, considering the relevant vulnerability dimensions, such as the
socio-economic dimension. In detail, the analysis has shown significant and quantifiable
correlations among the number of drone sightings, the total (estimated) number of drones
and the number of airport movements. Such correlations have allowed to estimate the
AVI, representing an effective indicator for the likelihood of threat scenarios in the risk
assessment (i.e., in the ETA).

Note that the results described in Section 6.2 represent just preliminary considerations
for the evaluation of a vulnerability index of airports against drone intrusions. Indeed, the
estimation of the AVI may better exploit its potential by working also on other additional
data for the identification of a complete “operational picture” underlying the processing
of the AVI itself. Anyway, in order to arrange a comprehensive and sound model for the
evaluation of the AVI, other correlations could be investigated, such as the influence of
socio-cultural indicators related to the definition of a local clear regulatory framework,
the promptness of intervention in case of intrusion, and the aptitude of rules observance.
Such data would allow an increase in the confidence of the estimation and they may be
related to:

• the type of airport;
• the airport’s traffic complexity;
• the unmanned traffic (if any);
• the meteorological conditions and the season;
• the counter-drone solutions in the airport (if any);
• the legal framework for drones in the country of the airport.

All the previous items are expected to influence an airport’s exposure to drone intru-
sions. Fine-grain data about these items would allow a tuning of an AVI (i.e., an estimator
of the threat exposure and, especially, of the threat likelihood) for a specific airport. In
this way, a systematic and periodic update of the AVI may be performed within the safety-
related and security-related risk assessment of drone intrusions in the reference airport.
Such updates would allow an estimation of the impact of important influence variables
related to the airport context in regard to the risk of drone intrusions.

In regard to the ETA, the various event trees presented in Section 6.3 may help us to
select critical risk scenarios. These scenarios are related to the branches of the event trees
whose probability is unacceptable with respect to their safety and operational outcome, as
shown in Figure 3. Indeed, the acceptability of the branches might be used to establish in
which situations (i.e., threat scenarios) it is relevant to use new countermeasures or improve



Aerospace 2022, 9, 747 22 of 24

the current ones, coherently with the risk assessment objectives. In other words, the event
trees elicit requirements (in terms of success likelihood or outcome in case of failure) for
the different steps of the RIMS.

In particular, once critical (i.e., unacceptable) branches are identified, it is either possible:

• to decrease the probability of the branch by decreasing the probability of its events
(this means improving the efficiency of technical means); or

• to reduce the safety and operational outcome of the branch, for instance by introducing
specific operational procedures to mitigate the impact of the related risk scenario.

In the former case, if the branch probability is sufficiently reduced, then the branch
becomes acceptable and it does not trigger a critical risk scenario anymore. In the latter case,
if the safety and operational outcome is improved, then the target probability is increased
and the branch probability might become acceptable after this change.

The proposed evaluation of risk scenarios (and the consequent elicitation of counter-
measure requirements) may be extended to cover an entire asset (i.e., analyzing all the
threat scenarios related to the asset, such as the runway) or to an entire airport.

8. Conclusions

This paper deals with the risk assessment of drone intrusions in airports. It proposes
a unified methodological framework for such risk assessments, considering both safety-
related and security-related causes. The framework is based on the combination of two
model-based and data-driven specifications for a given airport: a vulnerability index,
to quantitatively assess the susceptibility of the airport to drone intrusions, based on
reference datasets; a set of event trees, to quantitatively assess the risks of the different
threat scenarios related to drone intrusions, based on the airport’s vulnerability index. The
proposed methodological framework is applied to a concrete case study, related to Milan
Malpensa airport.

Future work will regard the extension of the framework to consider additional data
types for the estimation of the vulnerability index, including other vulnerability dimensions,
and additional threat scenarios related to drone cyber-intrusions in airports.
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