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Abstract: Since air traffic complexity determines the workload of controllers, it is a popular topic
in the research field. Benefiting from deep learning, this paper proposes an air traffic complexity
assessment method based on the deep metric of air traffic images. An Ordered Deep Metric (ODM)
is proposed to measure the similarity of the ordered samples. For each sample, its interclass loss is
calculated to keep it close to the mean of the same class and far from the difference. Then, consecutive
samples of the same class are considered as a cluster, and the intracluster loss is calculated to make the
samples close to the samples within the same cluster and far from the difference. Finally, we present
the ODM-based air traffic complexity assessment method (ATCA-ODM), which uses the ODM results
as the input of the classification algorithm to improve the assessment accuracy. We verify our ODM
algorithm and ATCA-ODM method on the real traffic dataset of south-central airspace of China. The
experimental results demonstrate that the assessment accuracy of the proposed ATCA-ODM method
is significantly higher than that of the existing similar methods, which also proves that the proposed
ODM algorithm can effectively extract high-dimensional features of the air traffic images.

Keywords: air traffic management; air traffic complexity; deep metric; loss function

1. Introduction

It is well known that safety is the primary goal of air transportation. The whole
flight operation in the airspace is monitored by the air traffic controllers on the ground.
Pilots need to follow the controller’s instructions to adjust their flight trajectory to avoid
potential conflicts between aircrafts. However, in recent years, the rapid growth of air
traffic and limited airspace capacity have made air traffic control more and more complex.
It is important to note that there is no necessary relationship between the airspace capacity
and the controller’s workload. In general, the more aircraft in the airspace and the more
potential conflicts, the higher the controller’s workload will be. The aggravation of route
congestion and aircraft conflict problems directly leads to a dramatic increase in controller
workload. The overload of controllers will inevitably lead to inappropriate control decisions,
which will bring safety risks to air traffic control [1–3]. Therefore, scientific and accurate
evaluation of air traffic complexity in the airspace sector can keep the traffic complexity
in the sector within the controller’s tolerance range, that is, it can make the controller’s
control ability match the traffic complexity in the sector, so as to ensure that the air traffic
flow in each sector of the airspace can operate safely and efficiently, and finally achieve the
purpose of improving the operation quality of the ATC system. Accurate assessment of air
traffic complexity can help us to reasonably divide the airspace into several sectors so as to
ensure that controllers can safely control all flights within a tolerable workload [4].

Air traffic complexity depends on the real-time traffic flow in a certain airspace,
including the number of aircrafts and their relative positions to each other [5,6]. Due to
the limitations of the airspace structure, aircraft must adapt to the airspace structure by
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changing their trajectories, which in turn causes dynamic changes in air traffic complexity.
Therefore, accurately assessing the dynamic complexity of air traffic is a daunting task. In
the past two decades, researchers have studied the air traffic complexity problem from
two main aspects: static airspace structure and characteristics of dynamic traffic flow.
With the development of machine learning techniques, in recent years, some researchers
have also tried to apply some advanced machine learning algorithms to assess air traffic
complexity [7–9]. In 2016, Xiao et al. [7] presents an air traffic complexity evaluation model
with integrated classification using computational intelligence. In 2019, Andraši et al. [8]
proposed a novel approach, which used multilayer perceptron to handle the air traffic
complexity estimation problem. In 2021, Xie et al. [9] first proposed an image representation
of air traffic status, and then used the convolutional neural network (CNN) to predict air
traffic complexity, which significantly improves the assessment accuracy.

The image representation of the air traffic status breaks through the limitations of
structured data representation used in previous methods and can express more complex
dynamic traffic features. Then, hidden features in the traffic images can be extracted using
deep learning techniques to greatly improve the assessing performance. Benefiting from the
image representation of air traffic and the wide application of deep metric techniques, this
paper proposes an ordered deep metric-based air traffic complexity assessment method,
ATCA-ODM, which takes air traffic images as input and uses DCNN to extract the deep
traffic flow features contained in the images. Then, a deep metric learning algorithm
considering the sample order are designed to calculate the distances between the extracted
samples and the mean vector in the embedding space. Finally, the obtained metric matrix
is used as the input of the KNN algorithm to assess the air traffic complexity. We validate
the performance of ATCA-ODM on the real traffic data of south-central airspace of China.
The main contributions of this paper are listed, as follows:

(1) We design a new loss function which considers the sample order, and propose an
ordered deep metric algorithm ODM.

(2) A new air traffic complexity assessment method ATCA-ODM is proposed based on
ODM to improve the accuracy of the complexity assessment.

(3) The effectiveness of the proposed ODM algorithm and the performance of our com-
plexity assessment method ATCA-ODM are verified on historical air traffic data.

2. Related Works

In 2010, Gianazza et al. [10] studied the relationship between the traffic complexity and
controller workload using the back propagation neural network (BPNN) to extract nonlinear
features and analyzed the reasons for the increase in controller workload. They concluded
their study by suggesting traffic complexity as an indicator of airspace sectorization. In 2010,
Djokic et al. [5] redefines traffic control behavior based on the components of air traffic
complexity. Furthermore, they explored the interrelationship between traffic complexity
and control workload by regression analysis, cluster analysis and other mathematical
method. They also predicted the changes of the controller’s workload in the future scenario
based on traffic complexity. In 2011, Netjasov et al. [11] studied the traffic complexity in the
terminal area and found that the airspace structure and its internal traffic flow also have
impacts on traffic complexity. The airspace structure contains spatial structure of the routes,
connectivity of waypoints, number of waypoints, etc., and the influence of traffic flow
contains distribution of traffic flow in the flight segment, changes of aircraft altitude, etc.
In 2014, Delahaye et al. [12] tried to find the interconnection between dynamic factors such
as the actual coordinates of the aircraft, the speed of the aircraft and the traffic complexity,
and then developed a traffic complexity calculation model. In 2016, Xiao et al. [7] used
genetic algorithms to select key factors of air traffic complexity and then introduced an
adaptive ensemble learning algorithm Adaboost to train classification models to calculate
air traffic complexity. Due to the full use of sample information, the model obtains a high
classification accuracy. In 2017, Zhu et al. [13] proposed a complexity computation model
based on ensemble learning for small sample scenarios with few labeled samples. In the



Aerospace 2022, 9, 758 3 of 11

following two years, Cao et al. [4] gradually introduced the semi-supervised learning
and migration methods to air traffic complexity assessment to maximize the information
contained in unlabeled and labeled data to further improve the accuracy of the air traffic
complexity assessment. In 2019, Andraši et al. [8] want to make a method for complexity
estimation, which can be used without the constant controller input. They using artificial
neural networks for complexity estimation and the result is that the performance of ANN
is similar to the linear estimation model, which proves that the issues with model accuracy
could not be improved with non-linear methods, as previously proposed. In 2021, for the
first time, Xie et al. [9] proposed an image representation method of air traffic situation,
which first divides the target airspace into a grid, then maps the aircraft positions into
the grid and puts dynamic information such as aircraft altitude, speed, and heading
into the grid to generate an image to represent the traffic status of the target airspace.
In addition, they use CNN to extract features from images for evaluating airspace traffic
complexity. This image-based approach is able to extract more feature information than
traditional machine learning methods based on numerical data, thus achieving higher
classification accuracy. The most significant contribution of Xie’s work is the proposed
image representation of air traffic status, which allows more deep learning techniques to be
used to solve problems in air traffic.

As an important issue of deep learning, the goal of deep metric learning is to seek a
mapping so that the embedding vectors of semantically similar samples in the embedding
space are closer to each other, while the embedding vectors of semantically different
samples are separated from each other. Specifically, what deep metric learning changes is
the position of samples in the embedding space. With the model training, samples of the
same class will gradually approach and samples of different class will gradually move away.
The samples in the embedding space are constrained by using the deep metric learning
loss function, and when the samples of the same class are far away, the loss is larger. The
model changes the embedding space according to the loss, which can make the samples
of the same class closer, and a similar operation is performed for the samples of different
classes. In other words, deep metric learning will allow the algorithm to get more accurate
prediction results. Deep metric learning has a wide range of applications in computer
vision, such as image retrieval [14] and visual tracking [15]. Therefore, we can use deep
metric learning to extract more embedded spatial features of air traffic images to improve
the accuracy of air traffic complexity assessment. In deep metric learning, loss function
plays a decisive role. Depending on the design principles, there are mainly two types
of computational strategies for deep metric learning loss. The first type is pair-based
loss, such as Contrastive loss [16] and Triplet loss [17], which use pairwise distances to
represent the relationships between samples. The second type is proxy-based loss, such
as Proxy-NCA++ [18] and PAL [19], which replaces the large-scale original samples with
small-scale proxy samples, and each sample only needs to calculate its distance with the
learned proxy of each class, so as to reduce the computational complexity.

Inspired by the above works, we try to design a new loss function and deep metric
learning algorithm based on the characteristics of air traffic image datas, and the proposed
deep metric learning algorithm will be applied to air traffic complexity assessment, and its
effectiveness will be verified on real air traffic data.

3. Method
3.1. Motivation

In the field of civil aviation, all kinds of the flight operation data are mostly collected
in a temporal order. Therefore, adjacent samples tend to have high similarity, yet they may
not belong to the same class. Figure 1 shows five consecutive images of air traffic status
in a certain airspace with their complexity labels marked by a senior controller. The first
two images have the same label L-2, which means they belong to the class and the last three
have the same label L-3. From the figure, we can see that Figure 1b,c are adjacent samples,
which are similar but do not belong to the same class.
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Figure 1. Illustration of single channel air traffic images. Five consecutive images from two classes.
Among them, (a,b) are the same class, (c–e) are the same class.

For machine learning algorithms, such samples are difficult to be classified. To address
the common problem in flight operation data, we try to design a loss function that focuses
on the metric between samples in the same class, with the aim of making them as close as
possible to each other.

3.2. Definition of Ordered Loss

In fact, the data are collected in several time periods, and the collection times may vary
by several hours for consecutive samples; thus, the data are not completely ordered, but
partially ordered. Considering this characteristic, we propose a new loss function, named
ordered loss, which contains interclass loss and intracluster loss to measure the distances
of samples in terms of classes and clusters.

3.2.1. Interclass Loss

We define interclass loss to measure the distance between samples with the same
label. To reduce the computational complexity, we calculate the mean vector of each class.
To calculate the interclass loss, only the distance between a sample and the mean vector of
its class is calculated. The definition of interclass loss of a sample is as follows.

linter(x, g) = (1− y)[α− dcos(x, g)]+ − y[dcos(x, g)− (α−m)]+ (1)

y =

{
1, yx = yg,

0, yx 6= yg.

where x is an embedding vector extracted by deep convolutional neural network (DCNN)
from the air traffic images, and g is the mean vector of one class. If x belongs to the same
class as g, then y = 1, otherwise y = 0. [∗]+ = max(0, ∗). The distance between vector
x and g is calculated by cosine distance dcos(p, q) = 1− (p · q)/(|p||q|), where p, q ∈ Rn.
α and m (m < α) are the hyperparameters and their roles are shown in Figure 2.

We set a boundary α and a margin m (m < α) for each class. Samples from the same
class should stay within a circle of radius α centered on the mean vector. At the same time,
there should be a margin of m between the boundaries of the two classes. So that, we
only need to handle those samples that are outside the circles to make they enter the circle
of their classes, which can keep the original distribution of the training data as much as
possible. It can be concluded that interclass loss makes samples of the same class to be as
close as possible, and it has low computational complexity.

Furthermore, to better classify the hard negative samples, we added weights to the
negative samples when calculating the total interclass loss. The formula for calculating the
interclass loss for all samples is as follows.

Linter(X) = ∑
x∈X

linter(x, g+) +
1
|G−x |

∑
x∈X

∑
g−∈G−x

wxg−

∑g−∈G−x
wxg−

linter(x, g−) (2)

wxg− = eT∗(α−dcos(x,g−)), g− ∈ G−x (3)
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where g+ is the mean vector, which is the same class as x. G−x is the set of the mean vectors
of the classes different from x. |G−x | is the number of elements in G−x . T is the parameter
that controls the weights of the negative samples. When T = 0, all negative samples are
treated equally, and if T = +∞, the sample will be the hardest sample to be classified.

Figure 2. Illustration of interclass loss.

3.2.2. Intracluster Loss

We define the intracluster loss to measure the distance between samples of different
labels. First, we scan the label set and take the consecutive samples with same the label as a
cluster, which is shown in Figure 3. Different colors represent different classes, so that the
image set is divided into several clusters.

Figure 3. Illustration of division of clusters.

Samples from the same class are grouped into different clusters in the order of col-
lection. The definition of intracluster loss of a sample and all the samples are as follows.

lintra(x) = ∑
xj∈s(x)

dcos(x, xj) (4)

Lintra(x) =
1
2 ∑

x∈X
lintra(x) (5)

where x is an embedding vector and s(x) is the set of samples from the same cluster of x.
The intuitive meaning of intracluster loss is shown in Figure 4.

In the figure, the square samples are sequentially divided into four clusters, and the
circle samples are divided into four clusters too. We believe that samples in a cluster should
be as close as possible in the embedding space, while clusters of different classes should be
as far away as possible. The samples in the same cluster are not broken up. In this way,
samples that are adjacent and similar but belong to different classes can be separated.
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Figure 4. Illustration of intracluster loss.

3.2.3. Ordered Loss

Finally, we can obtain the total loss function of ordered loss as follows.

Lorder(X) = Linter(X) + Lintra(X) (6)

This loss function considers both the metric between samples of different classes and
the metric between samples in a cluster. The illustration of the final result combining the
two part of loss is as Figure 5.

Figure 5. Illustration of the effect of ordered loss.

3.3. ODM Algorithm and Its Complexity

Based on the ordered loss proposed above, we can construct a deep metric learning
algorithm ODM, as Algorithm 1. It is need to note that once the loss is computed, the model
will use AdamW [20] to update the network parameters.
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Algorithm 1 ODM

Input: Air traffic images, α, m, T;
Output: Trained GoogleNet model.
1: Initialize the mean vectors G;
2: for each batch embedding vectors X do;
3: Compute the distances between elements in X ∪ G;
4: Compute Linter(X) according to Equation (5);
5: Compute Lintra(X) according to Equation (2);
6: Add two parts of loss to get total loss Lorder(X);
7: Updating the model with AdamW according to the loss;
8: end for

Since the loss function of ODM algorithm consists of the interclass loss and the
intracluster loss, the complexity of ODM depends mainly on the calculation of these
two losses. Let N denote the number of training samples, C denote the number of classes
and n denote the average number of samples in a class. Interclass loss calculates the
distances between the samples and the mean vectors, so it has a complexity of O(CN).
Intracluster loss calculates the distances between samples of the same class, so it has a
complexity of O(nN). Therefore, the total computational complexity of ODM algorithm is
O(CN) + O(nN).

3.4. Assessing Air Traffic Complexity Based on ODM

Based on ODM and DCNN, we propose a new air traffic complexity assessment
method ATCA-ODM with its framework shown in Figure 6.

Figure 6. Framework of ATCA-ODM.

ATCA-ODM uses the air traffic images from reference [9] as input, which contain
information on the number of aircrafts in the target airspace at a moment, the direction,
speed and altitude of each aircraft, and so on. As can be observed in Figure 6, ATCA-ODM
first extracts the deep features from the input images using DCNN, and obtains the feature
vectors of the images in the embedding space by the embedding layer. Then, their interclass
and intracluster loss are calculated for each batch of embedded feature vectors and are
back-propagated for the model update. After several iterations of the above steps, the
similar vectors in the embedding space are closer together and the dissimilar vectors are
further away. Finally, these trained embedding feature vectors are used as input to the
KNN classifier for assessing the air traffic complexity.

4. Experiments
4.1. Experimental Setup

Design of Experiments: In the first experiment, we investigate the effect of hyperpa-
rameters on model performance to find the best combination of parameters. In the second
experiment, we compare the performance of the proposed ATCA-ODM method with other
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methods to demonstrate the effectiveness and superiority of the proposed deep metric learn-
ing algorithm ODM and ATCA-ODM method. In the third experiment, we demonstrate the
impact of the loss function on the assessment performance using ablation experiments.

Implementation: The original GoogleNet network has the advantages of light weight
and high classification accuracy, so we empirically choose to use GoogleNet as the feature
extraction network for the model in our experiments. Without many modifications, we use it
to extract 512-dimensional deep features for the input image. AdamW is used as the optimizer
with an initial learning rate of 10−4. We take 80 epochs on the image set and the decay rate is
50% every 10 generations. The final output is normalized with L2 normalization.

Image set: In all experiments, we use the traffic image set of the south-central airspace [9],
whose airspace structure is demonstrated as the highlighted part of Figure 7. There are five
classes of labels: L-1, L-2, L-3, L-4, and L-5, representing five levels of traffic complexity
(Low/Lower/Medium/Higher/High). Multiple controllers rate air traffic complexity level
for image set based on their experience by watching the control video. Lastly, the label of the
image is the ratings with the most votes. The image set contains 3605 images of the target
airspace between 1 December and 15 December 2019, with the size of 224 × 224 × 3. We use
70% of the samples to train the model and the rest for testing, and, actually, we only need to
select the first 70% of the data as training data and the last 30% as test data, because the data
in the dataset is ordered.

Figure 7. Structure of the target airspace.

4.2. Results and Discussions
4.2.1. Hyperparameters’ Searching

To find the optimal hyperparameters for ATCA-ODM model, we investigated the
effect of the parameters α, m and T on the model performance. When focusing on one
parameter, only the value of that parameter changes, and the other two parameters have
fixed values. The results of the experimental results are shown in Figure 8. It can be
observed from Figure 8 that ATCA-ODM model can achieve satisfactory accuracy with
α ∈ [1, 1.4], m ∈ [0.4, 1.2], T ∈ [10, 30], so we set T = 20, α = 1.4, m = 0.8 in all experiments.

4.2.2. Performance Verification

To verify the performance of ATCA-ODM method, we compared its assessment accu-
racy with that of the other six methods. The results are shown in Figure 9. ATCNN [9]
is the first image-based air traffic complexity assessment method and can be regarded as
the baseline of our method. Meanwhile, the other five methods, Adaboost [21], KNN [22],
MLP [23], SVM [24] and RF [25] are traditional machine learning algorithms which can only
use the numerical type datasets corresponding to the air traffic images used by ATCA-ODM
and ATCNN.
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Figure 8. Result of hyperparameters’ searching.

Figure 9. Acc and MAE of 7 different methods.

As can be observed in Figure 9, two image-based methods achieve better accuracy and
mean absolute error (MAE) compared to the five traditional machine learning algorithms,
which indicates that deep learning is able to extract more valuable deep features from images.
ATCA-ODM has better performance than ATCNN with an accuracy improvement of more
than 10%, which indicates that ATCA-ODM better measures the distances between images, so
that samples of different classes in the embedding space can be separated more accurately.

Furthermore, we compared ATCA-ODM method with ATCNN method, and the
results are shown in Figure 10. The orange area in the figure is the variation range of the
assessment accuracy of ATCA-ODM method, and its upper curve is the best accuracy and
the lower curve is the general accuracy. The blue curve in the figure is the accuracy of the
ATCNN method.

As can be observed from Figure 10, although the ATCNN method can obtain its highest
accuracy of about 72%, the accuracy is unstable, which indicates that it may be difficult to
achieve satisfactory recognition results on the air traffic images by simply using a model
such as CNN, and the addition of deep metric can dramatically improve its performance.
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Figure 10. Acc comparison between ATCA-ODM and ATCNN.

4.2.3. Ablation Experiments

We investigated the effects of interclass and intracluster losses on the assessment accuracy
of ATCA-ODM using an ablation experiment, and the results are shown in Table 1.

Table 1. Ablation experiment results.

Model Acc MAE F1

GoogleNet 72.06% 0.3328 70.23%
GoogleNet + Intracluster loss 74.47% 0.2874 74.60%
GoogleNet + Interclass loss 84.54% 0.1648 84.44%
GoogleNet + ODM 85.34% 0.1631 85.40%

As can be observed from Table 1, both intracluster and interclass loss can improve
the assessment accuracy of our method, with the latter having a more significant effect.
The best results are achieved when both are used in the model. This indicates that the
loss function defined in this paper based on the characteristics of air traffic images can
effectively improve the performance of the deep metric learning algorithm.

5. Conclusions

In this paper, we propose a deep metric learning-based air traffic complexity assess-
ment method, ATCA-ODM. We designed a loss function that considers the local orderliness
of air traffic images to construct a deep metric learning algorithm. This loss function distin-
guishes more accurately between samples of the same class and samples of different classes
by calculating the intracluster and interclass losses of the samples. We conducted several
experiments on historical traffic images of the south-central airspace of China to verify
the effectiveness of the proposed loss function and assessment method. The experimental
results demonstrate that our proposed ATCA-ODM method outperforms other methods
and can significantly improve the accuracy of air traffic complexity assessment. In the
future, we we hope to verify our method on more real air traffic data.
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