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Abstract: To improve the flexibility of the trajectory and the diversity of the drop point of the
reentry vehicle, a flight capability assessment method based on a dynamics–informed neural network
(DINN) is proposed. Firstly, the concept of a reachable domain is introduced to characterize the
flight capability of the reentry vehicle and to estimate whether there are appropriate TAEM points
in the area. Secondly, after the impact characteristic analysis, the reachable domains corresponding
to different initial flight states are obtained through moderate dynamic simulations and reasonable
mathematical expansion. The flight states and boundary point positions of the reachable domain
are used as the training database of DINN, and the acquired DINN can realize the fast solution of
reachable domains. Finally, the effectiveness of DINN in solving the reachable domain is verified
using simulation. The simulation results show that DINN manifests the same accuracy as the existing
solving methods and can meet the demand of determining whether the target point is located in
the reachable domain. Additionally, the running time is shortened to one–800th of the existing
methods, reaching the millisecond level, to support real–time assessment and decision–making. A
predictor–corrector guidance algorithm with the piecewise objective function is also introduced. The
simulation results illustrate that the proposed algorithm can stably guide the vehicle from the initial
state points to the target points in the reachable domain.

Keywords: dynamics–informed neural network; piecewise predictor–corrector; reentry reachable
domain; flight capability assessment

1. Introduction

Flight capability is a broad notion that can be defined by several different parameters,
including the maximum deflection of control surfaces, the magnitude of the attitude angle,
and the assessment of the predetermined target point reachability. It is intricate and abstract
if these characteristics are utilized to define the flight capability of a reentry vehicle without
any additional explanation. The maximum attitude angle and control surface deflection, in
fact, can be specified as constraints during the trajectory design process. There is a “set” of
reachable target points, regardless of the state that the reentry vehicles are in, that satisfies
all constraints and can combine all flight capability measurements. It is also possible to
refer to the set as the “reachable domain” because it consists of reachable target points that
constitute an area on the “longitude–latitude” profile [1,2]. The concept of the reachable
domain has already been proposed by Zhang et al. [3] under a single upper–bounded
impulse for a given initial orbit. In contrast to the above abstract parameters, the reachable
domain reflects their constraints while making the flight capability more visible.

Since it is clearly impossible to obtain this reachable domain by listing every target
point, numerous researchers have integrated physical analysis to determine the edge points
for working out the reachable domain [4–7]. The principal methods include the constant
bank angle method, the profile translation design method, and the optimization method.
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The constant bank angle method characterizes high stability and timeliness, thus becoming
a common method in engineering. The profile translation design method translates the
reentry process constraints to the H–V profile for the sake of forming a reentry corridor.
The optimization method is the most accurate one but possesses low solution speed and
poor stability. Ref. [6] considered the smoothness of the optimization–generated guidance
commands and argued that it is poorly feasible to directly obtain the profiles through using
the bank angle and the angle of attack commands optimized using the pseudospectral
method, so they chose to use the second derivative as the optimized variable to produce
smoother guidance commands. The reachable domain of spacecraft is also considered in
Refs. [8–10]. Ref. [8] gives a reachable domain calculation model of near–rectilinear halo
orbit (NR). The collection of all positions accessible for a spacecraft under a given initial
orbit and fuel constraints with free time of flight is solved in Ref. [9]. Aiming to meet the
requirement of collision–free asteroid landing with a given time of flight (TOF), the authors
give a fast generation method of landing in the reachable domain based on section and
expansion [10].

Approaches for reentry guidance have been the subject of numerous studies. A
robust state feedback guidance law in real–time generated by using the indirect Legendre
pseudospectral feedback method was proposed [11]. The authors in Ref. [12] came up with
a guidance approach for tracking the nominal trajectory designed from the flight profile. A
standard trajectory optimization method was proposed, coupled with an alternate convex–
relaxed optimal control formulation [13]. There was also a classical method of tracking
the nominal trajectory that put the PID controller to use [14]. This method utilized the
error of the trajectory parameter as a feedback input to adjust the guidance command.
Ref. [15] presented the flight corridor satisfying multiple conditions and designed the flight
profile and bank reversion strategies. Moreover, in the early stages, the analytical predictor–
corrector guidance method carried out some applications [16]. With the improvement of
computing capacity, the numerical predictor–corrector guidance, predicting the terminal
state by integrating dynamics equations, has become the focus [1,17–20]. In another
approach, pigeon–inspired optimization (PIO) was utilized in Refs. [21,22] to reduce the
error of the drop point in the guidance.

Artificial intelligence is considered a crucial component that has previously been
employed to address challenging problems in aerospace engineering [23]. It is frequently
integrated with flight trajectory generation and correction, reentry guidance, fault detec-
tion [24], and other fields. The most recent survey on machine learning techniques used for
spacecraft dynamics, navigation, and control is presented in Refs. [25,26]. To compute the
low–thrust trajectories, Hennes et al. [27] and Mereta et al. [28], as well as Yin et al. [29] and
Xie et al. [30], utilized artificial neural networks (ANNs) and deep neural networks (DNNs),
respectively. Ref. [31] demonstrated the use of neural networks for missing thrust events
to correct flight trajectories autonomously. The issue of automatic path planning for a
spaceship that resembled the manipulator was dealt with using a machine learning strategy
in Ref. [32]. Attitude control of flight vehicles using neural networks was introduced in
Refs. [33–35]. Additionally, Viavattene et al. [36] employed ANNs for real–time calculation
of the cost and duration required to transfer a range of debris objects out of orbit. Ref. [37]
provided a solution to the adaptive control problem of a type of noncanonical neural
network nonlinear system with unknown input dead zones. The application of neural
network theory on vehicle reentry guidance was discussed in Ref. [38], which proposed a
reentry guidance method based on the generalized regression neural network (GRNN).

According to the aforementioned works, machine learning was typically used for
flight trajectories and attitude control of flight vehicles and spacecraft. Compared with
previous work that pays more attention to the reachable domain of spacecraft, this research
focuses more on reentry vehicles. To give reentry vehicles preliminary online decision
making capability, more sophisticated and more intelligent algorithms are provided. These
algorithms take into account the use of machine learning in the reachable domain calcula-
tion of a reentry vehicle as well as the current development trend of more intelligent and
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autonomous vehicles. In some circumstances, there may be multiple terminal targets for the
reentry vehicle. The attainable points can be determined based on the reentry flight states
at this time. Typically, the early phases of reentry are characterized by extremely high flight
speeds, thus the evaluation outcome will be worthless if it takes a long time to obtain the
calculated area. As a result, the time consumption should be taken into account to prevent
missing the opportunity for decision making during development of the assessment process.
To measure reentry capabilities more intelligently and quickly, a dynamic–informed neural
network (DINN) is therefore presented based on a priori dynamic knowledge. DINN is
an optimized method that originated from the comprehension of the BPNN databases. It
can assess the reachability of the terminal target point, namely the terminal area energy
management (TAEM) point, in real time based on the flight states. After confirming that the
TAEM point is reachable, a predictor–corrector guidance algorithm is developed based on
the piecewise objective function, which has a higher guiding accuracy than the conventional
predictor–corrector technique.

2. Dynamic Modeling
2.1. Reentry Constraints
2.1.1. Path Constraints

Typical reentry trajectory constraints mainly include the heating rate constraint, the dy-
namic pressure constraint, and the overload constraint, which are given by Equations (1)–(3):

.
Q = kQρ0.5(VcV)3.15 ≤

.
Qmax (1)

q =
1
2

ρ(VcV)2 ≤ qmax (2)

n =
√

L2 + D2 ≤ nmax (3)

where
.

Q is the heating rate; q is dynamic pressure; n is overload;
.

Qmax, qmax, and nmax
are the corresponding constraints; kQ is a constant associated with the reentry vehicle;
Vc =

√
g0Re is a dimensionless coefficient; Re is the radius of the Earth; g0 = 9.8067 m/s2;

L is lift; and D is drag.

2.1.2. Terminal Constraints

When the reentry vehicles arrive at the terminal point, they should satisfy the altitude,
velocity, and range constraints, which are given as follows:

r f = rTAEM (4)

Vf = VTAEM (5)

S ≤ S f (6)

Altitude and velocity can also be uniformly represented by energy, as indicated in
Equation (7).

eTAEM =
1

rTAEM
−

V2
TAEM

2
(7)

Therefore, the terminal constraints could also be described by energy. Equations (4)–(6)
can be equivalent to Equation (8): {

e f = eTAEM
S ≤ S f

(8)

where e f is the terminal energy; S is the residual range; eTAEM and S f are the corresponding
terminal constraints.
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The magnitude of the bank angle must satisfy the following formula:

|σ| ≤ |σmax| (9)

The |σmax| is related to the constraints of the reentry process, and the specific solution
method will be discussed in the following section.

2.1.3. Constraint Transformation and Reentry Corridor

Throughout the reentry process, the vehicle must adhere to all constraints. However,
assessing whether all constraints can be satisfied is difficult due to the greater computational
complexity. In fact, all path constraints can be restrained by the magnitude of the bank angle.

As shown in Figure 1, the upper bound of the corridor on the H–V profile is determined
by quasi–equilibrium glide condition (QEGC), while the lower bound is given by the
maximum values of dynamic pressure, overload, and heating rate constraints, as indicated
in Equation (10).

Hup = HQEGC
Hdown = max(Hq, Hn, Hq)

(10)

Aerospace 2022, 9, 790 4 of 19 
 

 

The magnitude of the bank angle must satisfy the following formula: 

maxσ σ≤  (9)

The maxσ  is related to the constraints of the reentry process, and the specific solu-
tion method will be discussed in the following section. 

2.1.3. Constraint Transformation and Reentry Corridor 
Throughout the reentry process, the vehicle must adhere to all constraints. However, 

assessing whether all constraints can be satisfied is difficult due to the greater computa-
tional complexity. In fact, all path constraints can be restrained by the magnitude of the 
bank angle. 

As shown in Figure 1, the upper bound of the corridor on the H−V profile is deter-
mined by quasi−equilibrium glide condition (QEGC), while the lower bound is given by 
the maximum values of dynamic pressure, overload, and heating rate constraints, as in-
dicated in Equation (10). 

max( , , )
up QEGC

down q n q

H H
H H H H

=
=

 (10)

 
Figure 1. Reentry corridor under constraints. 

In the glide phase, the vehicles should satisfy QEGC. The magnitude of bank angle 
σ  might be calculated using altitude and velocity through Equation (11). 

2

2

cos 0L V
m r r

σ μ+ − =  (11)

On the boundary upH , the matching σ  can be discovered if r  and V  are known. 
The acquired upH  allows for the evaluation of the related geocentric distance upr  and the 
subsequent lower bound solution min| |σ  of the bank angle. The upper bound max| |σ  of 
the bank angle can also be solved by obtaining downH  and downr  in accordance with the 
relationship between the other constraints and the bank angle. The solution of the 
bounded bank angle value is shown as follows: 

max

min

| | ( ) | | ( ( ), )
| | ( ) | | ( ( ), )

down

QEGC up

V r V V
V r V V

σ σ
σ σ

=
=

 (12)

Therefore, the guidance command of σ  needs to satisfy: 
min min

min max

max max

| | ( ) | | ( )
| ( ) | | | ( ) | | ( )

| | ( ) | | ( )

i

i i

i

V V
V V V

V V

σ σ σ
σ σ σ σ σ

σ σ σ

<
= < <
 >

 (13)

0 1000 2000 3000 4000 5000 6000 7000 8000

V(m/s)

0

10

20

30

40

50

60

70

80

Heating rate constraint
Overload constraint
Dynamic pressure constraint
QEGC

Figure 1. Reentry corridor under constraints.

In the glide phase, the vehicles should satisfy QEGC. The magnitude of bank angle σ
might be calculated using altitude and velocity through Equation (11).

L cos σ

m
+

V2

r
− µ

r2 = 0 (11)

On the boundary Hup, the matching σ can be discovered if r and V are known. The
acquired Hup allows for the evaluation of the related geocentric distance rup and the
subsequent lower bound solution |σ|min of the bank angle. The upper bound |σ|max of
the bank angle can also be solved by obtaining Hdown and rdown in accordance with the
relationship between the other constraints and the bank angle. The solution of the bounded
bank angle value is shown as follows:

|σ|max(V) =|σ|(rdown(V), V)∣∣σ∣∣min(V) =
∣∣σ∣∣QEGC(rup(V), V)

(12)

Therefore, the guidance command of σ needs to satisfy:

|σ(V)| =


|σ|min(V) σi <|σ|min(V)
σi |σ|min(V) < σi <|σ|max(V)
|σ|max(V) σi >|σ|max(V)

(13)
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where σi is the magnitude of the bank angle given by the guidance algorithm. The value
of |σ|min should not be too low because |σ| controls the capacity of the vehicle to reorient
during reentry.

The other guidance command of α is given by a predesigned α-V profile described in
Equation (14).

α =


αmax

αmax−αmin
V2−V1

(V −V1) + αmax

αmin

V1 ≤ V ≤ V0
V2 ≤ V < V1
Vt ≤ V < V2

(14)

2.2. Dynamic Equations

During the reentry process, the vehicle is powered off and only affected by gravity
and aerodynamic forces. The dynamic model of the reentry vehicle is established in the
trajectory coordinate system with the bank to turn (BTT) mode. With a spherical Earth
and Earth rotation in mind, Equation (15) gives the three degrees of freedom point–mass
dynamic Equation [39],

.
V = −D

m − g sin γ + ω2
e r(cos2 φ sin γ− cos φ sin φ cos ψ cos γ)

.
γ = 1

V

(
L cos σ

m − g cos γ + V2 cos γ
r

)
+ 2ωecos φ sin ψ+

ω2
e r(cos2 φ cos γ−cos φ sin φ cos ψ sin γ)

V.
ψ = 1

V

(
L sin σ
m cos γ + V2 cos γ tan φ sin ψ

r

)
− 2ωe(cos φ cos ψ sin γ−sin φ cos γ)

cos γ

+ω2
e r cos φ sin φ sin ψ

V cos γ.
h = V sin γ
.
λ = V cos γ sin ψ

r cos φ.
φ = V cos γ cos ψ

r

(15)

where V is the flight speed; γ is the path angle; ψ is the course angle; h is the altitude; λ
and φ denote the longitude and latitude, which correspond to the subpoint of the vehicle
on the surface of the Earth, respectively; g is the gravitational acceleration, and g0 is the
gravitational acceleration at sea level; m is the mass of the vehicle; ωe represents the angular
velocity of the Earth rotation; σ is the bank angle; L and D are lift and drag.

3. Dynamic–Informed Neural Network (DINN) Reachable Domain Generator

Achieving an effective and real–time flight capability assessment during the reentry
flight is a prerequisite for autonomous decision making. An efficient flight capability
assessment can predict whether a feasible reentry trajectory exists between the reentry
point and the TAEM point in advance. Furthermore, its promptness is also essential because,
under the conditions of tremendous speed and rapidly changing position of the reentry
vehicle, it will be valueless to make decisions if it cannot be completed in a short period. The
lack of instantaneity in the present techniques restricts their use. The absence of immediacy
can be admirably addressed by a neural network, which is called DINN in this paper, built
on a priori dynamic knowledge. DINN is an optimized method with a small amount of
data. The computation of the reachable domain can be resolved immediately with the use
of DINN. It satisfies the requirements of validity and immediacy and performs close to
existing methods as well.

Figure 2 illustrates the construction of DINN training and the calculation of the
reachable domain in this paper.

This section introduces a DINN–based reachable domain generator to construct a fast
computational mapping from flight states to the reachable domain.
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3.1. Generation of DINN Training Data

To perform a real–time flight capability assessment procedure, the fundamental idea
behind DINN is to employ a neural network to extract and reproduce the mapping relation-
ship between flight states and reachable domains. The input and output of DINN, whose
training data are derived from the dynamic simulation, are the flight state parameters
and the reachable domain boundary points of the reentry vehicle, respectively. Several
boundary points that link consecutively to form closed areas serve to define the reachable
domain. To simplify the network structure and improve DINN efficiency of the online
operation, the impact factors of the reachable domain should be first screened and analyzed
through a priori dynamic knowledge.

The boundary points of the reachable domain are affected by seven flight states, which
are velocity V, altitude h, longitude λ, latitude φ, path angle γ, course angle ψ, and mass m.
The state vector composed of them is

x = [V, h, γ, ψ, λ, φ, m] (16)

The reachable domain corresponding to this initial state is obtained via dynamic
simulation and can be characterized in the form of boundary points that

b = [λ1, φ1, λ2, φ2, . . . , λn, φn] (17)

where n could describe the number of boundary points of the reachable domain.
DINN implements the rapid–solving b process based on x. x and b, respectively,

constitute the input and output information of DINN, so that

y=[x,b] (18)

can be used as one set of training data for DINN.
DINN training requires a large amount of training data. The vector x in training data

is customized. The setting of that first ensures the convergence accuracy of DINN, and
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next reduces the number of x. Because it is necessary to calculate the corresponding bi by
dynamic simulation for each xi, and the consumption of computational time is proportional
to the number of x, xi and bi actually constitute the training data yi which contain the
dynamic information of the reentry vehicle.

3.1.1. Vector x and State–Matrix X Composition

The influence strength and linearity of these seven variates on the reachable domain
are shown in Figure 3.
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To build a training database for DINN based on dynamic simulation, a lot of time and
computational resources are needed. The generated data cover most of the possible states
in the reentry process. For example, the reentry vehicle is preset in an ideal flight state:

x0 = [V0, h0, γ0, ψ0, λ0, φ0, m0] (19)

There may be large uncertainties between the actual and the ideal flight state. To
obtain the reachable domain in any actual flight state, the training data need to cover all
above states and consider the uncertainties shown in Table 1.

Table 1. Uncertainty of flight state.

States Uncertain Interval

Velocity V0 ±∆V0max
Altitude h0 ±∆h0max

Path angle γ0 ±∆γ0max
Course angle ψ0 ±∆ψ0max

Longitude λ0 ±∆λ0max
Latitude φ0 ±∆φ0max

Mass m0 ±∆m0max

The possible states of velocity vp, altitude hp, path angle λp, course angle ψp, longitude
γp, latitude φp, and mass mp are shown in Equation (20), which should satisfy Equation (21).
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

vp = [V0 − k1∆V0, V0 − (k1 − 1)∆V0, . . . , V0 − ∆V0, V0, V0 + ∆V0, . . . , V0 + (k1 − 1)∆V0, V0 + k1∆V0]
hp = [h0 − k2∆h0, h0 − (k2 − 1)∆h0, . . . , h0 − ∆h0, h0, h0 + ∆h0, . . . , h0 + (k2 − 1)∆h0, h0 + k2∆h0]
λp = [λ0 − k5∆λ0, λ0 − (k5 − 1)∆λ0, . . . , λ0 − ∆λ0, λ0, λ0 + ∆λ0, . . . , λ0 + (k5 − 1)∆λ0, λ0 + k5∆λ0]
ψp = [ψ0 − k4∆ψ0, ψ0 − (k4 − 1)∆ψ0, . . . , ψ0 − ∆ψ0, ψ0, ψ0 + ∆ψ0, . . . , ψ0 + (k4 − 1)∆ψ0, ψ0 + k4∆ψ0]
γp = [γ0 − k3∆γ0, γ0 − (k3 − 1)∆γ0, . . . , γ0 − ∆γ0, γ0, γ0 + ∆γ0, . . . , γ0 + (k3 − 1)∆γ0, γ0 + k3∆γ0]
φp = [φ0 − k6∆φ0, φ0 − (k6 − 1)∆φ0, . . . , φ0 − ∆φ0, φ0, φ0 + ∆φ0, . . . , φ0 + (k6 − 1)∆φ0, φ0 + k6∆φ0]
mp = [m0 − k7∆m0, m0 − (k7 − 1)∆m0, . . . , m0 − ∆m0, m0, m0 + ∆m0, . . . , m0 + (k7 − 1)∆m0, m0 + k7∆m0]

(20)

k1∆V0 = ∆V0max, k2∆h0 = ∆h0max, k3∆γ0 = ∆γ0max, k4∆ψ0 = ∆ψ0max, k5∆λ0 = ∆λ0max, k6∆φ0 = ∆φ0max, k7∆m0 = ∆m0max (21)

The final state–matrix X consisting of all possible states is illustrated in Equation (22).

X =


vp(1) hp(1) γp(1) ψp(1) λp(1) φp(1) mp(1)
vp(2) hp(1) γp(1) ψp(1) λp(1) φp(1) mp(1)

. . . . . . . . . . . . . . . . . . . . .
vp(2k1 + 1) hp(2k2 + 1) γp(2k3 + 1) ψp(2k4 + 1) λp(2k5 + 1) φp(2k6 + 1) mp(2k7 + 1)

 (22)

Apparently, k1 to k7 decide the size of the final state–matrix X, which has 7 columns
(corresponding to the flight states), and the rows of that satisfy:

row(X) =
7

∏
i=1

(2ki + 1) (23)

3.1.2. Vector b and Domain–Matrix B Composition

The vector b characterizes the reachable domain of the reentry vehicle based on the
state of vector x. Numerous approaches, such as the optimization method and constant
bank angle method, are in use to solve b. Since the process of solving the vector b is not the
main subject of this paper, the constant bank angle method with sufficient performance is
adopted to realize the solution of b based on x.

The constant bank angle method is simple and effective in solving the reachable domain.
It starts from any state of the reentry process, uses a constant bank angle as a command,
and generates a trajectory by integrating the dynamic formula until the terminal constraints
are satisfied. By selecting different constant command values at suitable intervals between
[−|σmax|, |σmax|], the corresponding trajectories can be generated. The reachable domain of
the reentry vehicle in any initial state, shown in Figure 4, can be formed by connecting all
endpoints of the obtained trajectories in the longitude–latitude profile.
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For any state x = [V, h, γ, ψ, λ, φ, m], its corresponding domain boundary
b = [λ1, φ1, λ2, φ2, . . . , λn, φn] can be obtained through the dynamic simulation based
on the constant bank angle method. Therefore, the domain–matrix B calculated using the
state–matrix X can be expressed as Equation (24).
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B =


λ1(1) φ1(1) λ2(1) φ2(1) . . . λn(1) φn(1)
λ1(2) φ1(2) λ2(2) φ2(2) . . . λn(2) φn(2)

. . . . . . . . . . . . . . . . . . . . .
λ1[row(X)] φ1[row(X)] λ2[row(X)] φ2[row(X)] . . . λn[row(X)] φn[row(X)]

 (24)

3.1.3. Impact Characteristics between Variates and Reachable Domain

The number of k1 to k7 determines the size of the training database and the computa-
tional performance of DINN generated by this database. Increasing the number of k1 to k7
is undesirable and will make the data generation time explode. When training a perfect
DINN, it is necessary to guarantee its performance and to control the size of the training
database. The focus is making the acquiring time manageable. As a result, the impact
characteristics of each state in x on b can be analyzed to fulfill the above requests.

To avoid increasing the database size and improving the efficiency of data generation
for a single object, the input and output of the training database can be directly expanded
linearly because of some impact factors with high linearities, such as longitude λ and
latitude φ.

For example, if all state variates are expanded without considering the linear charac-
teristics as the back–propagation neural network (BPNN) is performed, the values of k1 to
k7 are shown in Table 2.

Table 2. The values of k1 to k7 after expanding.

k1 k2 k3 k4 k5 k6 k7

1 1 2 1 1 1 1

In the above condition, each ideal states x0 shown in Equation (19) can be expanded to
a matrix X1 possessing 3645 rows through calculating with Equation (23). The expanded X1
is shown in Equation (25).

X1 =


vp(1) hp(1) γp(1) ψp(1) λp(1) φp(1) mp(1)
vp(2) hp(1) γp(1) ψp(1) λp(1) φp(1) mp(1)

. . . . . . . . . . . . . . . . . . . . .
vp(2k1 + 1) hp(2k2 + 1) γp(2k3 + 1) ψp(2k4 + 1) λp(2k5 + 1) φp(2k6 + 1) mp(2k7 + 1)

 (25)

That is, to generate the training data, the corresponding dynamic simulation calcula-
tions that equal the row number of X1, need to be performed.

To reduce the calculational burden of dynamic simulation without changing the size
of the training data, the variates that have stronger linearity can be expanded by pure
mathematical computation based on a priori dynamic knowledge. This approach is utilized
in DINN. If all state variates are expanded with the linear characteristics considered, the
values of k1 to k7 are shown in Table 3.

Table 3. The values of k1 to k7 after expanding with the consideration of linear characteristics.

k1 k2 k3 k4 k5 k6 k7

1 1 2 1 0 0 1

In the above condition, each ideal state x0 shown in Equation (19) can be expanded
to a matrix X1 with 405 rows through calculating with Equation (23). The calculations are
only 1/9 of the BPNN. The expanded X2 is shown in Equation (26).
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X2 =


vp(1) hp(1) γp(1) ψp(1) λp(1) φp(1) mp(1)
vp(2) hp(1) γp(1) ψp(1) λp(1) φp(1) mp(1)

. . . . . . . . . . . . . . . . . . . . .
vp(2k1 + 1) hp(2k2 + 1) γp(2k3 + 1) ψp(2k4 + 1) λp(1) φp(1) mp(2k7 + 1)

 (26)

To make the number of the state–matrices X1 and X2 rows consistent, X2 need to be
further expanded using a pure mathematical computation. Define Xi

2 as the i–th row of
X2. Each row of X2 should be expanded to 9 rows to make X1 and X2 have the same size.

Supposing the expanded Xi
2 to be X̃

i
2, Equation (27) is then given:

X̃
i
2 =



Xi
2 + (0, 0, 0, 0,−∆λ,−∆φ, 0)
Xi

2 + (0, 0, 0, 0,−∆λ, 0, 0)
Xi

2 + (0, 0, 0, 0,−∆λ, ∆φ, 0)
Xi

2 + (0, 0, 0, 0, 0,−∆φ, 0)
Xi

2
Xi

2 + (0, 0, 0, 0, 0, ∆φ, 0)
Xi

2 + (0, 0, 0, 0, ∆λ,−∆φ, 0)
Xi

2 + (0, 0, 0, 0, ∆λ,−0, 0)
Xi

2 + (0, 0, 0, 0, ∆λ, ∆φ, 0)


(27)

Correspondingly, the expanded domain–matrix B̃
i
2 is:

B̃
i
2 =



Bi
2 + (−∆λ,−∆φ, . . . ,−∆λ,−∆φ)

Bi
2 + (−∆λ, 0, . . . ,−∆λ, 0)

Bi
2 + (−∆λ,+∆φ, . . . ,−∆λ,+∆φ)

Bi
2 + (0,−∆φ, . . . , 0,−∆φ)

Bi
2

Bi
2 + (0,+∆φ, . . . , 0,+∆φ)

Bi
2 + (∆λ,−∆φ, . . . , ∆λ,−∆φ)

Bi
2 + (∆λ, 0, . . . , ∆λ, 0)

Bi
2 + (∆λ,+∆φ, . . . , ∆λ,+∆φ)


(28)

The expanded state–matrix X̃2 and the domain–matrix B̃2 are denoted as X̃2 =
[
X1

2, X2
2, . . . , Xrow(X2)

2

]
B̃2 =

[
B1

2, B2
2, . . . , Brow(B2)

2

] (29)

At present, the size of X̃2 and B̃2 in DINN is the same as that of X1 and B1 in BPNN,
which means that the size of their database is the same for network training. Meanwhile,
the computational time of the DINN training database is one–ninth that of BPNN.

3.2. The Construction Design of DINN

Based on the discussion in Section 3.1, the length of vector x and vector b match the
input and output layer dimensions of DINN. The length of vector x is 7, which corresponds
to velocity V, altitude h, longitude λ, latitude φ, path angle γ, course angle ψ, and mass
m, forming a seven–dimensional input layer. N2 is determined by the boundary points,
namely the double of that, because each boundary point contains longitude λi and latitude
φi. N1 is determined based on N2.

The designed structure of the DINN is shown in Table 4.
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Table 4. Main parameters of DINN.

Label Input Layer Hidden Layer Output Layer

Connection mode to next layer Fully connected Fully connected –
Number of neurons 7 N1 N2
Activation function – Sigmoid linear

4. Piecewise Predictor–Corrector Guidance for Reachable Target Points

To enhance the accuracy of the guidance, a predictor–corrector guidance algorithm
using a piecewise objective function is presented in this section.

4.1. Longitudinal Guidance Logic
4.1.1. Range Prediction

By integrating Equation (15), the position and velocity of the reentry vehicle can be
obtained at any time. The prediction portion of the predictor–corrector algorithm can
anticipate the ultimate land position based on the initial bank angle. Using the bank angle
σ̃i as the guidance command, the predicted reentry range Sp(σ̃i) defined in the longitude
profile can be calculated as follows:

Ωp(σ̃i)= arccos
[
cos φpcosφ cos(λp − λ) + sin φp sin φ

]
(30)

Sp(σ̃i) = Re ·Ωp(σ̃i) (31)

where λ and φ are the latitude and longitude of the reentry vehicle’s actual position during
the prediction execution; λp and φp are the latitude and longitude of the drop point, which
are obtained from the prediction part of the predictor–corrector algorithm; Ωp(σ̃i) is the
geocentric angle corresponding to Sp(σ̃i).

4.1.2. Command Correction Based on the Piecewise Objective Function

The iteration in the command correction part works out the bank angle. The proposed
correction methods usually find σ through iteration of a single function (i.e., range–to–go).
However, when the vehicle approaches the terminal, the coupling effect of longitudinal
and lateral guidance will be more significant. In addition, the high values of the bank angle
and the tighter heading corridor will produce frequent heading switches, resulting in the
oscillation of the guidance commands and a decrease in the accuracy of the guidance. To
generate stable guidance commands and improve the accuracy of reentry guidance, the
piecewise objective function method is raised, which is taken as:

f =

{
Sp − S f , V > Vs
Se , V ≤ Vs

(32)

As opposed to the conventional objective function, the distance between the predicted
and target drop point is introduced, which essentially represents the drop point error.

In Equation (32), Vs is the velocity when the objective function switches; Sp is the
predicted range from the current point to the predicted drop point, which has been given
by Equations (30) and (31); S f is the range from the current point to the target drop point,
given by:

Ω f= arccos
[
cos φ f cosφ cos(λ f − λ) + sin φ f sin φ

]
(33)

S f = Re ·Ω f (34)

where λ f and φ f are the latitude and longitude of the target drop point and Ω f is the
geocentric angle corresponding to S f .
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Se is the distance between the predicted drop point and the target drop point. The
calculation functions of Se for given σ̃i are Equations (35) and (36).

Ωe(σ̃i)= arccos
[
cos φp cos φ f cos(λp − λ f )+ sin φp sin φ f

]
(35)

Se(σ̃i) = ReΩe(σ̃i) (36)

where Ωe(σ̃i) is the geocentric angle corresponding to Se(σ̃i).
After the range has been determined using the supplied bank angle in the range

prediction part, there will be two instances. In the instance of V > Vs, when the Newton
iteration approach is used to solve the bank angle command described in Equation (37):

σ̃i+1 = σ̃i − a
fi(σ̃i)
.
f i(σ̃i)

(37)

Because Se is a nonnegative function and might not have a zero solution in the case of
V ≤ Vs, the iterative calculation is ineffective and easily divergent. In this situation, the
bank angle can be solved using the equidistance test method because the vehicle is close
to the flight terminal and the running time of the prediction part is greatly reduced. This
method takes the bank angle into various values at a fixed interval ∆σ and selects the bank
angle that minimizes Se as the guidance command at that time.

The key benefit of the piecewise objective function is that Se is the direct representation
of the drop point error, making it possible to use Se as the objective function of iteration,
thus significantly lowering the drop point error.

4.2. Lateral Guidance Logic

In the related research, a reasonable reversal logic definition of the bank angle, which
is designed by defining the cross–range and cross–range corridor, is used to achieve lateral
guidance. There are numerous ways to define the cross–range, and each one relates to a
specific cross–range corridor design methodology. The cross–range corridor often resembles
a funnel. When the reentry vehicle is approaching the terminal, the tighter funnel boundary
will allow the bank angle to flip more frequently. Furthermore, if a wider cross–range
corridor is specified, it is difficult to satisfy the precision of the drop point. By setting the
update time of the guidance command, the piecewise objective function is used to limit the
reversal of the bank angle and avoid the challenge of designing the terminal boundary.

When V > Vs, the cross–range represents the drop point error of flight to the terminal
point along with the current state, which is defined as follows:

Z = arc sin
(

sin Ω f sin ∆ψ
)

(38)

where ∆ψ is the heading error, namely the angle between the velocity and the displacement–
to–go. This strategy has a greater impact on guiding since the cross–range may react
quickly when the bank angle reserves. Additionally, this approach may guarantee that the
trajectory will gradually tend to the target drop point because the heading inaccuracy is
based on that point.

The edge of the cross–range is given by:{
Zmax = k1arc sin(sin Ω sin ∆ψmax)
Zmin = −k2arc sin(sin Ω sin ∆ψmax)

(39)

where k1 and k2 are adjustable constants and ∆ψmax is the max heading error. Therefore,
the sign of the bank angle is determined by:

sgn(σ̃i) =

{
1 , Z < Zmin
−1 , Z > Zmax

(40)
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Therefore, the guidance command becomes as follows:

σ̃ = |σ̃i|sgn(σ̃i) (41)

when V ≤ Vs and the longitudinal guidance uses the equidistance test method, which
essentially can solve the magnitude and the sign of the bank angle simultaneously. There-
fore, it is not necessary to build an additional lateral guidance strategy and design the
cross–range corridor for reversal.

The framework of piecewise predictor–corrector guidance is shown in Figure 5.
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5. Simulation Validation

To evaluate the efficiency of DINN utilized to assess vehicle flight capability in any
reentry state and compare DINN with BPNN, simulation tests are carried out in various
situations, including high energy status and low energy status. These two statuses represent,
respectively, the prophase and anaphase of reentry.

The flight corridor obeys the path constraints as:
.

Qmax = 3 MW, qmax = 10 kPa,
nmax = 6. The final constraints go with h f = 21.9 km, v f = 763 m/s.

Building upon the constraints above, the max magnitude of the bank angle is [–80◦, 80◦].
Sections 5.1 and 5.2 will give the result of the flight capability assessment in different

energy states using various methods.
In the simulation, two TAEM points are selected as (90◦ N, 40◦ E) and (97◦ N, 44◦ E)

for guidance after the flight capability assessment. By simulating the guidance algorithm
from the initial state point to the TAEM point and observing the TAEM point errors, it is
possible to confirm the effectiveness of the piecewise predictor–corrector method.

5.1. Example 1: High Energy Status (Prophase of Reentry)

The high energy status is first considered, namely the prophase of reentry. In this
status, the altitude of the vehicle is 75–85 km and the velocity is 6500–7500 m/s. Other
details are shown in Table 5.

Table 5. Four cases in high energy status.

Case Altitude Velocity Path Angle Course
Angle Longitude Latitude Mass

Case1 80,163 7153 −1.54 35.05 58.82 23.71 5705
Case2 77,328 7006 −1.28 36.27 59.90 25.09 5433
Case3 75,328 6896 −1.15 36.92 59.22 25.34 5833
Case4 74,988 6854 −0.95 37.32 60.60 25.93 5988
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The reachable domains calculated using the constant bank angle method, BPNN and
DINN are shown in Figures 6–9.
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As can be seen in the above figures, the reachable domains achieved using the constant
bank angle method, BPNN, and DINN are nearly identical. The average computational
time of the constant bank angle method is 15.84 s (15,842 s in 1000 times), while the
DINN requires 0.019 s (19.17 s in 1000 times). Table 6 shows training time and average
computational time of the three methods.
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Table 6. Comparison of each method. 

Methods Training Time (s) Average Computational Time (s) 
Constant bank angle method − 15.84 

BPNN 31656 − 
DINN 3517 0.019 

Additionally, feasible trajectories from the initial state point to two TAEM points con-
structed by the guidance algorithm in four high energy cases. Table 7 displays the drop 
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Table 6. Comparison of each method.

Methods Training Time (s) Average Computational Time (s)

Constant bank angle method – 15.84

BPNN 31,656 –

DINN 3517 0.019

Additionally, feasible trajectories from the initial state point to two TAEM points
constructed by the guidance algorithm in four high energy cases. Table 7 displays the drop
point error for high energy examples 1 to 4. Therefore, the piecewise predictor–corrector
algorithm can accurately guide the reentry vehicle to the selected TAEM points.

Table 7. The drop point error of high energy cases 1–4.

TAEM
Point Case 1 Case 2 Case 3 Case 4

(90◦ N, 40◦ E) 586.5 240.9 564.8 212.9
(97◦ N, 44◦ E) 719.9 616.4 518.4 505.5

5.2. Example 2: Low Energy Status (Anaphase of Reentry)

The low energy status is then considered, namely the metaphase of reentry. In this
status, the altitude of the vehicle is 60–70 km and the velocity is 4500–5500 m/s. Other
details are shown in Table 8.

Table 8. Four cases in low energy status.

Case Altitude Velocity Path Angle Course
Angle Longitude Latitude Mass

Case 1 67,057 5151 −1.00 54.95 71.57 35.16 5705
Case 2 66,704 5073 −1.04 54.82 71.57 35.19 5433
Case 3 65,807 5004 −0.73 56.83 72.30 35.57 5833
Case 4 64,993 4850 −0.42 58.84 73.04 35.94 5988

The reachable domains calculated using the constant bank angle method, BPNN, and
DINN are shown in Figures 10–13.
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As can be seen in the above figures, the reachable domains achieved by the constant
bank angle method, BPNN, and DINN are nearly identical. The average computational
time of the constant bank angle method is 10.75 s (10,750 s in 1000 times), while the
DINN requires 0.018 s (18.28 s in 1000 times). Table 9 shows training time and average
computational time of the three methods.
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Table 9. Comparison of each method.

Methods Training Time (s) Average Computational Time (s)

Constant bank angle method – 10.75

BPNN 31,656 –

DINN 3517 0.018

Additionally, feasible trajectories from the initial state point to the TAEM point (90◦ N, 40◦ E)
were constructed by the guidance algorithm in four low energy cases. Table 10 displays the
drop point error for low energy examples 1 to 4. Therefore, the piecewise predictor–corrector
algorithm can accurately guide the reentry vehicle to the selected TAEM point.

Table 10. The drop point error of low energy cases 1–4.

TAEM
Point Case 1 Case 2 Case 3 Case 4

(90◦ N, 40◦ E) 757.6 1890.3 869.5 464.4

Some primary benefits of DINN may be observed from the above simulation findings.
When creating a database, DINN is one–ninth as efficient as BPNN. The constant bank
angle method, as the most effective related strategy, still requires 15.84 s and 10.75 s for
calculation during the reachable domain generation phase, while DINN needs only 0.019 s
and 0.018 s. Since the reachable domains obtained using each approach are nearly identical,
the accuracy of DINN is equal to that of the constant bank angle method and BPNN.

6. Conclusions

Reentry is one of the crucial steps in completing the space roundtrip. Reentry vehicles
will become more intelligent owing to a reentry guidance algorithm with high precision as
well as great autonomous online decision–making and target–changing capabilities. In this
paper, the reachable domain is used to analyze the flight capabilities of the reentry vehicle.
Taking into account the high immediacy of decision making, DINN is also introduced to
achieve rapid calculation of the reachable domain, which is based on a priori dynamic knowl-
edge. In the training process, by utilizing a priori dynamic knowledge on the evaluation of
the impact characteristics between variates and the reachable domain, the performance of
DINN is maintained while the dimension of the training database is reduced. The feasibility
of the reentry trajectories can be assessed in advance by determining the relative position
between the reachable domain and the TAEM point. The judgment results can be utilized in
decision making and enhancing the autonomy of vehicles, which can be deployed in more
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scenarios. Additionally, the piecewise objective function and the equidistant test strategy
are proposed to perfect the predictor–corrector guidance algorithm used for the reentry
vehicle. A piecewise objective function is introduced, which uses “range–to–go” as the
iterative objective function at the prophase and “predicted error of drop points” as the
iterative objective function at the metaphase. The proposed function solves the iteration
divergence brought by range–to–go converging to zero. This method successfully enhances
the accuracy and stability of the predictor–corrector guidance algorithm.

Author Contributions: Conceptualization, K.L. and J.Z.; methodology, K.L. and J.Z.; software, K.L.,
J.Z. and X.G.; validation, K.L., J.Z. and X.G.; formal analysis, K.L., J.Z. and X.G.; investigation, K.L.,
J.Z. and X.G.; resources, K.L., J.Z. and X.G.; data curation, K.L., J.Z. and X.G.; writing—original draft
preparation, K.L., J.Z. and X.G.; writing—review and editing, K.L., J.Z. and X.G.; visualization, K.L.,
J.Z. and X.G.; supervision, K.L., J.Z. and X.G.; project administration, K.L., J.Z. and X.G.; funding
acquisition, K.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
grant NSFC U2141229 and the Chinese Aeronautical Establishment, Aviation Science Foundation
under grant ASF 2019ZC063001, and the JCJQ Funding under grant 2019–JCJQ–DA–001–131.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Benito, J.; Mease, K.D. Reachable and Controllable Sets for Planetary Entry and Landing. J. Guid. Control. Dyn. 2010, 33, 641–654.

[CrossRef]
2. Hsu, F.-K.; Kuo, T.-S.; Chern, J.-S. Landing Domain Analysis of Shuttle Re–Entry Vehicles. Int. J. Syst. Sci. 1991, 22, 1145–1158.

[CrossRef]
3. Zhang, H.; Zhang, G. Reachable Domain of Ground Track with a Single Impulse. IEEE Trans. Aerosp. Electron. Syst. 2020,

57, 1105–1122. [CrossRef]
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