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Abstract: In this work, we investigate the behavior of low-energy trajectories in the dynamical frame-
work of the spatial elliptic restricted 4-body problem, developed using the Hamiltonian formalism.
Introducing canonical transformations, the Hamiltonian function in the neighborhood of the collinear
libration point L1 (or L2), can be expressed as a sum of three second order local integrals of motion,
which provide a compact topological description of low-energy transits, captures and quasiperiodic
libration point orbits, plus higher order terms that represent perturbations. The problem of small
denominators is then applied to the order three of the transformed Hamiltonian function, to identify
the effects of orbital resonance of the primaries onto quasiperiodic orbits. Stationary solutions for
these resonant terms are determined, corresponding to quasiperiodic orbits existing in the presence
of orbital resonance. The proposed model is applied to the Jupiter-Europa-Io system, determining
quasiperiodic orbits in the surrounding of Jupiter-Europa L1 considering the 2:1 orbital resonance
between Europa and Io.

Keywords: ER4BP; libration point; quasiperiodic orbits; orbital resonance; Jupiter–Europa–Io; Hamil-
tonian; normal forms

1. Introduction

Low-energy trajectories have long been used in space exploration, starting from mis-
sions to the libration points of the Sun–Earth system [1–5] and including lunar transfers
passing close to the intermediate Earth–Moon libration point L1 [6–8], named internal trans-
fers, or extending beyond the orbit of the Moon to take advantage of the Sun gravitational
attraction [9,10], named external transfers.

The spatial Circular Restricted 3-Body Problem (CR3BP) [11] represents an effective
model for the preliminary analysis of both missions to the libration points [12–15] and
low-energy transfers [16–18]. As proved by Conley [19], in this dynamical framework the
ultimate behavior of low-energy trajectories can be determined based on their phase space
description in the neighborhood of the collinear libration points [20], a property which
has been extensively used in mission oriented works, since it allows a rapid design of
low-energy missions [21–25].

More accurate solutions can be generated based on more sophisticated models, such
as the Elliptic Restricted 3-Body Problem (ER3BP) [26], in which the primaries move
along elliptic orbits, or the Circular Restricted 4-Body Problem (CR4BP), in which the
spacecraft dynamics evolves under the gravitational attraction of four primaries (i.e., the
Sun–Earth–Moon system) [27]. Unfortunately, because no integrals of motion, such as the
Jacobi constant for the CR3BP, are known for neither the ER3BP nor the CR4BP, a general
characterization of low-energy trajectories in these dynamical frameworks has not been
derived yet.

Aerospace 2022, 9, 175. https://doi.org/10.3390/aerospace9040175 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9040175
https://doi.org/10.3390/aerospace9040175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-6773-4250
https://orcid.org/0000-0003-3095-7391
https://orcid.org/0000-0002-8391-8444
https://doi.org/10.3390/aerospace9040175
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9040175?type=check_update&version=1


Aerospace 2022, 9, 175 2 of 17

In fact, the phase space description derived for the CR3BP in the surrounding of the
libration point L1 (or L2) can actually provide pivotal results for the design of missions also
in the presence of non negligible, but limited, eccentricity in the motion of the primaries [28]
and gravitational attraction from a fourth body [29]. This result has its foundation on a
theorem by Conley and Easton [30], stating that the basic topological properties of the phase
space flow of the CR3BP are persistent in the presence of perturbations, whose validity was
verified also by means of numerical analyses [31,32].

In this paper, we present a novel model that allows characterizing low-energy trajecto-
ries for a system consisting of a central body and two natural satellites moving along elliptic
orbits, therefore in the dynamical framework of the spatial Elliptic Restricted 4-Body Prob-
lem (ER4BP). Typically, this task is performed based on the results of the CR3BP, corrected
and compensated to take into account the perturbations introduced by the eccentric motion
of the primaries or by the gravitational attraction of a third primary. The model proposed
in this paper provides results which do not require any further correction and, furthermore,
allows determining new solutions corresponding to quasiperiodic orbits existing when the
primaries are in orbital resonance.

The ER4BP is modeled using the Hamiltonian formalism, where canonical transforma-
tions of the state variables allow reducing the Hamiltonian function for the ER4BP to a form
equivalent to that of the CR3BP in the neighborhood of L1 plus higher order terms, thus the
complexity of the problem is transferred in the definition of a coordinate transformation.
Following this approach, the low-energy trajectories can be characterized in terms of the
new phase space variables, using the same techniques developed for the CR3BP [33], then
the corresponding physical (position and velocity) coordinates can be derived applying the
inverse coordinate transformation.

The effect of orbital resonance between two of the primaries is finally examined. Under
this circumstance, any attempt of introducing a canonical transformation to absorb the
higher order terms defaults, because of the small denominators problem [34], and the
Hamiltonian function for the ER4BP, is transformed to that of the CR3BP plus an additional
resonant term.

Specific phase space states in the transformed coordinates correspond to equilibrium
conditions for the resonant term and these are actually periodic solutions in physical coor-
dinates. The problem is here applied to the specific case of the Jupiter–Europa–Io system,
in which the two moons are in a 2:1 resonance, to determine quasiperiodic trajectories in
the neighborhood of Jupiter–Europa L1. Here, a satellite can be deployed to perform, or
support, space science missions to the Jovian moon, which has attracted the interest of
space agencies because of its geodynamically active icy crust, which makes Europa a major
candidate for the search of life in the solar system [35,36].

The paper is organized as it follows, in Section 2 a model for the ER4BP is developed
in space and velocity coordinates and converted to Hamiltonian variables. In Section 3 the
Hamiltonian function for the ER4BP is set in a form equivalent to that of the CR3BP by
means of canonical transformations. In Section 4 the resonant terms, depending on the true
anomalies of the primaries, are identified, by means of small denominators problem, and
the corresponding quasiperiodic solutions are determined. An application to the Jupiter–
Europa–Io system is provided in Section 5, comparing the analytical solution obtained in
Section 4 to the numerical results obtained from integrating the full nonlinear equations of
motion associated to the ER4BP.

2. The Elliptic Restricted 4-Body Problem
2.1. Dynamical Model

The dynamics of a restricted 4-body system, with masses m1, m2, m3 >> m, is hereafter
described under the following hypotheses:

• The center of mass of the system is indicated as O;
• The relative motion of m2 with respect to m1 describes a Keplerian orbit onto the plane

Π with semimajor axis a and eccentricity e;
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• The relative motion of m3 with respect to m1 describes a Keplerian orbit onto the plane
Πp with semimajor axis ap and eccentricity ep;

• The orbital plane Πp is tilted of an angle εp with respect to Π;

where the subscript p is used to explicit the parameters referring to the perturbing fourth
body (m3). This model is suitable to represent a multi-moon environment, which is typical
for the outer planets, or gas giants, in the solar system.

An inertial reference frame Fi =
[
Ξ̂, Ĥ, Ẑ

]
is introduced. Fi is centered in O, with Ẑ

orthogonal to Π, Ξ̂ parallel to the line that connects m1 and m2 at the initial time t0, and Ĥ
completing the rectangular reference frame. For the sake of simplicity, it is assumed that at
t0 the primary m3 is at the apocenter of its orbit around m1 and lies onto the

[
Ξ̂, Ẑ

]
plane.

It shall be noted that this hypothesis does not cause any loss of generality.
The dynamic equations of motion for m in the inertial reference frame are reported

below 
Ξ̈ = −G{m1[Ξ−Ξ1(t)]

R3
1

+ m2[Ξ−Ξ2(t)]
R3

2
+ m3[Ξ−Ξ3(t)]

R3
3

}

Ḧ = −G{m1[H−H1(t)]
R3

1
+ m2[H−H2(t)]

R3
2

+ m3[H−H3(t)]
R3

3
}

Z̈ = −G{m1[Z−Z1(t)]
R3

1
+ m2[Z−Z2(t)]

R3
2

+ m3[Z−Z3(t)]
R3

3
}

(1)

where (Ξi, Hi, Zi) indicate the coordinates of the i-th primary, and Ri indicates the distance
between m and the i-th primary.

System (1) can be conveniently converted into rotating-pulsating coordinates, after
introducing the reference frame Fr =

[
ξ̂, η̂, ζ̂

]
, which rotates rigidly with the primaries

m1 and m2. In particular, Fr is parallel to Fi at t0, with axis ξ̂ pointing from m1 to m2,
axis ζ̂ orthogonal to Π and axis η̂ completing the orthogonal reference frame. As sketched
in Figure 1 (the trajectory of the primaries in Figures 1 and 2 does not correspond to an
actual system and is produced for the sake of representation, selecting: a = 6.4e + 5 km,
ap = 4.2e+ 5 km, e = 9.4e− 3, ep = 4.1e− 1, εp = 43 deg, m1 = 1.9e+ 25 kg, m2 = 8.9e+ 24
kg, m3 = 4.8e+ 24 kg), in the rotating frame the primaries m1 and m2 oscillate along the axis
ξ̂. The trajectory of the primary m3 is more complex and results from the combination of
the periodic motion of m3 around O and the periodic rotation of Fr. Converting the inertial
coordinates into rotating ones produces the following form for the dynamic equations of
motion [37] 

ξ̈ = θ̈η + 2θ̇η̇ + θ̇2ξ − ∂U
∂ξ

η̈ = −θ̈ξ − 2θ̇ξ̇ + θ̇2η − ∂U
∂η

ζ̈ = − ∂U
∂ζ

(2)

where U = G
3
∑

i=1

mi
Ri

and θ is the true anomaly of m2.
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Figure 1. Motion of the primaries in the rotating frame.

Figure 2. Motion of the primaries in rotating-pulsating coordinates. Only one orbit of m3 is shown.

Introducing the normalization factors for the massM =
3
∑

i=1
mi, distanceR =

a(1−e2)
1+cosθ

and time T =
√
R2

GM , allows transforming the rotating coordinates into rotating-pulsating
ones (x, y, z), and, finally, rearranging System (2) in a dimensionless form, with the depen-
dence on time being replaced by that on θ [38]

x′′ − 2y′ = τ
(

∂u
∂x + x

)
y′′ + 2x′ = τ

(
∂u
∂y + y

)
z′′ = τ

(
∂u
∂z + z

)
− z

(3)

where τ = (1 + e cos θ)−1, u =
3
∑

i=1

µi
ri

, ri =
Ri
R , µi =

mi
M and the apostrophe ′ indicates the

derivative with respect to θ. As shown in Figure 2, the position of the primaries m1 and
m2 in rotating-pulsating coordinates corresponds to, respectively, [−µ, 0, 0] and [1− µ, 0, 0]
with µ = m2

M . As in the rotating frame, the primary m3 evolves along a three-dimensional
trajectory which in this case depends also on the periodic motion of the rotating-pulsating
reference frame along axis ξ.
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The second order equations in System (3) are typically expressed as a set of first order
equations for the position (x, y, z) and velocity

(
vx, vy, vz

)
coordinates

x′ = vx

y′ = vy

z′ = vz

v′x = 2vy + τ
(

∂u
∂x + x

)
v′y = −2vx + τ

(
∂u
∂y + y

)
v′z = τ

(
∂u
∂z + z

)
− z

(4)

The reader will notice that setting e = ep = µ3 = 0 the Systems (1)–(4) reduce to the
corresponding ones for the CR3BP. In Section 3 it will be shown how to express the
dynamics of the ER4BP to a form equivalent to that of the CR3BP also when e, ep, and µ3
are small but not negligible. To achieve this goal, the Hamiltonian formalism is introduced.

2.2. Hamiltonian Formalism

System (4) can be represented using the Hamiltonian formalism after deriving the
Hamiltonian function for the ER4BP (see [26,39])

H =
1
2

[
(p1 + q2)

2 + (p2 − q1)
2 + p2

3 + q2
3

]
− τ

[
u +

1
2

(
q2

1 + q2
2 + q2

3

)]
(5)

which depends on the variables q and p, where the bold style is used to indicate the vectors,
named the positions and conjugate momenta

q1 = x
q2 = y
q3 = z


p1 = vx − y
p2 = vy + x
p3 = vz

(6)

The dynamic equations of motion are obtained by the definitions [40] q′ = ∂H
∂p and p′ =

− ∂H
∂q , leading to


q′1 = p1 + q2

q′2 = p2 − q1

q′3 = p3


p′1 = p2 − q1 + τ

(
∂u
∂q1

+ q1

)
p′2 = −p1 − q2 + τ

(
∂u
∂q2

+ q2

)
p′3 = −q3 + τ

(
∂u
∂q3

+ q3

) (7)

Introducing Equation (6) into Equation (7) results in System (4), proving the equivalence
between the Hamiltonian and the position space representations.

Considering the non-polynomial terms of H

F
(

e, ep,
µ3

r3

)
= τ

[
u +

1
2

(
q2

1 + q2
2 + q2

3

)]
(8)

the dependence on e, ep, and µ3
r3

can be isolated after expanding in power series F
(

e, ep, µ3
r3

)
about the expansion point e = ep = µ3

r3
= 0, indicated by the superscript ?

F? + e
∂F
∂e
|? + ep

∂F
∂ep
|? + µ3

r3

∂F
∂µ3/r3

|? + o(2)
(
e, ep, µ3/r3

)
(9)

with
F? =

µ1

r?1
+

µ2

r?2
+

1
2

(
q2

1 + q2
2 + q2

3

)
(10)
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∂F
∂e
|? = − cos θ

[
2

∑
i=1

µi
r?i

+
1
2

(
q2

1 + q2
2 + q2

3

)]
−

2

∑
i=1

µi

2r3
i

∂ρi
∂e
|? (11)

∂F
∂ep
|? = −

2

∑
i=1

µi

2r3
i

∂ρi
∂ep
|? (12)

∂F
∂µ3/r3

|? = −
2

∑
i=1

µi

2r3
i

∂ρi
∂µ3/r3

|? (13)

where o(2) collects the terms of order higher than one in e, ep, and µ3/r3. For the sake of
clarity, the long expressions for the partial derivatives of ρi = r2

i are reported in Appendix A.
Collecting the polynomial terms of Equation (5) and F?, results in the Hamiltonian of

the CR3BP [11], hereafter indicated as

Hc =
1
2

(
p2

1 + p2
2 + p2

3

)
+ p1q2 − p2q1 −

µ1

r?1
− µ2

r?2
(14)

Then, Equation (5) can be expressed in the compact form

H = Hc(q, p)− e
∂F
∂e
|? − ep

∂F
∂ep
|? − µ3

r3

∂F
∂µ3/r3

|? + o(2)
(
e, ep, µ3/r3

)
(15)

3. Classification of Low-Energy Trajectories in the Elliptic Restricted 4-Body Problem
3.1. Persistence of the Topological Properties

In Section 2, the Hamiltonian function of the ER4BP was expressed as the sum of the
Hamiltonian for the CR3BP (Hc) and the terms depending on the orbital eccentricity of the
primaries (e, ep) and on the gravitational attraction of the third primary (µ3/r3).

It is worth recalling now that for the CR3BP, the ultimate behavior of low-energy
trajectories can be determined based on the topological properties of the linear flow in the
phase space surrounding the collinear libration points L1 (or L2) [20], called the equilibrium
region. According to a theorem by Conley and Easton, the properties of the flow in the
equilibrium region are persistent also in the presence of perturbations [30], therefore for
small e, ep and µ3/r3, it shall be possible to transform the Hamiltonian function of the
ER4BP to a form equivalent to that of the CR3BP in the equilibrium region, hereafter
indicated as H(2)

c .
The expression of H(2)

c is derived hereafter. First, the origin of the system is translated
to the libration point (equivalent solutions can be derived for the second libration point by
simply replacing L1 with L2), setting

q̃1 = q1 − L1 p̃2 = p2 − L1 (16)

Then the non polynomial terms of Equation (14) are rearranged as follows
µ1
r?1

= 1−µ?

|L1+µ? |(1+x̄)
1
2

µ2
r?2

= 1−µ?

|L1+µ?−1|(1+ȳ)
1
2

(17)

and expanded in power series up to order two in q, obtaining
µ1
r?1

= 1−µ?

|L1+µ? |

(
1− 1

2 x̄
)

µ2
r?2

= 1−µ?

|L1+µ?−1|

(
1− 1

2 ȳ
) (18)
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where L1 is the x coordinate of the libration point, µ? = m2
m1+m2

and
x̄ =

2q̃1(L1+µ?)+q̃2
1+q2+q2

3
(L1+µ?)2

ȳ =
2q̃1(L1+µ?−1)+q̃2

1+q2+q2
3

(L1+µ?−1)2

(19)

Introducing Equations (18) and (19) into Equation (15) and excluding terms inessential in
the Hamilton equations of motion leads to

H(2)
c =

1
2

(
p2

1 + p2
2 + p2

3

)
+ p1q2 − p̃2q1 − K

(
q̃2

1 −
1
2

q2
2 −

1
2

q2
3

)
(20)

with K = 1−µ?

|L1+µ? |3 +
µ?

|L1+µ?−1|3 .
In the following sections, two canonical transformations are introduced. The first

one leads the second order Hamiltonian function for the ER4BP to a form equivalent to
Equation (20), the second one allows expressing the resulting second order Hamiltonian
function as the sum of three local integrals of motion.

3.2. Normal Forms for the Elliptic Restricted 4-Body Problem

A canonical transformation from the old to a new set of Hamiltonian variables
T1 : (q, p) → (Q, P) is designed by means of the generating function S, which verifies
the condition

Ĥ = H(q, p, θ) +
∂S
∂θ

(21)

and links the old and new variables as{
p = ∂S

∂q

Q = ∂S
∂P

(22)

The authors proved that selecting the generating function reported below (see Appendix B)

S(q, P, θ, fi) = q̃1P1 + q2P2 + q3P3 + f1P1 + f2P2 + f3P3 + f4q̃1 + f5q2 + f6q3 (23)

The canonical transformation can absorb the second order terms in Equation (15) that
depend on the perturbations (e, ep, µ3/r3), hereafter explicited (please note that terms
depending on the perturbation ep do not appear in Equation (23) because they are of a
order higher than two)

H(2) = H(2)
c (q, p) + e(L1q̃1) cos θ +

µ3

r3
(q̃1C1,0 + q2C2,0 + q3C3,0) (24)

Then, the second order Hamiltonian Ĥ(2) in the new variables reduces to Ĥ(2) = H(2)
c (Q, P),

where

H(2)
c (Q, P) =

1
2

(
P2

1 + P2
2 + P2

3

)
+ P1Q2 − P2Q1 − K

(
Q2

1 −
1
2

Q2
2 −

1
2

Q2
3

)
(25)

and the full Hamiltonian is given by

Ĥ = H(2)
c (Q, P) + Ĥ(n)(Q, P, e, ep, µ3/r3

)
(26)

where Ĥ(n) collects terms of order 3 or higher.
It is worth to summarize the result here. Applying the canonical transformation

defined in Equation (21) with the generating function described by Equation (23), the
second order Hamiltonian function Ĥ(2) for the ER4BP results in Equation (25), whose
form is equivalent to that of the second order Hamiltonian H(2) for the CR3BP, given by
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Equation (20). Because the topological properties of the phase space flow in the equilibrium
region depend on the local form of the Hamiltonian function [20], the equivalence in the
form of Ĥ(2) and H(2) indicates that the topological properties of the CR3BP are equivalent
to those of the ER4BP, substantiating the theorem by Conley and Easton [30].

3.3. Topological Characterization of Low-Energy Trajectories

A second canonical transformation T2 : (Q, P)→ (x, y), originally proposed by Siegel
and Moser [41] and extensively used for the CR3BP [29,33,42], allows expressing Ĥ(2) as
the sum of three terms

H̄(2) = ρx1y1 +
λ1

2

(
x2

2 + y2
2

)
+

λ2

2

(
x2

3 + y2
3

)
= h (27)

where ρ, λ1, and λ2 are, respectively, the real and the two imaginary eigenvalues of the
linear system associated to Ĥ(2) and h indicates the constant value of H̄(2), named the
energy level.

As proved by Moser [43], the three terms in Equation (27) are local integrals of motion,
each one depending on a different couple of variables (xi, yi). The two integrals associ-
ated with the imaginary eigenvalues λi represent harmonic oscillators and characterize,
respectively, the in-plane and out-of-plane oscillations, corresponding to the (x, y) and z
components in position space coordinates.

The level surface ρx1y1 describes the linear phase space flow in the neighborhood of
the saddle point (x1 = 0, y1 = 0), as sketched in Figure 3.

Figure 3. Representation of the phase space flow in (x1, y1).

Low-energy trajectories can be characterized based on their state projection in (x1, y1)
and are classified as follows [20]:

• Lissajous quasiperiodic orbits, characterized by x1 = y1 = 0, which evolve inside the
equilibrium region;

• Transit trajectories, corresponding to the hyperbolic segments x1y1 < 0, which cross
the equilibrium region twice, once towards m1 and once towards m2, in a finite interval
of time;

• Bouncing trajectories, corresponding to the hyperbolic segments x1y1 > 0, which
never cross the equilibrium region;

• Long-term ballistic captures, characterized by either x1 → 0 or y1 → 0, which cross
the equilibrium region twice, over an indefinitely long interval of time.
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Inasmuch, some relevant results proved that the CR3BP can be extended to the ER4BP,
indicating that correlations exist between the osculating orbital elements of ballistic captures
in the proximity of the primaries and their state (x, y) in the equilibrium region [33,44].

As detailed in the next section, the model proposed can provide further information on
the dynamical evolution of quasiperiodic orbits under the effect of perturbations included
in higher order terms. In particular, the impact of orbital resonance between the primaries
is examined.

4. Resonant Terms and Quasiperiodic Solutions
4.1. Identification of Resonant Terms

The focus now is on investigating the effects of residual perturbations, included in
the higher order terms, onto quasiperiodic orbits (x1 = y1 = 0). In particular, the case of
orbital resonance between the primaries is examined, which allows setting θ̇p = nθ̇, where
n is an integer number.

The Hamiltonian function including the higher order terms can be easily derived, by
applying the canonical transformation T2 by Siegel and Moser to Ĥ(n), producing H̄(n),
and adding this term to Equation (27), resulting in

H̄ = ρx1y1 +
λ1

2

(
x2

2 + y2
2

)
+

λ2

2

(
x2

3 + y2
3

)
+ H̄(n) (28)

A new canonical transformation T3 : (x, y) → (w, z), aiming at absorbing the order
three terms in Equation (28), is now introduced. Operating as in Section 3, the canonical
transformation is defined by means of a generating function S, which verifies

H̃ = H̄(x, y, θ) +
∂S
∂θ

(29)

and {
y = ∂S

∂x
w = ∂S

∂z
(30)

Using symbolic algebra, the authors proved that setting the following expression for the
generating function (see Appendix B)

S(x, z, θ, gi) = x1z1 + x2z2 + x3z3 + g1x2
2 + g2x2

3 + g3z2
2 + g4z2

3 + g5z2 + g6x2+

+ g7z3 + g8x3 (31)

Allows absorbing the order three terms of Equation (28), leading to

H̄ = ρw1z1 +
λ1

2

(
w2

2 + z2
2

)
+

λ2

2

(
w2

3 + z2
3

)
+ H̃(m) (32)

where H̃(m) collects the terms of order higher than three.
As expected from the small denominator problem [34], in case of resonance, the

denominators of some coefficients in gi are equal to zero and the canonical transformation
defaults. In particular, this occurs in g5 and g6 for n = λ1 + ε and in g7 and g8 for n = λ2 + ε,
where ε is an arbitrarily small constant.

The residual order three terms of the Hamiltonian function are reported below

H̃res
j = 2

(
wj + zj

)(
b(j)

1 cos2 θ + b(j)
2 cos θ sin θ + b(j)

3 sin2 θ
)

(33)

where j = 2, 3 and b(j)
i are constant coefficients depending on e, ep and µ3/r3 and are

determined from the change of coordinates in Equation (30).
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4.2. Determination of Stationary Points

The model developed here allows determining periodic solutions existing because of
orbital resonance. Before proceeding with their determination, the following property of
the canonical transformation by Siegel and Moser shall be recalled [40,41]{

wj = ρje
iφj

zj = iρje
−iφj

(34)

Introducing Equation (34) into Equation (33) and applying Euler’s formula, to express the
exponential terms as trigonometric functions, the expression of H̃res

j is transformed to

H̃res
j = −

ρj

2

(
b(j)

1 + b(j)
2 + b(j)

3

)
cos

(
φj − 2θ

)
(35)

Here the dependence on the true anomaly θ can be absorbed by introducing the
canonical transformation T4 : (ρj, φj) → (ρ̃j, φ̃j) defined by the following generating
function

S
(
ρj, φ̃j, θ

)
= ρjφ̃j − 2ρjθ (36)

Corresponding to the change of coordinates reported below (the variables not reported are
not transformed) {

ρj = ρ̃j

φj = φ̃j + 2θ
(37)

Which transforms Equation (35) as follows

H̃res
j = −

ρ̃j

2

(
b(j)

1 + b(j)
2 + b(j)

3

)
cos φ̃j − 2ρ̃j (38)

Stationary points exist for Equation (38), corresponding toφ̃j,s = kπ, k ∈ Z

ρ̃j,s = −
Ĥj

res

2

(39)

The reader shall note that the sequence of transformations from T1 to T4, hereafter indi-
cated as T1,4 and producing [ρ, σ] = T1,4[q, p], depend on the commensurable θ and θp.
Applying the inverse of T1,4 to any stationary solution defined by Equation (39) results in a
quasiperiodic trajectory in [q, p]s and related position and velocity components.

5. Numerical Analysis

In the previous sections, we derived a model which allows designing quasiperiodic
libration point orbits existing in case of resonance between the primaries. This model is
here verified by means of numerical analysis on the Jupiter–Europa–Io system, whose
parameters are reported in Table 1 (from the values in Table 1 it is possible to compute
µ3/r3 << 10−3). This system is characterized by the 2:1 orbital resonance between Europa
and Io, corresponding to n = 2.02.

The effects of the orbital resonance is investigated on quasiperiodic orbits in the
neighborhood of Jupiter–Europa L1, characterized by λ1 = 2.22 and λ2 = 2.15. Since n =
2.02, the condition n− λi = ε is verified. In particular, the case of an out of plane periodic
orbit is presented below. The initial conditions, selected from Equation (39) for j = 3, are
φ̃3,s = 0 and Ĥ3

res
= 10−15 and correspond to x1 = L1, x2 = 0, x3 = −3.11× 10−10, y1 = 0,

y2 = 0 and y3 = 4.556× 10−3. From this initial state, the full nonlinear equations of motion
in System (4) are integrated using ode113 solver in Matlab, for a total time equal to 200
times the orbital period of Europa around Jupiter, which corresponds to about 708 Earth
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days. The time behavior of the oscillations is shown in Figure 4, where the distance is
normalized by DU = R? = a.

Table 1. Parameters of the Jupiter–Europa–Io system.

Variable Symbol Value

Mass of Jupiter m1 1.899 × 1027 kg
Mass of Europa m2 4.799 × 1024 kg

Mass of Io m3 8.932 × 1022 kg
Jupiter–Europa semimajor axis a 6.711 × 105 km

Jupiter–Io semimajor axis ap 4.218 × 105 km
Jupiter–Europa eccentricity e 0.0094

Jupiter–Io eccentricity ep 0.0041
Inclination between the orbital planes ε 0.430 deg

Coordinate of the libration point L1 L1 6.081 × 105 km
Resonant Hamiltonian terms Ĥ3

res 10−15

Figure 4. Behavior of the vertical oscillator associated to a stationary point.

The solution is compared to the one obtained ignoring the order three terms, corre-
sponding to the state x1 = L1, x2 = 0, x3 = −10−10, y1 = 0, y2 = 0 and y3 = 0. The time
behaviour of the oscillations is represented in Figure 5, showing that the orbital perturba-
tion of Io produces an increase of the amplitude up to ±2.9× 10−4 DU in the time interval
considered. Differently, the amplitude of oscillations for the quasiperiodic orbit obtained
from the stationary point never exceeds the value 10−5 DU.

Figure 5. Behavior of a vertical oscillator determined neglecting order three terms.
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A representation of the quasiperiodic trajectory in the rotating frame is shown in
Figure 6. It can be observed that the vertical component oscillates as in Figure 4, while
the in-plane components have a negligible drift towards the negative values, resulting
from higher order perturbations. It shall be emphasized that over the 200 orbits, the drift
of the in-plane components is four orders of magnitude lower than the amplitude of the
vertical oscillations. To provide a better insight on the shape of the quasiperiodic orbit
corresponding to the stationary point, the trajectory is represented in Figure 7 in the inertial
reference frame (Ξ, H, Z).

Figure 6. Representation of the vertical oscillator associated to a stationary point in the rotating
frame.

Figure 7. Representation of the vertical oscillator associated to a stationary point in the inertial frame.

6. Conclusions

In this manuscript we presented a model to extend the topological characterization of
low-energy trajectories from the dynamical framework of the CR3BP to that of the ER4BP.
This goal is achieved, defining a sequence of canonical transformations which convert the
Hamiltonian function of the ER4BP, evaluated in the neighborhood of the libration point L1
(or L2) to a form equivalent to that of the CR3BP.

The higher order terms of the Hamiltonian function in the normal form, which depend
on the true anomalies of the primaries, can be absorbed by a further canonical transforma-
tion. This transformation defaults in case of orbital resonance between the primaries, as
indicated by the problem of small denominators.

For the terms of the Hamiltonian function that cannot be absorbed by the canonical
transformation, in virtue of the orbital resonance, stationary points can be computed, which
correspond to quasiperiodic orbits in the position space coordinates.
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The above mentioned model was verified, by means of numerical analyses, to investi-
gate the behavior of quasiperiodic orbits for the Jupiter–Europa–Io system, characterized
by the 1:2 resonance of Io and Europa. The full nonlinear equations of motion for the ER4BP
were integrated for an initial condition corresponding to the vertical harmonic oscillator at
Jupiter-Europa L1.

The results clearly showed that neglecting the terms of order three results in a trajectory
in which the amplitude of the oscillations increases indefinitely in time, driven by the
orbital resonance between the primaries. Instead, using the initial conditions associated
to stationary points determined for the order three resonant Hamiltonian, reported in
Equation (27), the amplitude of oscillations does not diverge and the resulting orbits
are quasiperiodic.
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visualization, S.C. and M.P.; supervision, P.T.; project administration, P.T. All authors have read and
agreed to the published version of the manuscript.
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Appendix A. Terms of the Power Series Expansion

The expressions for the partial derivatives of ρi, that appear for the first time in
Equations (10)–(13), are reported below, in order to allow the reader to replicate the results
presented. The derivatives that are not reported are equal to zero.

∂ρ3

∂e
=

2
a
{ap cos θ

(
sin θp sin θ + cos θp cos θ cos εp

)
[aq1+

+ cos θ
(
ap cos θp cos εp − aµ2 cos θ

)
+ sin θ

(
apµ1 sin θp − aµ2 sin θ + apµ2 sin θp

]
+

+ap cos θ
(
sin θp cos θ − cos θp sin θ cos εp

)(
aq2 + ap sin θp cos θ − ap cos θp sin θ cos εp

)
+

+ap cos θp cos θ sin εp
(
aq3 + ap cos θp sin εp

)
}

(A1)

∂ρ3

∂ep
= − 2

a2

[
aq1 + cos θ

(
ap cos θp cos εp − aµ2 cos θ

)
+ sin θ

(
ap sin θp − aµ2 sin θ

]
+

+
[
ap cos2 θp cos θ cos εp + ap sin θp sin θ cos θp

]
+

2ap

a

[
cos2 θp sin εp

(
q3 +

ap

a
cos θp sin εp

)
+

+ cos θp
(
sin θp cos θ − cos θp sin θ cos εp

)
+

+
(

q2 +
ap

a
(
sin θp cos θ − cos θp sin θ cos εp

))]
(A2)

∂ρ1

∂µ3/r3
= [µ1q1 − µ2(q1 − 1)]

[
µ2 sin2 θ −

ap

a
sin θ sin θp + µ2 cos2 θ −

ap

a
cos θp cos θ cos εp

]
+

−2
ap

a
q2
(
sin θp cos θ − cos θp sin θ cos εp

)
− 2

ap

a
q3 cos θp sin εp

(A3)

∂ρ2

∂µ3/r3
=
[
cos θ

(
µ2 cos θ −

ap

a
cos θp cos εp

)
− sin θ

( ap

a
µ1 sin θp − µ2 sin θ +

ap

a
µ2 sin θp

)]
(µ1 + µ1q1 + µ2q1)−

2ap

a
q2
(
sin θp cos θ − cos θp sin θ cos εp

)
+

−
2ap

a
q3 cos θp sin εp

(A4)

∂ρ3

∂µ3/r3
=
{[

q1 + cos θ
( ap

a
cos θp cos εp − µ2 cos θ

)
+ sin θ

( ap

a
sin θp − µ2 sin θ

)]
[

sin θp

( ap

a
sin θp − µ2 sin θ

)
− cos θ

(
µ2 cos θ −

ap

a
cos θp cos εp

)
+

−2
ap

a

{(
sin θp cos θ − cos θp sin θ cos εp

)[
q2 +

ap

a
(
sin θp cos θ − cos θp sin θ cos εp

)]}
+

−2
ap

a
cos θp sin εp

(
q3 +

ap

a
cos θp sin εp

)
(A5)
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Appendix B. Canonical Transformations

In this section, it is described the process to derive the canonical transformations ab-
sorbing the order two (Appendix B.1) and the order three terms (Appendix B.2) depending
on e, ep and µ3/r3.

Appendix B.1. Second Order

The expression of the Hamiltonian function derived in Section 2 for the ER4BP is
given by Equation (15). In particular, the second order terms are collected in Equation (24),
reported hereafter for the sake of completeness

H(2) = H(2)
c (q, p) + e(L1q̃1) cos θ +

µ3

r3
(q̃1C1,0 + q2C2,0 + q3C3,0) (A6)

where

C1,0 =
[(

apµ1 sin θp sin θ − aµ2 + apµ2 sin θp sin θ+

+apµ1 cos θp cos θ cos εp + apµ2 cos θp cos θ cos εp

)
(

µ1|L1 + µ− 1|3 + µ2|L1 + µ− 1|3 − 2µ1µ|L1 + µ|3 − µ1µ|L1 + µ− 1|3+
+µ2µ|L1 + µ|3 + 2µ2µ|L1 + µ− 1|3 + 3µ1µ2|L1 + µ|3+

−3µ2µ2|L1 + µ− 1|3 + 3L1µ2|L1 + µ− 1|3 + 3L1µ1µ|L1 + µ|3+
−3L1µ2µ|L1 + µ− 1|3

)]
/
(
a|L1 + µ− 1|3|L1 + µ|3

)
(A7)

C2,0 =
ap

a
(
sin θp cos θ − cos θp sin θ cos εp

)( µ− 1
|L1 + µ|3 −

µ

|L1 + µ− 1|3

)
(A8)

C3,0 =
ap

a

[
cos θp sin εp(µ− 1)

|L1 + µ|3 −
µ cos θp sin εp

|L1 + µ− 1|3

]
(A9)

Introducing the generating function defined by Equation (23)

S(q, P, θ, fi) = q̃1P1 + q2P2 + q3P3 + f1P1 + f2P2 + f3P3 + f4q̃1 + f5q2 + f6q3

The following transformation from the old (q, p) to the new (Q, P) canonical coordinates
is obtained 

q̃1 = Q1 − f1

q2 = Q2 − f2

q3 = Q3 − f3


p1 = P1 + f4

p̃2 = P2 + f5

p3 = P3 + f6

(A10)

Leading to the following expression of the second order Hamiltonian function

Ĥ(2) =
1
2
(

P2
1 + P2

2 + P2
3
)
+ P1Q2 − P2Q1 − K

(
Q2

1 −
1
2

Q2
2 −

1
2

Q2
3

)
+Q1

(
f ′4 − 2 f5 + 2K f1 + eL1 cos θ +

µ3

r3
C1,0

)
+

+Q2

(
2 f4 + f ′5 − K f2 +

µ3

r3
C2,0

)
+ Q3

(
f ′6 − K f3 +

µ3

r3
C3,0

)
+

+P1
(
2 f4 − 2 f2 + f ′1

)
+ P2(2 f1 + 2 f5 + f ′2) + P3(2 f6 + f ′3)

(A11)

with K = 1−µ?

|L1+µ? |3 +
µ?

|L1+µ?−1|3 .

To reduce the Hamiltonian Ĥ(2) to a form equivalent to that of the CR3BP, reported in
Equation (24), the terms multiplying Qi and Pi shall be set equal to zero. This corresponds
to solving the following set of differential equations depending on the variable θ and
including the parameters e, ep and µ3/r3
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
f ′1 = 2 f2 − 2 f4

f ′2 = −2 f1 − 2 f5

f ′3 = −2 f6


f ′4 = 2 f5 − 2K f1 − eL1 cos θ − µ3

r3
C1,0

f ′5 = −2 f4 + K f2 − µ3
r3

C2,0

f ′6 = K f3 − µ3
r3

C3,0

(A12)

The complex system of Equations (A12) is solved using symbolic algebra tools in Matlab.
It shall be outlined that the equations depending on the in-plane (Q1, Q2, P1, P2) and the
out-of-plane (Q3, P3) variables are not coupled, therefore they can be solved separately,
reducing the use of computational resources. The process results in the following expression
for the transformed Hamiltonian function

Ĥ(2) =
1
2

(
P2

1 + P2
2 + P2

3

)
+ P1Q2 − P2Q1 − K

(
Q2

1 −
1
2

Q2
2 −

1
2

Q2
3

)
+ Ĥ(n) (A13)

where Ĥ(n)(Q, P, e, ep, µ3/r3
)

collects the terms of order three and higher.

Appendix B.2. Third Order

Applying the transformation T2 developed by Siegel and Moser [41], the Hamiltonian
variables are transformed as follows (see [29,40] for the derivation of matrix T2)

[x, y] = T2[Q, P] (A14)

Introducing Equation (A14) to Equation (A13) leads to the following form for the
Hamiltonian

H̄ = ρx1y1 +
λ1

2

(
x2

2 + y2
2

)
+

λ2

2

(
x2

3 + y2
3

)
+ H̄(n) (A15)

where H̄(n)(x, y, e, ep, µ3/r3
)

collects the terms of order three and higher.
Because the interest of this analysis is investigating quasiperiodic orbits, the condition

x1 = y1 = 0 is verified, then Equation (A15) can be written in the following form, which
includes all terms up to order three

H̄(3) =
λ1

2
(

x2
2 + y2

2
)
+

λ2

2
(

x2
3 + y2

3
)
+ x2

2e
[

cos θ

(
K +

1
2

)
t2
1,2 − cos θ

(
K
2
− 1

2

)
t2
2,2

]
+

+x2y2e
[

2t1,2t1,5 cos θ

(
K +

1
2

)
− 2t2,2t2,5 cos θ

(
K− 1

2

)]
− x2

3et2
3,6 cos θ

(
K− 1

2

)
+

−y2
3et2

3,3 cos θ

(
K− 1

2

)
− x3y3et3,3t3,6 cos θ

(
K− 1

2

)
+ y3et3,3 f3 cos θ(K− 1)+

+y2e[t2,2 f2 cos θ(K− 1)− t1,2 f1 cos θ(2K− 1)] + x2
2e cos θ

[(
K +

1
2

)
t2
1,5 −

K− 1
2

t2
1,5

]
+

+x2e[t2,5 f2 cos θ(K− 1)− t1,5 f1 cos θ(2K + 1)] + x3et3,6 f3 cos θ(K− 1)+

+y2
2

µ3

r3
c0200 + x2y2

µ3

r3
c1100 + y2

µ3

r3
c0100 + y2

3
µ3

r3
c0002 + x3y3

µ3

r3
c0011+

+y3
µ3

r3
c0001 + x2

2
µ3

r3
c2000 + x2

µ3

r3
c1000 + x2

3
µ3

r3
c0002 + x3

µ3

r3
c0001

(A16)

where the long expressions for the coefficients cijkl were not reported, but can be derived
from the procedure described in the previous paragraphs.

A canonical transformation T3 is here introduced to absorb the order three Hamilto-
nian, operating as in Appendix B.1. The expression for the generating function, given by
Equation (31), is reported below for the sake of clarity

S(x, z, θ, gi) = x1z1 + x2z2 + x3z3 + g1x2
2 + g2x2

3 + g3z2
2 + g4z2

3 + g5z2 + g6x2+
+g7z3 + g8x3

(A17)
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Resulting in the following transformation from the old (x, y) to the new (w, z) canonical
coordinates

x1 = w1

x2 = w2 − g5 − 2g3z2

x3 = w3 − g7 − 2g4z3


y1 = z1

y2 = w2 + g6 − 2g1g5 + 2g1w2 − 4g1g3z2

y3 = w3 + g8 − 2g2g7 + 2g2w3 − 4g2g4z3

(A18)

Introducing the Equation (A18) into Equation (A16) results in two sets of ordinary differen-
tial equations, one for g1, g3, g5 and g6, related on the in-plane variables (w2, z2), and one
for g2, g4, g7, and g8, related to the out of plane variables (w3, z3). These sets of ordinary
differential equations are solved using symbolic algebra tools in Matlab, producing the
following form for the Hamiltonian function

H̃ = ρw1z1 +
λ1

2

(
w2

2 + z2
2

)
+

λ2

2

(
w2

3 + z2
3

)
+ H̃(n+1) (A19)

where H̃(n+1)(w, z, e, ep, µ3/r3
)

collects the terms of order four and higher.
As discussed in Section 4, the canonical transformation T3 defaults in case of resonance,

occurring for n = λ1 + ε and n = λ2 + ε, where ε is an arbitrarily small constant. In this case
the denominator of some coefficients in functions g5, g6, g7, and g8 are equal to zero, and
residual terms of the Hamiltonian, reported in Equation (35), can be threaded as indicated
in Section 4 to determine stationary points corresponding to quasiperiodic solutions.
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