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Abstract: This paper aims to establish an approach of power bookkeeping in a numerical study.
To study the process of power conversion coursed in the flow field, the methodology employs a
power-based analysis to quantify power terms. This approach is examined in a simulation of jet flow
and then applied to the cases of an isolated actuator disc and an isolated flat plate. Eventually, a
numerical simulation is carried out for the boundary layer ingestion (BLI) case that integrates the flat
plate and a wake-filling actuator disc. This study quantitatively discusses the mechanisms of BLI
under the conditions of laminar and turbulent flow. The proposed power-based analysis might offer
insights for the aircraft aerodynamic design using favorable airframe propulsion integration.

Keywords: power breakdown; Boundary Layer Ingestion; power-based analysis

1. Introduction

Boundary layer ingestion (BLI) has been investigated as a novel configuration for
aircraft by integrating airframe and propulsion systems to reduce fuel consumption and
emissions. For example, the Boeing blended wing body aircraft, which merges its fuselage
with the wing, adopts a BLI configuration. The research on this aircraft indicates a 10%
reduction in fuel burn due to BLI [1]. BLI was also chosen for the “Silent Aircraft” concept
which aims to reduce noise emission. The study of this aircraft shows that the fuel con-
sumption can be reduced by 3~4% due to BLI [2]. BLI is also used in the NASA Hybrid
Wing Body N3-X aircraft. The research carried on the aircraft configuration estimated
that BLI could bring in a 7% reduction in the required power [3]. The D8 aircraft, whose
fuselage is characterized by a double bubble cross-section also uses BLI to increase the total
efficiency. Numerical and experimental assessments claim that BLI could lead to a 6~9%
reduction in power consumption [4–6].

In these recent studies on BLI, the analysis of aircraft performance has employed
multiple methods. Conventional approaches access aerodynamic force (momentum) to
evaluate aircraft performance [7], such as thrust/drag bookkeeping and drag breakdown.
Nevertheless, these approaches have difficulties to study aircraft performance in BLI config-
uration, because drag and thrust are ambiguously defined when airframe and propulsion
systems are tightly integrated. To deal with this issue, methods based on power have been
introduced. Drela [8] proposed a power balance method to evaluate mechanical power
in the flow field. This method has been employed in the D8 aircraft project [4–6]. Arntz,
Atinault [9] improved this method by taking thermal power into account. The improved
method is called exergy-based method which has been used to study BWB aircraft [10] and
turbomachines of aero engines [11]. These methods based on mechanical power or exergy
are considered power-based methods which are capable of evaluating the actual aircraft
power consumption without ambiguity. This is critical to study the actual BLI benefit: The
saving of power consumption is attributed to the reduction of the viscous dissipation of
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the aircraft wake and the propulsive jet [8]. Moreover, power-based analysis is particu-
larly important in addressing controversial issues such as “BLI efficiency paradox”: The
observation of power coefficients being greater than one is mainly associated with the
power pertaining to ingested wake (boundary layer), which is an input power for the BLI
propulsor [12], and a transient power for the entire aircraft [13].

It is noted that the original power-based methods are established within a well-defined
control volume. This simple control volume limits the capability of studying the evolution
process of an individual power term; therefore, it is not possible to know the details of how
aircraft components influence the power conversion process. This incapability motivates
the current study to propose a segregated computational domain to trace the change of
power terms, thereby illustrating the detailed power conversion process. On the other side,
previous studies using power-based analysis reported different values of power saving
due to BLI, ranging from 3% to 30% [2,14]. Indeed, one could argue that the benefit due
to BLI depends on aircraft geometry and flow conditions. However, it is necessary to
study the flow mechanisms of BLI in order to quantify how much improvement in aircraft
performance can be expected for aircraft design in the most optimistic scenario. This
motivates a quantitative study to evaluate the impacts of an individual mechanism on the
overall performance.

Building upon the above-mentioned research line, this study aims to quantitatively
analyze the power conversion process of BLI by employing numerical simulations. An
approach of power bookkeeping is established to investigate the power conversions related
to BLI. This power-based analysis with a segregated computational domain is performed
to post-process the simulation data such that the detailed processes involved in the power
conversion can be determined. This paper has two main objectives: The first one is
establishing the detailed process of the typical power conversions for typical models,
namely, an isolated actuator disc, an isolated flat plate, and a vehicle which combines
the actuator and the flat plate in a BLI configuration; these typical power conversions are
closely related to the mechanisms of BLI. The second objective is quantifying the various
influences and analysing the mechanisms of BLI.

To achieve these two major objectives, power-based analysis in this paper is restricted
only to the mechanical powers which exclude the thermal power in numerical simulations.
Additionally, numerical simulations are limited to 2D (planar) steady (laminar and turbu-
lent) incompressible flows, which allows the exclusion of complicated flow physics, such
as compressibility, heat transfer, etc. These simplifications allow the analysis to be focused
on the main mechanisms of BLI. To establish a progressive understanding, this paper is
organized as follows: Section 2 introduces the principle of combining power-based analysis
with numerical simulations, and then demonstrates the power bookkeeping of a simple
laminar jet. In Section 3, the power-based analysis is applied to the simulations of laminar
flows. This section analyses the typical power conversion processes of an actuator disc, a
flat plate and a BLI-integrated vehicle in laminar flows. These cases enable the discussion
about the flow mechanisms of BLI. Section 4 mainly studies BLI-related power conversions
in turbulent flows, and simulations of the flat plate and the integrated vehicle in turbulent
flows are discussed. The main conclusions of this research are summarized in Section 5.

2. Power-Based Analysis in Computation Fluid Dynamics

Power-based analysis evaluates the “powers” of the flow. It utilizes the integral form of
the mechanical energy equation which is obtained by multiplying the momentum equation
with velocity vector [8]. Numerical simulation using Computation Fluid Dynamics (CFD)
resolves Navier–Stokes equations within the computational domain, obtaining the flow
field with fine details. To establish a progressive understanding, this section elaborates why
power-based analysis is capable of processing the flow field obtained from numerical simu-
lations, then the requirements of the computational domain for the analysis are discussed.
Finally, this section demonstrates the power-based analysis of a simple laminar jet.
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2.1. Compatibility between Finite Volume Method and Power-Based Analysis

Depending on the numerical method of solving partial differential equations, CFD can
be categorized as finite volume, finite difference, or finite element method [15]. Despite
the choice of the method, conservation laws must be satisfied in CFD simulations. For
incompressible viscous flow, the equations of continuity, momentum, and energy are
expressed as Equations (1)–(3). Enthalpy h is obtained through the thermodynamic equation
of state, as in Equation (4) [16]. Constant values are given to the air properties of density ρ,
(laminar) viscosity µlam, thermal conductivity k, and specific heat Cp. Due to the constant air
properties, it is possible to solve the continuity and momentum equations for the velocity
and the pressure, without regard for the energy equation or the temperature [17]. In
incompressible flow, viscous dissipation Φ expressed by Equation (5) is not able to generate
enough heat to cause large temperature changes. Nevertheless, it is a vital power-loss term
in the proposed power-based analysis. The simulation of the turbulence viscous flow is
enabled by the Boussinesq hypothesis. Governing equations are coupled with a turbulence
model through the decomposition of viscosity µ given in Equation (6), where turbulent
viscous µtur is determined by the turbulence model.

∇·V = 0 (1)

ρ
DV
Dt

= −∇p + µ∇2V (2)

ρ
Dh
Dt

=
Dp
Dt

+ div(k∇T) + Φ (3)

h = CPT (4)

Φ = µ

[
2
(

∂u
∂x

)2
+ 2
(

∂v
∂y

)2
+

(
∂v
∂x

+
∂u
∂y

)2
]

(5)

µ = µlam + µtur (6)

In fluid mechanics, the mechanical energy equation is different from the energy
equation [18]. The former is obtained by multiplying the momentum equation (vector form)
with velocity (vector form), whereas the latter is about the first law of thermodynamics.
Viscous dissipation bridges the two equations: Mechanical power is transferred into heat
via viscous dissipation, causing the temperature change in the flow field. The diagram in
Figure 1 depicts the relation between the conservations of energy (Navier–Stokes energy
equation) and mechanical energy (mechanical energy/Navier–Stokes momentum equation).
On the other side, power-based analysis uses an integral form of the mechanical energy
equation [8,18]. In principle, power-based analysis should comply with simulations when
conservation laws are satisfied. This paper limits the power-based analysis to study
mechanical power because thermal energy is deemed as less relevant in the discussion of the
conversion of mechanical energy and this simplification enables discussions emphasising
the physical mechanism involved in BLI.

The top drawing of Figure 2 illustrates the simplified flowchart of the CFD simulation
that solves the Navier–Stokes equations by utilizing the Finite Volume Method (FVM). For
the simulation, an entire computational domain is discretized into a large number of finite
control volumes. The FVM computes flow variables of an individual volume such that the
conservation of mass, momentum, and energy are satisfied. Meanwhile, the flux of the
conserved quantities is transferred to the adjacent volumes so that conservation laws can
be satisfied within the entire domain. On the other side, power-based analysis applies the
integral form of the mechanical energy equation, a variant of the momentum equation. As a
result, mechanical energy conservation should be satisfied within the entire computational
domain. This relation between power-based analysis and FVM is schematically shown
in Figure 2. The above discussion implies that power-based analysis complies with the
numerical simulation using FVM, which is available in commercial CFD software.
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Figure 1. The diagram of the conservation of total energy and mechanical energy [19].

Figure 2. The diagram of power-based analysis to process the flow field of the simulation using the
finite volume method [19].

2.2. Computational Domain

Power-based analysis is capable of showing power terms at corresponding Trefftz
Planes (TP), such that the change in power can be tracked and power conversion can be
analyzed. For this purpose, a special computational domain in CFD simulations is required,
as introduced in the following paragraphs.

For a 2D computational domain with the horizontal free stream velocity vector V∞,
a TP is defined as a vertical plane to assess the power of energy deposition rates, such
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as wake kinetic energy flow
.

KEw and pressure work-defect rate Ėp. Series of vertical TPs
are placed along the x-axis to illustrate the change of energy deposition rates. These TPs
separate the entire domain into individual Control Volumes (CV), as shown at the top of
Figure 3. For a certain TP denoted by the TPi, a corresponding subdomain CVi is defined as
the collection of individual domains from the first individual CV to the one just upstream
TPi. This subdomain is used to evaluate the power in the form of volume integral, such as
viscous dissipation rate Φ. Power-based analysis assesses Φ at different x locations and
thus traces the change of this power. It is noted that the unit of mechanical power term is
[W], by using SI units for all flow variables.

2.3. Power Bookkeeping of Laminar Jet

Axial jet and wake are the elementary flows to study the mechanisms of BLI [13]. The
jet is defined as the flow axial velocity larger than V∞, and wake is characterized by the axial
velocity lower than V∞. This part discusses the power conversion of an axial jet. The flow
field is obtained from 2D steady laminar incompressible Navier–Stokes CFD simulations.
Additionally, the simulation results are post processed through power bookkeeping.

In this case, a simple jet is defined by the axial velocity uj of 12 m/s, higher than the
V∞ of 10 m/s, and the pressure at the inlet is ambient pressure p∞. The Reynolds number
based on the jet height is about 1400, indicating that the flow is laminar. The air is set to
have a density ρ of 1.225 kg/m3 and a viscosity µlam of 1.7894 × 10−5 Ns/m2. Specific
heat CP is 1006.43 J/(kgK) and thermal conductivity k is 0.0242 W/(mK). The jet enters a
5wj × 12wj rectangular domain, as shown in Figure 4 (top). This domain is bounded by
a vertical inlet, a vertical outlet, and two horizontal planes (top and bottom planes). The
bottom plane is defined as a symmetric boundary for this symmetrical flow model. The
top plane is also set as a symmetry plane to prevent flow penetration. There are four TPs
inside the domain as interior planes, as shown in Figure 4 (bottom). These TPs separate the
domain into individual volumes that combine into subdomains.

Figure 3. Control volume definition and domain division [19].
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Figure 4. A jet flow (top) and the definition of the computational domain (bottom) [19].

The simulation employs the commercial software FLUENT, using a structural mesh
with 4680 cells. Table 1 presents the mesh sensitive study, showing relative differences
of the total viscous dissipation Φ with regard to the value of the finest mesh which
contains 0.3 million cells. The chosen mesh size keeps simulation results grid independent.
The mesh is refined near the shear layer region, as shown at the bottom of Figure 4. The
simulation uses the second-order upwind for spatial discretization and the SIMPLE scheme
for the pressure-velocity coupling [20,21].

Table 1. Mesh sensitive study for the simulation of jet.

Cell Number Φ (Watt) Relative Difference

4680 0.008521953 0.9%
18,720 0.008533576 0.8%
74,880 0.008569048 0.4%
299,520 0.008603587 0.0%

Power-based analysis assesses mechanical power to process the simulation results
of the flow field. Ėw and Φ are the involved power terms for the elementary flows [13].
Ėw denotes the energy flow rate crossing a trefftz plane, consisting of kinetic energy flow
rate KĖw,i and pressure work rate Ėp,i as in Equation (7). Kinetic energy flow rate can be
further broken down into axial component Ėa and transversal component Ėv, as given in
Equation (8). It is noted that the kinetic energy component is based on the relative velocity
(with regard to V∞), hence KĖw,i is positive for both jet and wake flows. Pressure power
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Ėp is expressed in Equation (9), denoting the pressure work which could be potentially
transferred into kinetic energy. Φ stands for the viscous dissipation in a subdomain CV
(corresponding to the trefftz plane), as given in Equation (10). In the flow field where
velocity gradient exists, the integrant of Φ should be non-zero and positive. Viscous
dissipation includes the laminar and turbulent components, whereas the latter component
can be removed in this case of laminar jet flow. The two mechanical power terms Ėw, and
Φ establish a power balance equation, as in Equation (11). For an arbitrary trefftz plane TPi,
the summation of the two terms should be constant. As a total power, the summed power
for the arbitrary TPi should be equal to the total power Ėw,inlet assessed at the inlet.

.
KEw +

.
Ep =

.
Ew (7)

.
KEw =

.
Ea +

.
Ev =

x

SP

ρu
1
2
(u−V∞)2dS +

x

SP

ρu
1
2

v2dS (8)

.
Ep =

x

SP
(p− p∞)(u−V∞)dS (9)

Φ ∼=
y

CV

µlam

(
∂u
∂y

)2
dV (10)

.
Ew,i + Φi =

.
Ew,inlet = const (11)

Table 2 presents the involved power terms accessed at various x locations of the
computational domain. Ėw,i and Φi are calculated by using Equations (7)–(10). All the
power terms are normalized with the reference value of energy flow rate at the inlet Ėw,inlet.
It is noted that Ėp,i has a value of zero, because of the constant pressure p∞ in the entire
flow field. As a result, Ėw,i is equal to KĖw,i. The summations of Ėw,i and Φi along the x axis
tend to keep constant.

Table 2. Power terms at various locations of TPs in the simulation of a jet.

Plane x/wj Ėw,i/Ėw,inlet Φi/Ėw,inlet (Ėw,i + Φi)/Ėw,inlet (Ėw,i + Φi − Ėw,inlet)/Ėw,inlet

Inlet 0 100.00% 0.00% 100.00% 0.00%
TP1 1 99.05% 0.82% 99.86% −0.14%
TP2 2 98.67% 1.17% 99.83% −0.16%
TP3 4 98.13% 1.67% 99.80% −0.20%
TP3 4 98.13% 1.67% 99.80% −0.20%

outlet 12 96.84% 2.92% 99.73% −0.26%

Power bookkeeping of the jet is illustrated by the change of power in Figure 5. The top
picture shows the contours of the integrand of Φ. The high-intensity region corresponds to
the viscous shear layer. This picture also plots velocity profiles, showing that the profiles
tend to be flattened when the jet flows downstream. The bottom figure visualizes the power
bookkeeping. The x-axis denotes the x location of TPs, and y-axis corresponds to the power
terms tabulated in Table 2. This figure illustrates the power conversion process of the jet:
Dissipation Φ (red dashed line) irreversibly increases along with the x-axis, whereas Ėw,i
(the gap between the two power lines) gradually reduces. The summation of Ėw,i and Φ is
almost constant as total power. At the outlet, 2.92% of the total power is converted into
dissipation Φ.

A tiny reduction of the total power along the x-axis can be noted, showing that
Equation (11) is not explicitly satisfied. This reduction (Ėw,i + Φi − Ėw,inlet)/Ėw,inlet is 0.26%
at the outlet. This imbalance between input and output power might result from the
numerical errors of CFD simulation, such as artificial dissipation and residuals [22,23]. The
power imbalance is considered as an error in power bookkeeping. Considering the small
impact on the analysis, this error is not discussed further.
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Figure 5. Contours of the integrand of viscous dissipation (top) and the power bookkeeping of the
jet (bottom) [19].

3. Mechanisms of Boundary Layer Ingestion in Laminar Flow

This section discusses the power-based analysis in laminar flows. The simplicity of
laminar flows enables discussions focused on the key features of BLI. This section aims to
enhance the understanding of BLI by analyzing the power conversions of three relevant
models, namely an actuator disc and a flat plate, and an integrated vehicle that assembles
the actuator disc and plate in a BLI configuration. The actuator disc corresponds to a
typical isolated propulsor, and the flat plate denotes a simplified airframe in isolation. The
power bookkeeping of the two models establishes foundations for the discussion about the
mechanisms of BLI. This section finally discusses the case of BLI-integrated vehicles, which
integrates the two models.

The CFD simulations of the three models employ a common computational domain,
such that influences of model geometry and mesh are excluded when comparing the
power conversions. The domain is 0.05 m × 0.13 m in dimension and separated by nine
TPs, as shown in Figure 6. The flat plate is aligned with the symmetry plane and the
actuator is placed at the trailing edge (TE) of the plate. With simple modifications of
boundary conditions, this domain can be used in each of the three simulations. These
modifications for each model have been elaborated accordingly in the following paragraphs.
It is noted that this common computational domain has been tested and refined for each
simulation. This common domain includes 38,682 cells, which number keeps the results
grid independent. The mesh sensitive study in Table 3 shows the relative differences of
total viscous dissipation Φ with regard to the result of the finest mesh.

3.1. An Actuator Disc Model in Laminar Flow

This part discusses a simulation of an actuator disc which represents a propulsor
capable of generating thrust by accelerating the airflow. For a classical actuator disc, flow
is considered to be axial and inviscid. This study assumes the flow to be 2D and viscous.
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The simulation utilizes the computation domain shown in Figure 6, where a pressure jump
(line) plane represents the actuator disc and a symmetry plane which replaces the boundary
of a flat plate. The plane of actuator disc is 0.0006 m2 in area A, with a constant pressure
jump ∆P of 200 Pascal. Therefore, this actuator disc model generates a thrust of 0.12 N
(T = ∆p × A). The inflow velocity V∞ is 10 m/s, corresponding to a Reynolds number of
6850 (based on the length of the 2D plate, 0.01 m) and the Mach number of 0.03. According
to the classical actuator disc model, the jet velocity Vjet downstream the disc should be
22.36 m/s. This obtains the value of propulsive efficiency of 61.8%.

Figure 6. A common computational domain for an actuator disc, a flat plate, and an integrated
vehicle model [19].

Table 3. Mesh sensitive study for laminar simulations.

Case Cell Number Φ (Watt) Relative Difference

Actuator disc

11,200 0.1882855 29.6%
38,682 0.262080725 2.0%
154,728 0.266107388 0.5%
618,912 0.26752029 0.0%

Flat plate

11,200 0.10309339 1.5%
38,682 0.10171 0.1%

154,728 0.101594618 0.0%
618,912 0.10157693 0.0%

Integrated vehicle

11,200 0.08831931 0.5%
38,682 0.08800168 0.1%
154,728 0.087902136 0.0%
618,912 0.087894 0.0%

The simulation of the actuator disc applies the same method as elaborated in the
previous cases of the jet, obtaining a flow field around the actuator. In the top plot of
Figure 7, Contours of the pressure coefficient highlight a suction region and a high-pressure
region, corresponding to the suction side and the pressure side of the actuator, respectively.
The streamlines indicate a contraction of the flow. The bottom plot of Figure 7 illustrates
the contours of the total pressure coefficient. The abrupt increase in total pressure with air
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passing through the actuator disc indicates that it energizes the flow. The energized flow
is the jet behind the actuator disc. The shear layer of the jet is indicated by the decrease
in total pressure towards the outer flows around the jet. Once the flow is extended to be
two-dimensional and viscous, the power balance equation for a classical actuator disc is
given as in Equation (12) [13].

PK = TV∞ +
.
Ew + Φ (12)

PK =
{

actuator

(p− p∞) udS =
∫

actuator

∆p udS (13)

Figure 7. Contours of pressure coefficient (top) and the coefficient of total pressure (bottom) around
an actuator disc, including a mirrored flow field [19].

Compared with the power balance equation of a classical actuator disc, a notable
change in Equation (12) is the addition of viscous dissipation of Φ as a power output.
Energy flow rate Ėw in Equation (12) is also extended to include the transverse component
of kinetic energy and pressure work rate Ėp. Furthermore, the input power given by
the actuator disc is modified as mechanical energy addition rate PK [8], expressed as
Equation (13). PK is used in this study because its surface integral relies on the actuator
(line) plane as a well-defined boundary. PK applies surface integral over the inner boundary
of a CV, whereas the kinetic energy production rate

.
KEp introduced in reference [7] uses

surface integral over the external boundary of the CV. The two expressions of input power
can be correlated as PK =

.
KEp + ΦCV .

Power-based analysis is performed for the case of actuator disc. The involved powers
in Equation (12) are evaluated according to their expressions. Figure 8 visualizes the
power bookkeeping of the actuator disc. The top figure shows the integrand of Φ and also
indicates the x locations of the actuator disc and TPs. The plot of power conversions is
shown at the bottom of Figure 8. The input power of PK is calculated with Equation (13),
obtaining a value of 1.836 W (denoted by the height of a shaded bar). All the power terms
in this case are normalized with the reference value of PK. As for two output power terms,
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Φ and Ėw are evaluated and plotted at corresponding x locations. The summation of these
two terms behind the actuator disc is constant (a blue curve denotes Φ + Ėw). The power
output of the thrust power TV∞ is simply the thrust T (0.12 N) multiplied with flight
velocity V∞ (10 m/s), obtaining a value of 1.2 W (denoted by the gap between the blue
curve and the short black curve for Φ + Ėw+ TV∞). It is noted that PK is almost equal
to the value of Φ + Ėw+ TV∞. A tiny inequality (0.6%) between them is attributed to the
error of the CFD simulation. It is noted that propulsive efficiency Ėw/PK of the simulated
actuator disc model is 65.4%, being 5.8% higher than the theoretical values of the classical
model (61.8%).

With power-based analysis, the bottom plot in Figure 8 clearly shows the typical power
conversion of an actuator disc model: 65.4% of the mechanical energy addition PK turns
into TV∞. The rest of PK is transferred into the Ėw of the jet. In the downstream region
behind the actuator disc, Ėw of the jet gradually reduces due to the increase in Φ.

3.2. A Flat Plate Model in Laminar Flow

This part elaborates the simulation of a flat plate which represents a simplified airframe.
The computational domain in Figure 6 is used. The boundary condition of the flat plate
is kept as a wall. Nevertheless, in the current simulation, the boundary condition for
the actuator disc plane in the previous simulation is changed into an interior plane. The
plate is 0.01 m in length L. The speed of incoming airflow V∞ is 10 m/s. The Reynolds
number is approximately 6850 (based on the length of plate L). A 2D laminar simulation is
performed for this flat plate model, with the same model settings as previously discussed
in the simulations of wakes.

The force exerted on the flat plate is the viscous drag D. The power balance equation
for this flat plate is given by Equation (14) [13]. The drag power (DV∞) is an input power to
the flat plate. The output powers are the viscous dissipation Φ and the energy flow rate Ėw.

DV∞ = Φ +
.
Ew (14)

Numerical simulation obtains the flow field which is then post processed through
power-based analysis. The top of Figure 9 shows the intensity of Φ and the x locations of
TPs. The boundary layer of the plate is denoted by the contours between the Leading Edge
(LE) and the Trailing Edge (TE). The wake of the plate is characterized by the contours
downstream of the TE. The change in the various powers is plotted at the bottom of Figure 9.
The viscous drag D obtained from the simulation is 0.0106 N. Thus DV∞ is 0.106 W, which is
represented by the height of the rectangle. DV∞ is also the reference value for normalizing
all the involved power terms. Φ and Ėw are calculated and plotted at the corresponding
x locations. The bottom plot shows that DV∞ is almost equal to the value of (Φ + Ėw)
at the TE. The relative difference between them is about 0.7%, as the numerical error of
the simulation.

The bottom plot illustrates the power bookkeeping of the flat plate. The input power
of DV∞ is converted into Φ and Ėw. The Φ increases rapidly along the x-axis in the
region of the boundary layer (between the LE and TE). About 40% of the input power is
dissipated from the LE to the x location of 30% L. The Φ evaluated at the TE denotes the
boundary layer dissipation ΦBL, making 76.5% of the input power. This also indicates
that the remaining portion is 23.5%, corresponding to the Ėw of the wake behind the flat
plate. This portion of the wake is slightly higher than the value given by Drela (about
21%) [8]. This difference in portion might be attributed to the blockage effect caused by
the rectangular computational domain: The rectangular domain tends to diminish the
accumulation of boundary layer thickness but forces the thickness of wake to increase (a
naturally developed wake flow tends to contract along the stream, whereas the rectangular
shaped domain prevents this contraction). This blockage effect tends to reduce the intensity
of Φ in the boundary layer flow but to increase the intensity of Φ in the wake flow, as a
result, the ratio Ėw/DV∞ increases.
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Figure 8. Contours of the integrand of viscous dissipation (top) and the power bookkeeping of the
actuator disc (bottom) [19].

Figure 9. Contours of the integrand of viscous dissipation (top) and the power bookkeeping of a flat
plate (bottom) [19].

The change of Ėw is highlighted in the power conversion process of the flat plate. Ėw
keeps increasing along the x-axis in the region of the boundary layer (between LE to the
TE), but decreasing in the wake region (behind the TE). This difference is attributed to two
boundary conditions: the non-slip wall condition and the far-field condition. The wall
condition of the flat plate tends to decelerate the boundary layer flow, increasing the Ėw.
On the other hand, the condition of the far-field tends to accelerate wake flow to reach the
velocity of V∞, thereby decreasing the Ėw. Despite the different change along the x-axis, Ėw
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is a product of DV∞ of the flat plate. The special role of Ėw is further investigated in the
subsequent case of an integrated vehicle using BLI.

3.3. An Integrated Vehicle in Laminar Flow

This section presents a simulation study of an integrated vehicle combining a flat
plate with a wake filling actuator disc model in a BLI configuration. This combination of
elementary models is beneficial for analyzing the mechanisms of BLI. The CFD simulation
of the vehicle uses the computational domain shown in Figure 6. An actuator disc is placed
at the TE of the plate, such that the actuator disc model is ingesting the boundary layer.
The boundary condition of the flat plate is kept as a non-slip wall condition.

∆p(y) = ∆pt(y) = pt, const − pt,upstr(y) (15)

An ideal model is introduced for the discussion of BLI mechanisms. The actuator disc
ingests and advances the boundary layer flow in such a way that it perfectly refills the total
pressure defect (Instead of velocity defect, total pressure defect is used because the jump of
total pressure is identical to the static pressure jump of the actuator disc. This is attributed
to the continuity of velocity through the actuator disc) of the boundary layer. This ideal
model is also known as a wake filling actuator [13,24]. It is represented by a pressure jump
plane with a non-uniform distribution of ∆p. During the computation process of simulation,
the value of ∆p is updated through a User Defined Function (UDF). The ∆p is obtained
by subtracting a constant total pressure pt,const with the total pressure pt,upstr probed at an
upstream plane in front of the actuator, as shown in Equation (15). The scheme of the wake
filling actuator disc is illustrated in Figure 10. To maintain a perfect equilibrium (thrust
T equals to drag D) is tricky in this simulation, thus pt,const is defined to be slightly higher
than pt∞ in the UDF. This leads to the thrust T being higher than the drag D (the net force
N defined in Equation (17) is slightly higher than zero).

Figure 10. The scheme of a wake filling actuator model [19].

CFD simulation is performed for the integrated vehicle model with the same simu-
lation conditions as in the previous cases. Simulation results of the flow field around the
wake filling actuator disk are shown in Figure 11. The top picture presents the contours
of (static) pressure coefficient CP. A notable phenomenon is that the flat plate is partially
immersed in the suction region of the actuator model, creating a negative pressure gradient
along the x-axis of the plate. This phenomenon supports the body/propulsor interaction
discussed in reference [13]. Another phenomenon is the elliptical contours of CP, whose
center coincides with the center of the actuator model. This elliptical pattern is due to the



Aerospace 2022, 9, 184 14 of 22

non-uniform distribution of ∆p. The bottom drawing of Figure 11 depicts the contours of
the coefficient of total pressure CPt. The laminar contours of CPt over the flat plate denote
the boundary layer. In the region behind the actuator disc, CPt is nearly uniform with a
value slightly greater than 1. This shows that the wake filling actuator model fills the total
pressure defect of the boundary layer, and energises the flow into the free stream condition.

Figure 11. Contours of pressure coefficient (top) and the coefficient of total pressure (bottom) around
the wake filling actuator disc, including a mirrored flow field [19].

The forces acting on the vehicle can be evaluated. The viscous drag D (0.0125 N) of the
plate is obtained from the simulations. The T (0.0130 N) of the actuator disc is calculated by
using Equation (16). The net force N (0.0005 N) is obtained by subtracting the drag D from
the thrust T, as shown in Equation (17).

T =
{

actuator
∆p(y)dS (16)

N = T − D (17)

The power-based analysis is performed to study the power conversion process. The
power balance equation for the vehicle is given in Equation (18) [13]. The input power
of PK (0.0936 W) is calculated with Equation (13). This value is the reference value for
the normalization of all the involved power terms. The terms of output power are NV∞
(0.005 W), energy flow rate Ėw and viscous dissipation Φ.

PK = NV∞ +
.
Ew + Φ (18)

The top drawing in Figure 12 shows the integrand of Φ of the flow field. The high-
intensity region corresponds to the boundary layer over the plate. Behind this boundary
layer, the low-intensity region is notably different from the wake of the isolated plate. The
bottom plot of Figure 12 illustrates the change of powers. The input power of PK denotes
the height of the shaded bar located at the same x position of the actuator model. The
curves with different colours represent the output powers in Equation (18). This plot shows
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that the input power of PK tends to be equal to (Φ + Ėw + NV∞), with the relative difference
of 1.1% as the numerical error of the simulation. The error becomes larger when compared
with the case of the isolated actuator disc (0.6%) or the flat plate (0.7%). This increase in
numerical error might be caused by the UDF function that updates the value of the pressure
jump in each iteration during computation. This unstable boundary condition defined by
UDF potentially increases the error. The bottom plot depicts the power conversion of the
integrated vehicle: the input power PK primarily becomes the viscous dissipation boundary
layer ΦBL and the remaining part of PK turns into NV∞.

Figure 12. Contours of the integrand of viscous dissipation (top) and the power bookkeeping of the
integrated vehicle (bottom) [19].

The bottom plot in Figure [12] shows a key feature in the power conversion of the
vehicle. The energy flow rate of the boundary layer (wake) Ėw (denoted by the gap between
the red line and the blue line) is a transient power in the power conversion process: it keeps
increasing from the LE until the TE and then abruptly drops to zero at the region behind
the TE. The prompt drop of Ėw is caused by the actuator that reenergises the boundary
layer (wake) flow into the free stream condition. A previous study on mechanisms of
BLI states that the power saving is due to the elimination of the power pertaining to the
wake [8]. This study shows that the input power of the integrated vehicle PK (0.0936 W) is
reduced as compared with the power in the case of flat plate DV∞ (0.1064 W). The power
saving due to BLI is 13.7% (PK as the reference value). On the other hand, the vehicle
almost eliminates the wake power Ėw, whose value is 20.1% of PK. Results indicate a −6.4%
difference between the quantity of power saving and the value of eliminated Ėw. In this
study, the error of power imbalance is 1.1%, too small to be responsible for this difference.
On the other side, NV∞ is a useful output power accelerating the vehicle. The ratio of NV∞
over PK is 3.6%, relatively close to the difference. It is reasonable to consider that NV∞
benefits from the reduction in wake power. In short, this study supports the mechanism
that the elimination of wake power leads to power saving, and it also shows that wake
elimination could cause a benefit of generating net force power.
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A previous theoretical study elaborates the cause of propulsive coefficient ηp (“propul-
sive efficiency” is not a strictly defined efficiency in the case of BLI, this figure of merit
is called “propulsive coefficient” to avoid confusion in this study) exceed unity for a BLI
propulsor [13]. It is noted that the definition of this figure of merit is identical to that of
the propulsive efficiency, whose value is in the range of 0.7~0.8 for a modern turbofan
engine. This simulation obtains the propulsive coefficient ηp value of 1.38, slightly higher
than the value of 1.27 given in the previous theoretical study, which actuator disc ideally
refills the wake of a flat plate. The higher value ηp in this study might be attributed to
another mechanism of BLI ignored in the previous study: the aerodynamic interaction
between body and propulsor. In the BLI configuration, the suction side of the actuator
introduces a negative pressure gradient in the vicinity of TE, as can be seen from the top
plot in Figure 11. This pressure gradient accelerates the boundary layer flow. On the other
hand, the velocity at the bottom of the boundary layer is kept at zero due to the non-slip
wall condition; consequently, the velocity gradient at the wall (skin friction) increases. As
a result, the drag increases as compared with the isolated flat plate. To maintain thrust
drag equilibrium, a higher thrust is required to balance this drag increment in this case,
thereby leading to a higher value of ηp. In general, this aerodynamic interaction increases
viscous drag and changes the viscous dissipation of the boundary layer. This simulation
study provides numerical evidence for the body/propulsor interaction. Results show that
the Cd of the plat in the integrated vehicle (0.020407) is increased by 17.5%, as compared
with the Cd value of the isolated plate (0.017374). As for the change in viscous dissipation
of the boundary layer, the interaction increases ΦBL of the vehicle by 8.6%, compared with
the value in the case of the flat plate in isolation.

4. Power Bookkeeping in Turbulent Flows

This section discusses power-based analysis in turbulent flows. The physical process
involved in turbulent flow poses challenges to numerical simulations, and time averaged
(Reynolds averaged) methods are usually adopted to simplify turbulence issues. This study
employs steady Reynolds Averaged Navier–Stokes (RANS) simulations and a two-equation
k-ω-sst turbulence model to simulate turbulent flows. In this turbulence model, turbulent
viscosity µtur and turbulent dissipation rate e are given by Equation (19); k stands for
the turbulent kinetic energy, whereas ω is the specific dissipation rate of the turbulence
model [25]. Due to the energy conservation involved in the turbulence model, it is possible
to study the power conversion from the mechanical energy of mean flow to the energy of
turbulent flows. The following paragraphs elaborate power bookkeeping of typical models
in turbulent flows. For the interest of mechanisms involved in BLI, two cases of a flat plate
and a BLI-integrated vehicle are studied accordingly.

µtur = ρ
k
ω

, e = kω (19)

4.1. Flat Plate in Turbulent Flow

This part discusses the case of turbulent flow over a 2D flat plate. In the simulation
of this case, the Reynolds number is set to 10 million such that the viscous flow is fully
turbulent. Numerical simulation utilizes the common computational domain in which
boundary conditions are set corresponding to the case of a flat plate. It is noted that the
size of the domain is scaled 100 times. Mesh density is increased in the viscous region with
a total cell number of about 60,000. The mesh sensitive study indicates that simulations are
grid independent in the cases of flat plate and integrated vehicle, as shown in Table 4. The
Y plus value in the boundary layer region is less than 5.
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Table 4. Mesh sensitive study for turbulent simulations.

Case Cell Number Φ (Watt) Relative Difference

Flat plate

6000 2075.95 59.5%
60,696 5307.58 3.5%

223,383 5165.54 0.7%
877,608 5130.42 0.0%

Integrated vehicle

6000 1512.897888 67.7%
60,696 4811.02 2.8%

223,383 4698.036482 0.3%
877,608 4682.1 0.0%

The power balance equation of a flat plate with turbulent flow remains the same as the
in case of laminar flow (Equation (14)). To address turbulence issues, the viscous dissipation
rate Φ in the equation can be further broken down into laminar viscous dissipation rate
Φlam and turbulent viscous dissipation rate Φtur, as in Equation (20). The expression of
Φtur adopts the Boussinesq hypothesis, as a product of e velocity gradient and turbulent
viscosity. Furthermore, this study breaks down Φtur to analyze the power conversion of
turbulent flow based on the energy conservation of a two-equation turbulence model. In the
process of energy transfer in the turbulent flow, the energy of the mean flow is transferred
to the kinetic energy of large eddies. Once the large eddies break into small eddies, the
energy is dissipated within small eddies. The power balance equation of the turbulent
model can be expressed as Equation (21). In this equation, turbulent kinetic energy flow
rate Ḱtur denotes the kinetic energy that pertains to large eddies. The expression of Ḱtur
applies surface integral as given in Equation (22). Turbulent energy dissipation rate Ėtur
refers to the energy dissipated in the small eddies; its expression uses volume integral as
in Equation (23). It is noted that the k and e (epsilon) in Equations (22) and (23) denotes
turbulent kinetic energy and turbulent dissipation rate in the two-equation turbulent model,
respectively. This study utilizes k-ω-sst model to analyze the power conversion of the flat
plate with turbulent boundary layer. A one-equation model (the Spalart–Allmaras model)
is also tested as a reference, and the impacts of two turbulent models on the power-based
analysis are briefly discussed.

Φ = Φlam + Φtur ∼=
y

CV

(
µlam

∂u
∂y
− ρu′v′

)
∂u
∂y

dV =
y

CV

(µlam + µtur)

(
∂u
∂y

)2
dV (20)

Φtur ∼=
.
Ktur +

.
Etur (21)

.
Ktur =

x

SP

ρu kdS (22)

.
Etur =

y

CV

ρ edV (23)

Steady RANS simulation with k-ω-sst model is performed for the case of the flat plate.
The second-order upwind scheme for spatial discretization and the SIMPLE scheme for the
pressure-velocity coupling are employed in this simulation. The results of the simulation
are processed through power-based analysis. The top plot in Figure 13 illustrates the
integrant of Φ (including laminar and turbulent contributions). The high-intensity region
indicates the boundary layer over the plate as well as the downstream wake. It is noted that
low-intensity region of Φ over the flat plate is observed in the laminar boundary layer over
the plate. The low-intensity region is missing in this turbulent case because the intensity
of turbulent dissipation is significantly higher than the laminar one. The bottom part of
Figure 13 illustrates the power bookkeeping of the flat plate in turbulent flow. All the power
terms are normalized by taking DV∞ as a reference value. The input power DV∞ is denoted
by the height of the dashed lined- rectangular in the plot. The output power consists of the
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energy flow rate of wake Ėw, laminar viscous dissipation rate Φlam and turbulent viscous
dissipation rate Φtur. It is noted that the error of power imbalance is 2.3%, which is about
3 times larger than the error (0.7%) in the case of laminar flow. The increase in the error
might be caused by the turbulent model which adds an extra energy transfer process in the
power-based analysis. In this case, the viscous dissipation in the boundary layer ΦBL (Φ at
the TE) takes up 87.1% of the input power. This means the portion of wake power is 10.6%,
lower than that in the case of laminar flow.

Figure 13. Contours of the integrand of viscous dissipation (top) and the power bookkeeping of the
2D flat plate (bottom) in turbulent flow (steady RANS with k-ω-sst model).

In the power bookkeeping of the plate, the bottom plot in Figure 13 shows that laminar
viscous dissipation Φlam (the distance between the red line and the orange line) takes about
26.0% of the total power at the outlet, whereas turbulent viscous dissipation Φtur (orange
line) is about 70.6% of the total power. The high percentage of Φtur might be attributed
to the high Reynolds number (10 million) in the simulation. The bottom plot illustrates
that Φtur keeps increasing along the x axis, whereas the value of Φlam increases from the
LE to the TE, showing that laminar flow only exists in the boundary layer. It is noted that
Φtur can be further broken down. The blue dotted line in the plot represents the error of
power imbalance in turbulence flow (Ḱtur + Ėtur − Φtur), whose value is about 0.5%. This
plot illustrates that turbulent energy dissipation rate Ėtur (the distance between the orange
line and the green line) is the major component of Φtur and its value is about 99.6% of Φtur
at the outlet. On the other hand, there is only a small portion (less than 2.5% of Φtur) of
turbulent kinetic energy flow rate Ḱtur (green line) in the vicinity of TE, and this power is
quickly dissipated in the downstream wake. This indicates that the Ḱtur (corresponds to
large eddies) is quickly exhausted in the turbulent flow.

This work studies the 2D flat plate in laminar and turbulent flow conditions. Table 5
lists the results of different models of the plate, namely RANS with the k-ω-sst model,
RANS with the S-A model, Schlichting’s flat plate with fully turbulent boundary layer [26],
laminar simulation, and Blasius’ laminar solution. This table shows that simulation results
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of drag coefficient Cd are close to theoretical solutions: differences are less than 7% for
turbulent cases (referred to the Schlichting’s solution 0.0031), and less than 6% for laminar
cases (referred to the Blasius’ solution 0.016045). As for the wake power, the percentage
of Ėw in turbulent flow takes about 46.0% of the value in the laminar case. This reduction
of wake power in turbulent flow is attributed to the generation of power in turbulent
flows. Results show that the difference between turbulent models leads to a moderate
change: the one-equation S-A turbulent model causes a 7.2% increase in Cd and a 5.9%
decrease in the percentage of Ėw, as compared with the k-ω-sst model. Nevertheless, the
one-equation model is incapable of breaking down Φtur, therefore, it is left without further
discussion. This study adopts the k-ω-sst model for power-based analysis because the
energy conservation of this model supports breaking down the power in the turbulent
flow. If simulations adopt alternative two-equation turbulent models, for instance, the k-e
models, the power-based analysis remains the same, as elaborated in this study.

Table 5. Results of the 2D flat plate.

Cd (Ew/DV∞)TE

k-ω-sst model simulation 0.002879 10.8%
S-A model simulation 0.003101 10.2%
Schlichting’s solution 0.0031 -
Laminar simulation 0.017374 23.5%

Blasius’ solution 0.016045 -

4.2. An Integrated Vehicle in Turbulent Flow

This part discusses the BLI-integrated vehicle in turbulent flow. Flow conditions in
the simulation of the vehicle are the same as in the previous case in turbulent flow. The
common computational domain is used with its boundary conditions corresponding to the
integrated vehicle. RANS simulation with the k-ω-sst model is performed, and a UDF is
introduced to represent the wake filling actuator disc. Simulation results are post processed
through power-based analysis. It is noted that the power balance equation of BLI-integrated
vehicles in turbulent flows can be expressed by Equation (18), the same as in the case of the
vehicle in laminar flow. In this equation, viscous dissipationΦ could be breakdown into the
components of Φlam and Φtur. Based on the energy conservation of the turbulent model,
Φtur is further decomposed into turbulent kinetic energy flow rate Ḱtur and turbulent energy
dissipation rate Ėtur.

Figure 14 presents the simulation results of the BLI-integrated vehicle. The top plot
depicts the intensity of Φ. As can be seen from this plot, highly intensive dissipation only
occurs in the boundary layer over the plate. The intensity of Φ is significantly reduced in the
downstream region behind the TE, showing that the actuator disc refills the energy defects
of boundary layer flow and eliminates wake dissipation. The bottom plot of Figure 14
presents power bookkeeping of the vehicle. PK is represented by the height of the grey
rectangle, and it is the reference value for the normalization of all the involved power terms.
The imbalance between input power PK and out power (Ėw + Φ + NV∞) is 3.1%, slightly
higher than the error in the case of the flat plate in turbulent flow. Results show that only
1.3% input power is transferred into net force power NV∞, indicating the vehicle is close to
the equilibrium state. The remaining 98.7% of the input power is converted into the viscous
dissipation in the boundary layer ΦBL in which 28.6% is due to Φlam and 67.0% is due to
Φtur. To breakdown the viscous loss due to turbulences, turbulent kinetic energy flow rate
Ḱtur only takes a small percentage (Ḱtur/Φtur), no more than 2.8% of Φtur in the vicinity of
TE, whereas the turbulent energy dissipation rate, Ėtur, mainly contributes to the power
loss of Φtur within the flow field.

Simulation results enable the analysis of power saving due to BLI. the input power of
the BLI vehicle (PK) is 9.3% lower than the power of the flat plate in isolation (DV∞). On the
other side, the elimination of Ėw at the TE is only 5.8% of PK. In this case, power saving is
higher than the reduction of wake power, this indicates alternative sources other than wake
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elimination reduce the power consumption of the vehicle. This result does not support the
mechanism of BLI that the elimination of wake power leads to the power saving of BLI. An
inspection can be made by checking the error of power imbalance (Ėw + Φ + NV∞ − PK).
This error is −3.1%, close to the difference, and the negative value of this error has the
tendency to reduce the input power in the power balance equation. As a result, it is
reasonable to consider that the numerical error is responsible for the difference between
the power saving and the elimination of wake power.

Figure 14. Contours of the integrand of viscous dissipation (top) and the power bookkeeping of the
integrated vehicle in turbulent flow (bottom).

This study assesses the propulsive coefficient of the wake filling actuator to be
1.12. Similar to the case of the vehicle in laminar flow, the negative pressure gradient
in the vicinity of TE can be found in this case. In principle, this indicates the aerody-
namic interaction between body and propulsor. Nevertheless, turbulent flow simulations
show that the increase in ΦBL (0.03%) and the drag coefficient increment Cd (1.2%) are not
significant compared with the 3.1% simulation error.

5. Conclusions

The study presented in this paper introduces a power-based analysis of post process
simulation results. Laminar and turbulent flow simulations are performed to study the
mechanisms of BLI. Power terms are quantified to study the typical power conversion in
the flow field. This study illustrates the processes of typical power conversion in a jet, an
actuator disc, a flat plate, and an integrated system in BLI configuration. These power
conversions provide numerical evidence to study the mechanisms involved in BLI. The
main findings of this work are presented as follows:

• The error of power imbalance between input and output is associated with the numer-
ical error of simulations. It depends on the complexity of the simulation. For instance,
the introduction of UDF and turbulent model tends to increase the error. In this study,
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the smallest error is 0.26% in the case of laminar jet, whereas the largest error is 3.1%
in the case of BLI-integrated vehicles in turbulent flow.

• This study validates the power-based method, illustrating typical processes of power
conversion in the study of BLI. The actuator disc model represents a typical propulsor
which converts input power PK into thrust power TV∞, energy flow rate of jet Ėw at
the outlet plane, and viscous dissipation Φ within the control volume. The simulation
shows that the ratio between TV∞ and input power is 65.4%, as a propulsive efficiency;
2D flat plate represents a body which converts the input power DV∞ into viscous
dissipation in boundary layer ΦBL and energy flow rate of wake Ėw. Results show that
the ratio of Ėw to DV∞ is about 23.5% in laminar flow and 10.8% in turbulent flow;
The integrated vehicle denotes a BLI configuration aircraft that translates input power
PK into net force power NV∞, energy flow rate Ėw at the outlet plane and viscous
dissipation Φ within the control volume. It shows that Ėw keeps increasing along the x
axis in the boundary layer and is promptly eliminated through a wake filling actuator
disc. Ėw as a transient power causes the propulsive coefficient larger than unity. The
propulsive coefficient of the wake filling actuator disc is 1.38 in laminar flow and 1.12
in turbulent flow.

• The mechanism of BLI saving power is due to the elimination of the energy flow rate
of the wake. Laminar flow simulations show that the integrated system could save
power consumption by 13.7% (with regard to the plate in isolate), slightly lower than
the elimination of wake power (20.1%). The difference between power saving and
wake elimination is due to the generation of the net force power NV∞ of the vehicle
(3.6%). Turbulent flow simulations show that the power saving due to BLI is 9.3%.
This value is lower than the saving in the laminar flow because the portion of available
wake power is reduced. Results show that the elimination of wake power (5.8%) is
less than the power saving, the missing part of power saving can be attributed to the
simulation error of power imbalance (3.1%).

• The aerodynamic interaction between body and propulsor is evidenced by the nega-
tive pressure gradient in the vicinity of TE. This interaction accelerates the flow in the
boundary layer, therefore, changing the skin friction of the plate and viscous dissipa-
tion in the boundary layer ΦBL. Laminar flow simulations show that the skin friction
of the plate is increased by 17.5%, ΦBL is increased by 8.6%. Turbulent flow simulations
do not show the significant impact of interaction due to high simulation error.

This paper elaborates on an approach of power bookkeeping as the post processing
of numerical simulation. The power terms which are essential in the discussion about
mechanisms of BLI are evaluated in the flow field. This study shows although BLI increases
airframe drag as a result of body/propulsor interaction, it saves power consumption overall
due to wake elimination. For aircraft design which must integrate the airframe and the
propulsion system, the pursuit of minimum power consumption rather than airframe drag
is the goal for the least fuel consumption of the overall aircraft system.
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