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Abstract: In the civil aviation industry, security risk management has shifted from post-accident
investigations and analyses to pre-accident warnings in an attempt to reduce flight risks by identifying
currently untracked flight events and their trends and effectively preventing risks before they occur.
The use of flight monitoring data for flight anomaly detection is effective in discovering unknown
and potential flight incidents. In this paper, we propose a time-feature attention mechanism and
construct a deep hybrid model for flight anomaly detection. The hybrid model combines a time-
feature attention-based convolutional autoencoder with the HDBSCAN clustering algorithm, where
the autoencoder is constructed and trained to extract flight features while the HDBSCAN works as an
anomaly detector. Quick access record (QAR) flight data containing information of aircraft landing at
Kunming Changshui International and Chengdu Shuangliu International airports are used as the
experimental data, and the results show that (1) the time-feature-based convolutional autoencoder
proposed in this paper can better extract the flight features and further discover the different landing
patterns; (2) in the representation space of the flights, anomalous flight objects are better separated
from normal objects to provide a quality database for subsequent anomaly detection; and (3) the
discovered flight patterns are consistent with those at the airports, resulting in anomalies that could
be interpreted with the corresponding pattern. Moreover, several examples of anomalous flights at
each airport are presented to analyze the characteristics of anomalies.

Keywords: flight anomaly detection; time-feature attention; convolutional autoencoder; HDBSCAN
clustering algorithm; deep hybrid model

1. Introduction

Flight safety is one of the most important topics in civil aviation. In recent years,
safety risk management in civil aviation has shifted from post-accident investigations and
analyses to pre-accident warnings. With the expectation of more departing flights in the
future, civil aviation aims to effectively prevent potential accidents before they occur and
thus to remain at a historically low level of accidents per year. For this, there is a need
to innovatively and proactively identify operationally significant safety events that are
currently untracked and then implement risk mitigation in the form of revising safety
requirements to address the newly identified vulnerabilities. Identifying vulnerabilities
or hazards is a key step in the process of risk reduction, for which machine learning can
provide assistance [1].

Quick access record (QAR) equipment, installed on aircraft, is equipment used to
quickly record various flight parameters during flight. QAR data contain up to 2000 flight
parameters, including all kinds of attitude parameters, dynamic parameters, external
environment parameters, and flight operation parameters. Each flight parameter is recorded
once a second, and some parameters are recorded up to eight times a second. QAR data
provide comprehensive information on the status and details of aircraft during flight and
can be used for flight safety research and analysis. At the end of 2013, the Civil Aviation
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Administration of China (CAAC) officially approved the project of the China Civil Aviation
Flight Quality Monitoring Base Station and assigned the Civil Aviation Institute of Science
and Technology of China (CASTIC) to collect, process and analyze all data recorded by the
QAR equipment of all transport aircraft in China. The station achieved the first aggregation
of industry-wide flight data at the national level and collected QAR data for more than
3000 aircraft from all 51 transport airlines in China by the end of 2017. Approximately
1500 flight data points are automatically gathered by this station every day, forming a
massive and rich QAR flight big dataset, which provides a database and a guarantee
for data-driven model research methods. The utilization of QAR data for flight quality
monitoring in civil aviation is a scientific approach to ensure flight safety and improve
flight efficiency [2].

Identifying flight vulnerabilities could greatly help airline security officers in address-
ing risks and ensuring flight safety. This can be achieved by precisely detecting anomaly
flight records with smart mining techniques and approaches, which helps to mitigate unsafe
flight incidents or even accidents that may result in damages to aircraft, injuries, or losses
of life. The goal of anomaly detection (also known as outlier detection) is to determine all
instances that stand out and are dissimilar to all others in a data-driven fashion [3]. Such
instances are known as anomalies and can be caused by errors in the data, but sometimes
are indicative of a new, previously unknown, or underlying process. Hawkins [4] defines
an outlier as an observation that deviates so significantly from other observations as to
arouse suspicion that it was generated by a different mechanism. Therefore, using QAR
data for flight anomaly detection is appropriate and effective for identifying situations in
which unknown flight risks or security vulnerabilities exist.

In the domain of aerospace, anomaly detection is usually known as exceedance de-
tection, which defines a threshold for specific parameters and detects outliers accordingly.
This scenario is largely reliant on empirical studies or expert knowledge, thus limiting its
generalizability and usage in detecting complicated flight anomaly incidents. In traditional
studies, multiple-kernel-based anomaly detection (MKAD) adopted multiple-kernel learn-
ing (MKL) [5,6] to analyze both discrete and continuous sequences, e.g., one-class Support
Vector Machines [6,7]. However, MKAD is a semi-supervised method with ground-truth
data required, which is very difficult or even unavailable for practical cases. In contrast,
cluster-based anomaly detection (ClusterAD) [8] combines the principal component anal-
ysis (PCA) and density-based spatial clustering of applications with noise (DBSCAN)
techniques to detect flight anomaly. ClusterAD is an unsupervised procedure, and could be
more applicable for flight anomaly detections. As noted in [8], however, ClusterAD, is not
sensitive to anomalous patterns occurring for short durations. Thus, we tried to develop a
new procedure from the ClusterAD for accuracy improvement.

In recent years, deep neural networks have proliferated in the field of machine learning
and have achieved unprecedented results across various application domains. As a subset
of machine learning, deep learning achieves good performance and flexibility by learning
to represent data as a nested hierarchy of concepts within layers of neural networks and
outperforms traditional machine learning as the scale of data increases [9]. Therefore,
deep learning-based anomaly detection algorithms are increasingly used in various fields
and have been proven to be superior to traditional methods [10,11]. Based on the extent
of label availability, deep anomaly detection (DAD) can be divided into three categories:
(1) supervised DAD; (2) semi-supervised DAD; and (3) unsupervised DAD. Since labeled
data are very difficult to obtain in the case of actual tasks, unsupervised DAD algorithms
are more widely adopted for anomaly detection tasks because they do not depend on data
labels. The unsupervised DAD model and its variants have been shown to outperform
traditional methods in many applications [12], such as PCA [13], support vector machine
(SVM) [14], and isolation forest [15].

Unsupervised DAD methods can be mainly categorized into three classes: autoencoder
(AE)-based, variational AE (VAE)-based and generative adversarial network (GAN)-based
methods [16–23].
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An AE [24], which mainly contains an encoder and a decoder, is a feed-forward multi-
layer neural network. It uses an encoder to compress the original data in high-dimensional
space into hidden representations in low-dimensional latent space and a decoder to re-
construct the original data from the hidden representations [24]. An AE is trained by
minimizing the reconstruction error between its input and its output. Under the assump-
tion that there is a higher prevalence of normal instances than abnormal data instances,
AE-based methods use the reconstruction error as an anomaly score. Reddy et al. [16]
applied an AE to raw time series data from multiple flight sensors by using sliding over-
lapping time windows to form input vectors. Zhou et al. [17] implemented an AE with a
regularization term (called the “robust AE”) to eliminate outliers in the case of a lack of
clean training data.

VAEs [25,26], based on traditional AEs, are a type of deep generative model and have
also been extensively used for anomaly detection [18–20]. VAEs model high-dimensional
distributions by casting learning representations as a variational inference [27] problem.
The aim of a VAE is to learn a mechanism that can reveal the probability distribution
of the input and generate new samples from random variables that take values in the
latent space following the distribution. The optimization process takes into account the
quality of autoencoded samples with respect to their reconstruction probability and the
Kullback–Leibler (KL) divergence between the prior distribution and the transformed
posterior distribution through the encoding process [28]. An anomaly will be reconstructed
poorly through the generative process, and its encoding falls outside the distribution.

GANs [29] are another type of generative model that consist of two competing net-
works, a generator and a discriminator. The generator learns to approximate the distribution
of a given dataset, and the discriminator learns to distinguish between real data samples
and the generator’s synthetic output samples [29]. GANs have recently been used for
anomaly detection [21–23,28] and for more advanced variants [30].

Previous studies have achieved good performance and have greatly contributed to
our understanding of unsupervised DAD. However, a well-known drawback of neural
networks is the lack of interpretability [28]. Moreover, for multi-feature time series data,
the inter-time and inter-feature relationships are rarely considered. To avoid these short-
comings in flight anomaly detection, in this paper, we propose a time-feature attention
mechanism to capture the inter-time and inter-feature relationships within QAR time series
data, and develop an unsupervised deep hybrid model for flight anomaly detection, as
shown in Figure 1. Deep hybrid models for anomaly detection use deep neural networks
as feature extractors, and the features learned within the hidden representations of autoen-
coders are input to traditional anomaly detection algorithms [9]. Deep hybrid model in this
study combines a time-feature attention-based convolutional AE (TFA-CAE) neural net-
work model with a hierarchical density-based spatial clustering of applications with noise
(HDBSCAN) [31] algorithm, where TFA-CAE is built and trained for the extraction of flight
features while HDBSCAN employs the extracted flight features to detect anomalous flights.
With the size of latent space is set 2, anomalous flights detected with the unsupervised
deep hybrid model are more intuitively interpreted and comprehensible.

The remainder of this paper is organized as follows. Section 2 presents the method-
ology used in our research, and the results of the case study experiment are presented in
Section 3. Section 4 contains a summary and conclusion of the paper and an outline of
further research.
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however, their effects are ultimately reflected in the change in aircraft attitude and kine-
matic parameters, including the attitude angle, speed, and acceleration in the three longi-
tudinal, vertical and lateral dimensions [33]. Figure 2 shows a kinematic analysis of a 
flight. In our research, the above two kinds of flight parameters are selected for the extrac-
tion of flight features. Table 1 shows the details of the specific parameters. 
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Figure 1. Overview of the proposed deep hybrid model for flight anomaly detection.

2. Method
2.1. Data Preprocessing

Generally, aircraft in flight are affected by many factors, such as the external atmo-
spheric environment (wind direction, wind speed, temperature, etc.), the aircraft itself
(the position of all control surfaces, engine status, etc.), the pilot’s basic capabilities and
skills (cognitive reliability, flight operations skills, etc.), and the pilot’s mental state (fa-
tigue, emotional status, etc.) [32]. During flight, these factors are in constant flux and
have a continuous and complex impact on the aircraft. Regardless of how these factors
change, however, their effects are ultimately reflected in the change in aircraft attitude and
kinematic parameters, including the attitude angle, speed, and acceleration in the three
longitudinal, vertical and lateral dimensions [33]. Figure 2 shows a kinematic analysis
of a flight. In our research, the above two kinds of flight parameters are selected for the
extraction of flight features. Table 1 shows the details of the specific parameters.
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Table 1. The details of the selected flight parameters.

Name Parameter Name in QAR Units

Angle of attack AOA deg
Angle of pitch PITCH deg
Angle of roll ROLL deg

Angle of flight path FPA deg
Rate of pitch change PITCH_RATE deg/s

Indicated air speed of calibration IASC knot/s
Ground Speed of calibration GSC knot/s

Instantaneous vertical velocity IVV g
Lateral acceleration G-Force LATG g

Longitudinal acceleration G-force LONG g
Vertical acceleration G-force VRTG g
Radar altitude of calibration RALTC ft

In this article, we focus on the landing phase of a flight. Compared to the entire profile
of a normal flight, this phase of a flight is relatively short but has a high percentage of flight
accidents. A review of accident statistics indicates that over 45% of all general aviation
accidents occur during the approach and landing phases of a flight [34]. Thus, a fixed
duration of 90 s before flight touchdown was chosen as the study flight phase for this paper,
as shown in Figure 3. For each flight, every flight parameter in Table 1 is sampled at a
fixed interval.
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2.2. Time-Feature Attention Module

Previous literature [35–42] has extensively shown the significance of attention. Atten-
tion not only tells where to focus but also improves the representation of interests [42]. As
during a certain period, the deviations of anomalous flights occur to one or more features,
our goal is to know when (the time of deviation occurs) and which (the features with devia-
tion) to focus on and improve the corresponding values by using an attention mechanism.
Thus, we propose a new network module, named the “Time-Feature Attention Module
(TFAM)”. To emphasize meaningful features along the time and feature axes, a time module
and a feature module are sequentially applied (as shown in Figure 4) so that TFAM can
learn “when” and “which” to attend to on the time and feature axes, respectively. As the
output of the TFAM module, anomalous flights will be differentiated from the common
flights; meanwhile, flights within the same common flight pattern will be more tightly
aggregated and apparently separated from the ones within other common patterns.
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Given a QAR sequence S ∈ RF×T as input, where F means the size of feature di-
mension and T denotes the size of time dimension, the time attention module first infers
a 1D time attention map At ∈ R1×T and produces the time-refined output S′ ∈ RF×T .
Afterward, the feature attention module takes S′ ∈ RF×T as input to infer a 1D feature at-
tention map Af ∈ RF×1 and generates the final refined output S′′ ∈ RF×T . The computation
process of overall attention can be summarized as follows:

S′ = At(S) � S
S′′ = Af

(
S′
)
� S′

(1)

where � denotes the Hadamard product operation. In performing the multiplication oper-
ation, the time attention values are propagated (copied) along the dimension of the feature
parameters, and the feature attention values are propagated along the time dimension.
Figures 5 and 6 depict the computation processes of the time attention and feature attention
modules, respectively.
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Time Attention Module. The role of the time attention mechanism is to give more
attention to the key flight time. A time attention map is produced by exploiting the inter-
time relationship of QAR time series data, and each time of a sample works as a time
detector, as shown in Figure 5. To efficiently compute the time attention, we squeeze the
feature dimension of the input QAR time series. Given a QAR time series S ∈ RF×T

as input, the feature information of S ∈ RF×T is first aggregated by using a single-
layer perception (SLP) along the time axis to generate a context descriptor of the feature
parameters Ct. To produce the time attention map At(S) ∈ R1×T , a sigmoid function is
applied to the context descriptor Ct. Finally, we multiply time attention At(S) ∈ R1×T and
S ∈ RF×T by the Hadamard product to obtain the time-refined S′ ∈ RF×T . The time
attention At(S) ∈ R1×T and time-refined S′ ∈ RF×T are computed as

At(S) = σ(Wt × S) (2)

S′ = At(S) � S (3)

where σ denotes the sigmoid function, and � denotes the Hadamard product operation.
Wt ∈ R1×F.

Feature Attention Module. Different from time attention, feature attention pays
more attention to key features and is complementary to time attention. We produce
a feature attention map by probing the inter-feature relationship of a QAR time series.
The computation of feature attention is very close to the computation process of time
attention except that we squeeze the time dimension of the time-refined sequence, as
shown in Figure 6. First, a single layer perception (SLP) is used to aggregate the temporal
information of the time-refined S′ ∈ RF×T along the feature axis to generate a temporal
context descriptor Cf. A feature attention map Af

(
S′
)
∈ RF×1 is produced after Cf is

forwarded to a sigmoid function. To obtain the final refined output S′′ ∈ RF×T , we multiply
Af

(
S′
)
∈ RF×1 and S′ ∈ RF×T by the Hadamard product. In short, the feature attention

Af
(
S′
)
∈ RF×1 and S′′ ∈ RF×T are computed as

Af
(
S′
)
= σ(Wf × S′

T
) (4)

S′′ = Af
(
S′
)
� S′ (5)

where σ denotes the sigmoid function, and � denotes the Hadamard product operation.
Wf ∈ R1×T , and S′

T
is the matrix transpose of S′.

2.3. Time-Feature Attention-Based Convolutional Autoencoder (TFA-CAE)

An AE network is a powerful nonlinear model structure for data reduction and feature
extraction. For feature extraction, the AE is built and trained with the goal of representing
meaningful attributes of the original data input with the latent space representation as
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much as possible. Once training is completed, the encoder part can be used as a powerful
automatic feature extractor. The architecture of the AE network model, such as convo-
lutional neural network AEs (CNN-AEs) and recurrent neural network AEs (RNN-AEs),
is flexible and diverse, and its choice is dependent on the nature of the data. Previously,
RNN-based models were considered and preferred for sequential data. However, recent
studies have shown that CNN-based models perform better than general RNN-based
models [43]. The main advantage of CNNs is their ability to extract complicated hidden
features from high-dimensional data with complex structures [44], and they can also be
adopted to extract features from sequential data.

In this paper, we construct a TFA-CAE network model for feature extraction of flight
data. Figure 7 shows the structure and parameters of TFA-CAE, in which the TFAM is
placed in front of the AE. An original QAR time series is first passed through the time-
feature module to generate a refined time series. Within the encoder, multi-convolutional
and max-pooled layers are stacked on the refined time series to extract hierarchical features,
and all units in the last convolutional layer are then flattened to form a vector followed
by two fully connected layers, which are called embedded layers. As the second fully
connected layer has two units, the input QAR time series is thus transformed into a two-
dimensional feature space (latent space). Designed as a symmetrical form, the decoder then
reconstructs the original QAR sequence using the features in the latent space.
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In the training of TFA-CAE, indexes of each max-pooling layer within the encoder
are fed into the symmetrical unmax-pooling layers of the decoder. The error between
the original QAR input and the reconstructed output is backpropagated to optimize the
parameters of the model. Because our model is trained under the assumption that a small
amount of anomalous data exists in the dataset, we use the Huber loss function [45], which
is less sensitive to anomalies, to reduce the distortion of the model by anomalous flights.

2.4. HDBSCAN

Clustering is considered to play a significant role in unsupervised learning and deals
with the data structure partition in unknown areas. In data science, clustering is used
to find patterns or groupings in large datasets and is a general technique with broad
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applicability across scientific domains. For anomaly detection, objects deviating from
patterns or far away from groupings are considered anomalies. As a classic density-based
algorithm, density-based spatial clustering of applications with noise (DBSCAN) [46]
defines the density at which the number of objects within a neighborhood of a certain
radius must reach the specified size (minPts). The size of the radius is specified by the
distance threshold parameter ε (epsilon). All objects within the connected subsets that
fulfill this density threshold are regarded as clusters, while the others are discarded as
outliers. This method can detect clusters of different shapes and does not need to specify the
number of clusters in advance. However, the major weakness of DBSCAN is that its epsilon
parameter serves as a globe density threshold and, therefore, it cannot discover clusters of
variable densities [47]. To overcome this problem, many variations of DBSCAN, such as
HDBSCAN [31], OPTICS [48], AUTO-HDS [49], and DECODE [50], have been proposed.
HDBSCAN has been shown to outperform both AUTO-HDS and the combination of
OPTICS with Sander et al.’s [51] cluster extraction method [52]. The main implementation
steps of HDBSCAN are shown as follows [53]:

(1) Transform the space. In the HDBSCAN algorithm, a new distance metric between points
called the mutual reachability distance is first defined to spread apart points with
low densities:

dmreach−k
(
xp, xq

)
= max

{
corek

(
xp

)
, corek

(
xq
)
, d
(
xp, xq

)}
(6)

where dmreach−k
(
xp, xq

)
is the mutual reachability distance; corek

(
xp

)
and corek

(
xq
)

are the core distances defined for parameter k for points xp and xq, respectively; and
d
(

xp, xq
)

is the original metric distance between xp and xq. With this metric, points
with high density maintain the same distance from each other, while the sparse points
are separated from other points by at least their core distance.

(2) Build the minimum spanning tree. The dataset is then represented by a mutual reachabil-
ity graph with the data points as vertices and a weighted edge between any two points
with weights equal to the mutual reachability distances of those points. A minimum
spanning tree of the graph, in which all the weights of all edges are the smallest, is
constructed so that removing any edges of the tree will split the graph. The minimum
spanning tree can be built quickly and efficiently with Prim’s algorithm [54].

(3) Build the cluster hierarchy. Given the above minimum spanning tree, the next step is to
convert it into a hierarchy of connected components. This is most easily done in the
reverse order: sort the edges of the tree by the distances in increasing order and then
iterate through them, creating a new merged cluster for each edge. The key here is to
identify the two clusters for each edge to join together, which is easily achieved with
a union-find data structure [55].

(4) Condense the cluster tree. This step condenses down the large and complicated cluster
hierarchy into a smaller tree with slightly more data attached to each node. As the
most important parameter of HDBSCAN, min_cluster_size is needed to make this
concrete. Starting from the root, when each cluster is split, the samples of subclusters
with sizes less than min_cluster_size are detected and marked as “outliers”. If all the
subclusters contain fewer than min_cluster_size objects, the cluster is considered to
have disappeared at this density level. After walking through the whole hierarchy
and completing this process, a tree with a small number of nodes, the condensed
cluster tree, is obtained.

(5) Extract the clusters. HDBSCAN uses λ/distance to measure the persistence of clusters
and introduces the stability indicator. For each cluster, the stability is computed as:

scluster = ∑p∈cluster

(
λp − λbirth

)
(7)

λbirth : the lambda value when the cluster is formed;
λdeath : the lambda value when the cluster is split into two subclusters;
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λp : the lambda value when point p falls out of the cluster.

where λbirth < λp < λdeath and scluster is the stability of the cluster. As a solution to
cluster extraction, HDBSCAN’s selection algorithm traverses the condensed cluster
tree from bottom to top and selects the cluster with the highest stability on each path.

The HDBSCAN class has a large number of parameters that can be set during initial-
ization, but in practice, few parameters have a significant practical impact on clustering.
min_cluster_size (the minimum size of clusters) and min_samples (the number of samples in
a neighborhood for a point to be considered a core point) are the two main parameters that
affect the anomaly detection results. Increasing min_cluster_size will reduce the number of
clusters. The larger min_samples is, the more points there are that are considered outliers,
and clusters will be restricted to denser areas.

3. Experimental Result
3.1. Experimental Data

Flight landing data from Kunming Changshui International Airport (ICAO: ZPPP,
hereafter) and Chengdu Shuangliu International Airport (ICAO: ZUUU, hereafter) in 2018
are taken as our experimental data in this paper. The dataset contains 14,195 flights, and the
data are extracted as described in Section 2.2 and standardized by min-max normalization
after the absolute operation for negative parameters. We split the dataset into a training set
and a validation set. The training dataset is used to train the model, while the validation
dataset is used to determine when to stop the training of the model. The details of the two
datasets are shown in Table 2.

Table 2. The details of the two datasets.

Name of Dataset Size of Dataset

Training set 9936
Validation set 4259

3.2. Model Training

In the experiment of this article, a GRU-based AE (GRU-AE) and a self-attention-
based [52] convolutional AE (SA-CAE) are also constructed for comparison with the TFA-
CAE. All the models are built and trained using the PyTorch deep learning framework
version 1.10. In the network training, early stopping is simultaneously adopted with the
patience set to 15, which means model training stops when the loss error of the validation
set no longer decreases after 15 epochs. In addition, the “Adam” optimizer is also used
to build both models. Table 3 shows the comparison of the average loss values of the
models. Because the decoder reconstructs the original QAR time series with the latent
space representation mapped by the encoder, a smaller loss error between the original QAR
input and the reconstructed outputs indicates a better feature representation of the input.
Therefore, TFA-CAE is able to extract more representative features of the flight due to its
smaller average loss error, as demonstrated in Table 3.

Table 3. Comparison of the loss values of TFA-CAE, SA-CAE and GRU-AE.

Models Loss Errors

TFA-CAE 0.0009
SA-CAE 0.0013
GRU-AE 0.0016

3.3. Visualization of the Extracted Flight Features

As the size of the latent representation is set to two, we are able to visualize the data of
the extracted flight features. Figure 8 shows the visualization results of the flight features
extracted by each model separately, as well as the PCA. By comparison, the flight features
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extracted by TFA-CAE are divided into two clusters (shown in Figure 8a), while the others
show an irregular pattern of distribution (shown in Figure 8c,e,g). Flight feature objects
extracted by TFA-CAE in the same cluster are more tightly aggregated together, while the
two clusters are more clearly separated. Considering the fact that an aircraft landing at
different airports follows the specific landing procedure for each airport, these two clusters
are supposed to indicate the two kinds of landing patterns of the ZPPP and ZUUU airports.
To verify the two landing patterns, we further divide the extracted flight features by these
two airports separately. The division results of the flight features extracted by each model
are separately shown in Figure 8b,d,f,h. In Figure 8b, the two clusters of flight features
extracted by the TFA-CAE are consistent with the division according to the airports. For the
other division results, the features of these two categories show an intertwined distribution.
Based on the above, we summarize that the TFA-CAE model is able to more accurately
extract features of flight and further discover different flight patterns, which provides a
better feature basis for anomaly detection and analyses of anomalous characteristics.

Aerospace 2022, 9, 329 11 of 20 
 

 

the others show an irregular pattern of distribution (shown in Figure 8c,e,g). Flight feature 
objects extracted by TFA-CAE in the same cluster are more tightly aggregated together, 
while the two clusters are more clearly separated. Considering the fact that an aircraft 
landing at different airports follows the specific landing procedure for each airport, these 
two clusters are supposed to indicate the two kinds of landing patterns of the ZPPP and 
ZUUU airports. To verify the two landing patterns, we further divide the extracted flight 
features by these two airports separately. The division results of the flight features ex-
tracted by each model are separately shown in Figure 8b,d,f,h. In Figure 8b, the two clus-
ters of flight features extracted by the TFA-CAE are consistent with the division according 
to the airports. For the other division results, the features of these two categories show an 
intertwined distribution. Based on the above, we summarize that the TFA-CAE model is 
able to more accurately extract features of flight and further discover different flight pat-
terns, which provides a better feature basis for anomaly detection and analyses of anom-
alous characteristics. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Cont.



Aerospace 2022, 9, 329 12 of 19
Aerospace 2022, 9, 329 12 of 20 
 

 

  
(e) (f) 

  
(g) (h) 

Figure 8. The scatter plots of the extracted flight features. As illustrated, (a) shows the plot of flight 
features extracted by the TFA-CAE model while (c,e,g) are the flight features extracted by the SA-
CAE, GRU-AE, and PCA separately; (b,d,f,h) show the extracted flight features divided by the two 
airports. 

3.4. Result of HDBSCAN Clustering 
Flight features extracted by TFA-CAE are fed into the HBSCAN cluster algorithm for 

flight anomaly detection. From Section 2.4, we know that the input parameters of HDB-
SCAN are min_cluster_size and min_samples. Therefore, the two parameters are used to 
determine the results of clustering and need to be specified artificially. To ensure the ob-
jectivity of clustering by minimizing manual intervention, we introduce a quantitative 
measure called the density-based clustering validation (DBCV) index [56] to evaluate and 
then determine the final clustering result. The index assesses the clustering quality based 
on the relative density connection between pairs of objects and is formulated on the basis 
of a new kernel density function, which is used to compute the density of objects and to 
evaluate the within- and between-cluster density connectedness of the clustering results 
[57]. Unlike other metrics, such as the silhouette coefficient (SC) [58] and the Davies–
Bouldin index (DBI) [59], DBCV takes noise into account and captures the shape property 
of clusters via densities but not distances and works for density-based clustering 

Figure 8. The scatter plots of the extracted flight features. As illustrated, (a) shows the plot of flight
features extracted by the TFA-CAE model while (c,e,g) are the flight features extracted by the SA-CAE,
GRU-AE, and PCA separately; (b,d,f,h) show the extracted flight features divided by the two airports.

3.4. Result of HDBSCAN Clustering

Flight features extracted by TFA-CAE are fed into the HBSCAN cluster algorithm
for flight anomaly detection. From Section 2.4, we know that the input parameters of
HDBSCAN are min_cluster_size and min_samples. Therefore, the two parameters are used
to determine the results of clustering and need to be specified artificially. To ensure the
objectivity of clustering by minimizing manual intervention, we introduce a quantitative
measure called the density-based clustering validation (DBCV) index [56] to evaluate and
then determine the final clustering result. The index assesses the clustering quality based on
the relative density connection between pairs of objects and is formulated on the basis of a
new kernel density function, which is used to compute the density of objects and to evaluate
the within- and between-cluster density connectedness of the clustering results [57]. Unlike
other metrics, such as the silhouette coefficient (SC) [58] and the Davies–Bouldin index
(DBI) [59], DBCV takes noise into account and captures the shape property of clusters via
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densities but not distances and works for density-based clustering algorithms precisely. As
explained in their paper, DBCV produces a score between −1 and 1, with the larger the
value indicating a better clustering solution.

The optimization goal of HDBSCAN is to find the optimal min_cluster_size and
min_samples values that yield the maximum DBCV score. Figure 9 illustrates the process of
selecting these two parameters. To avoid a loss of generality, we first fixed min_samples to the
default setting and iterated min_cluster_size from 2 to 200 while calculating the number of
clusters, as shown in Figure 9a. The number of clusters remained at 2 when min_cluster_size
was 26 or greater. Then, we fixed min_cluster_size = 26 and iterated min_samples from 2
to 500 to obtain the maximum DBCV score, as shown in Figure 9b. Finally, we chose
min_cluster_size = 26 and min_samples = 499 for our case study.
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Figure 9. The optimization process and results for parameters of HDBSCAN. As illustrated (a) is the
optimization result of min_cluster_size while (b) shows the optimization result of min_samples.

The result of HDBSCAN clustering of flight features is shown in Figure 10a, in which
the red points indicate outliers, while the blue and green points represent two clusters, C1
and C2, respectively. In the case study, a total of 825 outliers were detected. Furthermore,
we matched the clustering result of the extracted flight features with the two airports, as
shown in Figure 10b. In detail, C1 is a cluster of flights that represents the common landing
pattern of the ZPPP airport, while C2 represents the landing pattern of the ZUUU airport. A
total of 553 anomalous flights (red points) landed at the ZPPP airport, and 272 anomalous
flights (purple points) landed at the ZUUU airport. O1 and O2 are two aggregations of
anomalous flights that deviate far from the landing pattern of the ZPPP airport; in each
cluster, the flights have similar anomalous characteristics. The point P1 represents a flight
with the farthest deviation from the common pattern of the ZPPP airport. One drawback
is that six flights (orange points) at the ZUUU airport are clustered into the pattern of the
ZPPP airport.
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3.5. Anomalous Flights Detected during the Landing Phase

In this section, the characteristics of anomalous flights with operational significance
for each airport are further analyzed in detail. As mentioned above, an aircraft landing at a
certain airport will follow the specific landing procedure for that airport, and an anomalous
flight landing at a given airport may be normal according to the flight procedure of another
airport. Therefore, the assessment and analysis of anomalous flights should be performed
in the airport where a flight lands. For this, all the flights are first divided according to the
two airports, and the example anomalous flights of each airport are separately presented
in detail.

For each example, the most distinctive flight parameters are presented in graphs with
the same format, where the red lines denote anomalous flight patterns, and the light green
band depicts the common flight landing pattern of each airport (the normal part in the
clustering result).

3.5.1. Examples of Anomalous Flights That Landed at the ZPPP Airport

In this section, flights within the O1 and O2 collections that landed at the ZPPP airport
are taken as examples to explain in detail the characteristics of the anomalous flights and
the flight marked with point P1. For the O1 collection, in which all the flights have the same
unusual behavior, a flight is plotted as a representative to show the details of the collection
anomaly, as shown in Figure 11a. To be specific, O1 is a collection of anomalous flights with
flight altitude error records. The calibrated radar altitudes of all the flights were recorded
as 0 throughout the landing phase.

Figure 11b shows the anomalous flight marked with point P1, which is the furthest
deviation from the landing pattern at the ZPPP airport. During the entire landing phase of
the flight, the lateral acceleration G-Force was much lower than the common pattern, with
values below −0.5.

The two flights within anomaly collection O2 have extremely similar anomalous
behavior as presented in Figure 12. They had been landing with a lower power; more
specifically, the longitudinal acceleration G-forces of the two flights were much lower than
the common pattern with values below −0.4 during the entire landing phase.
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Figure 12. The two anomalous flights within the O2 collection. As illustrated, (a,b) show the lower
power use of the two anomalous flights.

3.5.2. Examples of Anomalous Flights That Landed at the ZUUU Airport

Two examples of anomalous flights that landed at the ZUUU airport are separately
displayed in Figures 13 and 14. Figure 13 shows a flight landing with a higher elevation
and a larger longitudinal acceleration. The pitch was always much larger than the common
elevation angle, although it returned to normal between approximately 8 and 5 s before
touchdown. From approximately 80 s before touchdown, the longitudinal acceleration
was greater than the common pattern until approximately 10 s before touchdown; it
briefly returned to the common range from approximately 10 s to approximately 5 s before
touchdown but then increased above the normal pattern until touchdown.



Aerospace 2022, 9, 329 16 of 19
Aerospace 2022, 9, 329 16 of 20 
 

 

  

 

Figure 13. An example from the collection of anomalous flights that landed at the ZPPP airport. 

As opposed to the flight mentioned above, a flight landing with a fluctuating attitude 
and dynamics that are lower than the common pattern is shown in Figure 14. To be spe-
cific, the AOA, PITCH, LONG, and PITCH_RATE fluctuated throughout the landing 
phase, with PITCH_RATE being the most pronounced. Separately, the angle of attack was 
lower than the common pattern from approximately 75 s to approximately 45 s before 
touchdown and fluctuated back and forth at the lower limit of the normal range during 
the subsequent landing. As the result of the larger change rate, the flight pitched up and 
down with a larger range in the two time periods of 85 to 65 s and 45 s to touchdown. 
Moreover, the flight landed with the head of the aircraft below the horizontal line from 70 
to 45 s before touchdown because its angle of pitch was less than 0. In addition, the longi-
tudinal acceleration was always smaller than the common pattern from approximately 62 
s to approximately 42 s before touchdown. 

  

  

Figure 13. An example from the collection of anomalous flights that landed at the ZPPP airport.

1 

 

  

  

 

Figure 14. An example of an anomalous flight that landed at the ZUUU 

airport. 

 

Figure 14. An example of an anomalous flight that landed at the ZUUU airport.

As opposed to the flight mentioned above, a flight landing with a fluctuating attitude
and dynamics that are lower than the common pattern is shown in Figure 14. To be specific,
the AOA, PITCH, LONG, and PITCH_RATE fluctuated throughout the landing phase, with
PITCH_RATE being the most pronounced. Separately, the angle of attack was lower than
the common pattern from approximately 75 s to approximately 45 s before touchdown and
fluctuated back and forth at the lower limit of the normal range during the subsequent
landing. As the result of the larger change rate, the flight pitched up and down with
a larger range in the two time periods of 85 to 65 s and 45 s to touchdown. Moreover,
the flight landed with the head of the aircraft below the horizontal line from 70 to 45 s
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before touchdown because its angle of pitch was less than 0. In addition, the longitudinal
acceleration was always smaller than the common pattern from approximately 62 s to
approximately 42 s before touchdown.

4. Conclusions

In the field of civil aviation, safety management has shifted from post-event investiga-
tion and analysis toward advanced warning with the aim of effectively preventing potential
accidents before they occur. For this, civil aviation strives to innovate and proactively
identify operationally significant safety events that are untracked and then implement
risk mitigation in the form of revising safety requirements to address the newly identified
vulnerability. To improve and automate the identification of unknown vulnerabilities in
flight operations, we proposed a time-feature attention mechanism that focuses on the
key parameters and times and constructed a hybrid model for identifying operationally
significant anomalies. The hybrid model combines TFA-CAE, which extracts flight features,
and an HDBSCAN clustering algorithm to automatically detect anomalies based on the
extracted features. The time-feature attention mechanism is demonstrated to improve
the performance of flight feature extraction by comparing the TFA-CAE with SA-CAE
(self-attention-based CAE), GRU-AE and PCA. In the subsequent detection and analysis
of anomalies, flight patterns that are consistent with those at each airport are discovered,
resulting in the anomalies being interpreted according to the corresponding pattern. More-
over, the hybrid model can also discover the aggregation of anomalous flights with similar
unusual behaviors.

Future work: In this study, the flight patterns at the airport level and the corresponding
anomalous flights were well discovered and detected, respectively; the next steps will
potentially focus on developing an architecture to further discover the flight patterns
at the runway level and detect the corresponding anomalous flights for airports with
multiple runways. In addition, the automatic capture and classification of the same anomaly
characteristics is another area of research that can enable better-targeted risk prevention.
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