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Abstract: The development of health monitoring technology for liquid rocket engines (LREs) can
effectively improve the safety and reliability of launch vehicles, which has important theoretical
and engineering significance. Therefore, we propose a fault detection and diagnosis (FDD) method
for a large LOX/kerosene rocket engine based on long short-term memory (LSTM) and generative
adversarial networks (GANs). Specifically, we first modeled a large LOX/kerosene rocket engine
using MATLAB/Simulink and simulated the engine’s normal and fault operation states involving
various startup and steady-state stages utilizing fault injection. Second, we created an LSTM-GAN
model trained with normal operating data using LSTM as the generator and a multilayer perceptron
(MLP) as the discriminator. Third, the test data were input into the discriminator to obtain the
discrimination results and realize fault detection. Finally, the test data were input into the generator
to obtain the predicted samples and calculate the absolute error between the predicted and the real
value of each parameter. Then the fault diagnosis index, standardized absolute error (SAE), was
constructed. SAE was analyzed to realize fault diagnosis. The simulated results highlight that the
proposed method effectively detects faults in the startup and steady-state processes, and diagnoses
the faults in the steady-state process without missing an alarm or being affected by false alarms.
Compared with the conventional redline cut-off system (RCS), adaptive threshold algorithm (ATA),
and support vector machine (SVM), the fault detection process of LSTM-GAN is more concise and
more timely.

Keywords: liquid rocket engine; LSTM; GAN; fault detection; fault diagnosis; SAE

1. Introduction

The reliability of a liquid rocket engine (LRE), as the central power unit of a launch
vehicle, is critical to the success of a space mission. However, complex LRE systems and
extreme working environments increase the LRE’s failure probability, which develops
rapidly and has strong destructive power, often leading to severe consequences, including
the loss of the vehicle [1]. Nevertheless, health monitoring technology, whose core and
foundation are fault detection and diagnosis (FDD), can improve the LRE’s safety and
reliability [2].

Since the 1970s, the United States has employed the red-line system [3], under the guid-
ance of the SSME [4], space launch [5], and integrated space launch [6] programs, to reduce
the impact of space shuttle main engine (SSME) failure and improve its reliability and safety.
The red-line system comprises various systems such as the System for Anomaly and Failure
Detection (SAFD) [7], Health Monitoring System (HMS) [3], Intelligent Control System
(ICS) [8], Health Management System for Rocket Engines (HMSRE) [9], Integrated Vehicle
Health Management System (IVHMS) [10], and the Advanced Health Management System
(AHMS) [11,12]. Furthermore, it involves the engine data interpretation system [13], auto-
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mated propulsion data screening demonstration system [14], and the post-test diagnostic
expert systems [15] for liquid rocket engine test run/post-flight data analysis.

Additionally, researchers have applied a series of FDD algorithms based on signal
processing to LRE data. For example, ref. [16] improved the adaptive threshold algorithm
and developed a real-time fault detection and alarm system for engine ground tests based
on lab windows/cvi. In [17], the authors proposed an adaptive Gaussian threshold model
for online detection of turbopump vibration signals utilizing time-domain characteristics
(root mean square, kurtosis factor, and peak factor) of LRE turbopump normal data that
conform to a Gaussian distribution. The work of [18] developed an FDD algorithm based
on a nonlinear Kalman filter for the transient process of an open cycle LRE.

In recent years, deep learning and other machine learning methods have developed
rapidly and have been widely used in the FDD field. For instance, ref. [19] applied a
quantum genetic algorithm (QGA) for the parameter training and optimization of back
propagation (BP) neural networks and proposed a fault detection method for an LRE based
on QGA-BP. In [20], the authors proposed a tool wear process condition monitoring method
for aerospace manufacturing based on a convolutional neural network (CNN) to identify
intermediate abnormal states in multi-stage processes. This method’s feasibility was
verified on an open-source data set. The work of [21] applied an inception-CNN to the fault
detection of aero-engine sensors and verified the effectiveness and feasibility of this method
in terms of two aspects: the typical sensor fault detection effect and the fault detection
and isolation process. Ref. [22] proposed a text-based fault diagnosis model that utilized
word2vec to extract text feature vectors and employed a stack-based integrated learning
scheme for classification. The performance was verified on real aircraft fault text data
sets. A convolutional auto-encoder method that extracts parameter features of the LREs
and a one-class supported vector machine to realize steady-state fault detection for LREs
have also been proposed [23]. However, current methods rely on many fault samples and
cannot model the entire variable thrust LRE process well. Furthermore, multiple models
are required for segmented detection, which is a complex data processing procedure.

As a representative of temporal data processing methods in deep learning methods,
the LSTM network is widely used in FDD utilizing temporal data. For example, ref. [24]
solved the imbalance problem using a GAN to synthesize the fault data, which allows
the LSTM to learn the time correlation of data and classify the pipeline status to predict
leakage. Additionally, ref. [25] conducted FDD for LRE startup transience, realized LRE
fault detection using LSTM, and performed fault diagnosis through CNN-LSTM. This
method was evaluated on the actual LRE test data set. In [26], the authors introduced a
discrete wavelet transform into an LSTM model for multi-sensor fault diagnosis, and [27]
applied LSTM to the fault diagnosis of electric vehicles and tested their scheme in sim-
ulated and practical data of electric vehicles, demonstrating an appealing accuracy that
outperformed other methods. LSTM has previously been combined with a support vector
data description algorithm [28] to dynamically adjust the fault residual according to the
absolute difference between the predicted and the actual value. Such a system can realize
the real-time fault detection of heating, ventilation, and air conditioning systems. In [29],
the authors adaptively applied the chirp mode decomposition, Gini index fusion, and
Aquila optimizer to LSTM for intelligent diagnosis of bearing composite faults, [30] applied
LSTM to fault detection and identification of four rotor blades, and [31] utilized LSTM for
fault detection of a high voltage direct current system, with an accuracy of 100%.

LRE has many failure modes involving limited and incomplete failure data. It is more
appropriate to use an unsupervised learning method to realize LRE FDD, and this method
can detect new faults. When the learning method is unsupervised, the most common
practice of LSTM in applying FDD is to delimit the threshold according to the predicted
value or actual value. When the predicted value or actual value exceeds the threshold, it
is considered that an anomaly has occurred. However, this process has some subjective
factors, and the threshold is not always reasonable. In order to avoid this problem and
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simplify the fault detection process, we introduce LSTM into GAN and use the classification
function of GAN to realize fault detection.

This paper proposes an FDD method based on LSTM and GAN for a large LOX/kerosene
rocket engine. In our method, first, a large LOX/kerosene rocket engine is modeled
using MATLAB/Simulink, and the engine’s normal operation state is simulated. The
fault operation states of various startup and steady-state stages are simulated by fault
injection, which is achieved by modifying the failure factor. Second, the LSTM-GAN
model uses LSTM as the generator and MLP as the discriminator, while the model is
trained with normal data. Third, the test data are input into the discriminator to obtain
the discrimination results and realize the fault detection of the whole process. Finally, the
test data are input into the generator to obtain the predicted samples, and the absolute
error between the predicted and the real value of each parameter is calculated. This is then
standardized, and referred to as the standardized absolute error (SAE). SAE is analyzed
to realize the steady-state process fault diagnosis of the engine. Simulation data verify
the effectiveness and timeliness of the proposed method, which has three main points of
innovation and advantages.

(1) The generator of GAN is constructed by LSTM, and the prediction function of LSTM
for time series data and the classification function of GAN are used at the same
time. The whole process fault detection of an LRE can be realized using only one
model. Compared with RCS, ATA, and SVM methods, which need to detect data
segmentation, the proposed method simplifies the fault detection process and has
apparent advantages in terms of timeliness.

(2) The fault diagnosis index, SAE, is constructed. The diagnosis process is simple and
the result is reliable.

(3) Only the normal data are used to train LSTM-GAN, so the FDD of new faults can
be realized.

The remainder of this paper is organized as follows: Section 2 introduces the engine
simulation and fault injection process. Section 3 presents the construction of the LSTM-
GAN model. Section 4 discusses the validation of the proposed method using simulation
data. Section 5 concludes this paper.

2. Simulation Process of an LRE

Figure 1 shows the functional block diagram of the simulation process of an LRE. The
real-time simulation platform uses MATLAB/Simulink for modeling and the VxWorks
operating system for the closed-loop simulation iteration process. This process first em-
ploys modular modeling and simulation, relying on MATLAB/Simulink to establish the
model’s components under different states, such as the liquid rocket engine combustion
chamber, fuel preloading turbine model, gas turbine model, pump model, and thermal
component model. The components are connected according to the correlation between the
engine components, and an off-line simulation ensures the model’s feasibility and accuracy.
Then, according to the links and RT hardware driver module requirements of the general
real-time simulation platform, I/O hardware interfaces such as the channel initialization
module and the lower computer synchronization module are split and added to meet the
hardware/software real-time communication requirements in the loop simulation plat-
form. Through the main control software, RT-sim, we set the attribute parameters of the
real-time computer simulator, deploy the corresponding target machine, and select and
save the variable parameters that need to be monitored, recorded, and edited. Finally,
the real-time simulation system realizes the online monitoring and modification of the
variable parameters through the monitoring panel to convert the working conditions and
fault injection. The RT hardware and I/O hardware used here comes from the company
Linkstech, Changping District, Beijing, China.



Aerospace 2022, 9, 399 4 of 16Aerospace 2022, 9, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 1. The functional block diagram. 

 

Figure 2. Diagram of the LRE structure. (1. Fuel pre-pressure turbine pump; 2. oxidant pre-

pressure turbine pump; 3. gas generator; 4. main turbine; 5. oxidant pump; 6. fuel primary pump; 

7. fuel secondary pump; 8. combustion chamber; 9. throttle valve; 10. flow regulator; 11. starting 

box; 12. ignition duct). 

We obtain nine normal operation status data through the simulation system, three 

startup process fault data, and four steady-state stage fault data, with the specific operat-

ing conditions reported in Table 1. The nine normal operation states involve multiple 

but different operating condition conversions and slightly different model parameters. 

Steady-state faults are realized by modifying the model parameters during simulation, 

and the startup faults are realized by changing parameters before simulation. The model 

parameters of the fault simulation scenario are 24-channel sensor signals from 10 critical 

Figure 1. The functional block diagram.

Figure 2 depicts the structure diagram of the LRE simulated in this research involving
the following engine working process. Before starting, the kerosene circuit of the generator
and thrust chamber are first subjected to a forced purge. Then, the high-pressure helium
gas squeezes the kerosene in the starting box to break the ignition tube diaphragm, and the
ignition agent is divided into two to fill the generator and the thrust chamber ignition path.
Then, the main liquid oxygen valve is opened, and the engine’s liquid oxygen enters the
generator. When the ignition agent in the ignition circuit of the thrust chamber is filled to
the required position, the generator’s fuel valve opens, and the ignition agent enters the
generator and ignites with the liquid oxygen entered in advance. When the ignition starts,
the fuel flows into the generator starting the flow, the generator’s component ratio drops
rapidly, and the temperature of the oxygen-rich gas rises, driving the main turbine to rotate.
As the throttle valve in the main fuel circuit is in a small flow state, the flow of the coal
oil pump is almost zero, the flow and head of the oxygen main pump increase, the power
required by the pump increases, the component ratio of the generator gradually increases,
and the power of the main turbine also increases. Then, the main turbine’s power and the
pump’s required power gradually tend to balance. At this time, the ignition fluid enters the
thrust chamber and burns with the fuel gas entering the thrust chamber after driving the
main turbine to rotate. Before starting, the kerosene is filled in front of the thrust chamber
fuel main valve through the thrust chamber nozzle cooling channel. When the valve opens,
the throttle valve is in a small flow state, and kerosene flows to the injector along the cooling
channel of the thrust chamber. As the generator pressure increases and the component ratio
gradually approaches the rated value, the turbine pump speed increases, and the pump
back-pressure and propellant flow increase. When the outlet pressure of the primary fuel
pump reaches the given value, the hydraulic relay starts to work, the flow regulator turns
to primary, the fuel flow of the control generator gradually increases, the engine changes to
a high working condition, and the engine parameters continue to rise. Kerosene enters the
thrust chamber to realize supplementary combustion and burns with oxygen-enriched gas.
The engine’s operation shifts to the main stage and shuts down after completing its task.
However, before the shutdown, the engine turns to the final working condition and closes
the generator’s fuel valve to complete the shutdown process.
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Figure 2. Diagram of the LRE structure. (1. Fuel pre-pressure turbine pump; 2. oxidant pre-pressure
turbine pump; 3. gas generator; 4. main turbine; 5. oxidant pump; 6. fuel primary pump; 7. fuel
secondary pump; 8. combustion chamber; 9. throttle valve; 10. flow regulator; 11. starting box;
12. ignition duct).

We obtain nine normal operation status data through the simulation system, three
startup process fault data, and four steady-state stage fault data, with the specific operating
conditions reported in Table 1. The nine normal operation states involve multiple but
different operating condition conversions and slightly different model parameters. Steady-
state faults are realized by modifying the model parameters during simulation, and the
startup faults are realized by changing parameters before simulation. The model parameters
of the fault simulation scenario are 24-channel sensor signals from 10 critical components
of the LRE, having a sampling rate of 500 Hz (Table 2). These parameters are different from
the normal operation parameters.

Table 1. The operating conditions of the LRE.

Operating Conditions Test Number Operating Condition
Conversions/Fault Modes

Normal
01, 02, 03, 04, 09

Low operating condition–rated operating
condition–high operating
condition–rated operating

condition–final operating condition

05, 06, 07, 08 Low operating condition–rated operating
condition–final operating condition

Steady-state faults

11 Combustion chamber throat ablation

12 Stuck bearing

13 Cavitation of oxidant pump

14 Blocked pipeline in front of
oxidant pump

Start-up transient faults

15 Blocked pipeline in front of
oxidant pump

16 Main turbine rotor damage

17 Stuck bearing
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Table 2. Components of the LRE, parameters, and acronyms.

Components Parameters Acronyms Components Parameters Acronyms

Combustion chamber
Inlet fuel flow qc

Primary fuel pump
Inlet pressure pifp1

Pressure pc Outlet pressure pofp1
Temperature Tc Flow qpfp1

Gas generator
Inlet fuel flow qfg Oxidizer

pre-pressure pump

Inlet pressure piopp
Inlet oxidizer flow qog Outlet pressure poopp

Pressure pg Flow qopp

Main turbine
Torque Mt Secondary fuel

pump
Inlet pressure pifp2

Rotation rate Nt Outlet pressure pofp2

Fuel pre-pressure pump
Inlet pressure pifp

Oxidizer pump
Inlet pressure piop

Outlet pressure pofp Outlet pressure poop
Flow qfp Flow qop

Fuel preload turbine Rotation rate nft Oxidizer preload
turbine Rotation rate not

3. Introduction to LSTM-GAN
3.1. Introduction to LSTM Networks
3.1.1. The Basic Structure

A recurrent neural network (RNN) is an artificial neural network (ANN) with a time
memory function. An RNN affects the output using memory cells that store past inputs.
However, the long-term dependency significantly restricts the RNN’s performance. To
address this problem, LSTM introduces an input gate, output gate, and a forgetting gate
into the RNN (Figure 3).
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The equations describing a basic unit of LSTM at a certain time t are:

ft = σ(Wh f ht−1 + Wx f xt + b f ) (1)

it = σ(Whiht−1 + Wxixt + bi) (2)

ct
′ = tanh(Whcht−1 + Wxcxt + bc) (3)

ot = σ(Whoht−1 + Wxoxt + bo) (4)

ct = ftct−1 + itct
′ (5)

ht = ottanh(ct) (6)

where x, W, and b are the input, weight, and bias, respectively. σ is a sigmoid function and
restricts the output range to (0, 1), calculated by the function σ(x) = 1/(1 + e−x). tanh is
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a hyperbolic tangent function and restricts the output range to (−1, 1), calculated by the
function tanh(x) = (ex − e−x)/(ex + e−x). i is the input gate and determines whether the
current input is added to the storage unit and which values to update. f is the forgetting
gate and determines whether the values in the memory unit remain unchanged, decrease,
or are reset. o is the output gate that determines the output through the input and the
memory unit values. C′ controls the input to be updated. c is the cell condition. h is the
hidden condition and is usually the output.

3.1.2. The Input and Output

Figure 3 shows that the LSTM’s input and output are temporal signals, including
spatial and time dimensional information. In this research, the spatial information involves
24-channel sensor signals, and the temporal information is obtained by oversampling the
data in the time domain. The FDD task ensures that only the data are obtained according
to the input signals at a specific time. Therefore, the output’s time dimension is set to one.
The dimension of the input signals is analyzed in Section 4.

3.2. Introduction to GAN

GAN is a framework for estimating the generation model through a confrontation
process [32]. It can learn the distribution of actual samples without a priori probability
modeling. GAN comprises a generator and a discriminator model relying on neural
networks. The generator maps the input noise signals to the sample space through the
neural networks and outputs the fake data to be as true as possible. The discriminator
judges whether the sample originates from the generator’s fake samples or the real samples
in the real data distribution. During GAN training, both models are optimized alternately
to achieve Nash equilibrium. Finally, the samples generated by the generator conform
to the real sample probability distribution. After completing the training process, the
generator estimates the original data’s probability distribution well. Figure 4 illustrates the
classic GAN training process.
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3.3. Architecture of LSTM-GAN
3.3.1. The Basic Structure

The traditional GAN cannot efficiently learn the data’s time correlation, so we utilize
an LSTM-based architecture to build the generator. Given that the discriminator judges



Aerospace 2022, 9, 399 8 of 16

whether the input sample is from the real sample distribution, the discriminator relies on
an MLP. The input parameters of the generator are the LRE’s 24 parameters in a certain
period. Furthermore, the generator has two hidden layers, where each layer has 128 LSTM
units. To prevent overfitting, both layers have dropout layers, with a dropout probability
of 0.3, and the output parameters are the LRE’s 24 parameters at the current time. The
discriminator’s input parameters are the LRE’s 24 parameters. The discriminator involves
two hidden layers comprising 64 and 128 neurons, respectively, and LeakyReLU is selected
as the activation function. The output result is the fault detection result. The activation
functions of the output layers of the generator and the discriminator are sigmoid functions.
Finally, the training process utilizes the Adam optimizer with an initial learning rate of
0.0005 and a batch size of 1024.

3.3.2. Loss Function

Regression problems, to ensure the error between the predicted value and the real
value is as small as possible, typically employ the mean square error (MSE) loss function,
calculated as:

MSE = ∑n
i=1 (x− xr)

2 (7)

where x is the input sample and xr is the reconstructed sample. Accordingly, the binary
cross-entropy (BCE) loss function is typically used in a two-classification problem. The BCE
formula is:

BCE = −(xlog(p) + (1− x)log(1− p)) (8)

where x is the real label and p is the predicted label.
The generator built by LSTM solves the regression problem, so the MSE loss function

is selected. In addition, since the generator needs to consider the discriminator’s result
when updating the parameters, the generator’s loss function is obtained by adding the two
parts to obtain the average value, i.e.,

Lg = (MSE1 + MSE2)/2 (9)

where MSE1 is calculated by the generator’s parameters and the actual output parameters,
and MSE2 relies on the discriminator’s result and the actual label. To preserve consistency
with the generator, we select the MSE loss function for the discriminator.

4. Experiments and Analysis
4.1. Data Preprocessing

This research does not consider the shutdown process, so the corresponding data
are removed. The original data samples comprise four parameter types, i.e., pressure,
temperature, mass flow, and rotating speed, ranging from 101 to 104. Furthermore, the data
are normalized to narrow the data distribution range to [0, 1] and ease the neural network’s
training process. The calculation equation is:

y =
x− xmin

xmax − xmin
(10)

where xmax and xmin are a parameter’s maximum and minimum values, respectively. In
order to avoid information about the test set being introduced into the training process, the
maximum and minimum values of the training set are used to preprocess all samples in
the training and test sets.

The input data of the generator are time series data. Thus, data overlap in time, and
the sampling step is set to one, as illustrated in Figure 5. In order to explore the impact of
the sample size on the model’s performance, we set five window lengths having a sample
size of 10 × 24, 20 × 24, 30 × 24, 40 × 24, and 50 × 24. The input data of the discriminator
are the samples of the following input data of the generator, so no additional processing
is required.
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Given that time series data are considered, ensuring integrity in time series is necessary.
Therefore, test data 01–08 comprise the training set, and 09 and 11–16 are the test set. The
training set is utilized for training LSTM-GAN and the test set is used to verify whether the
method has false or missing alarms, and the timeliness of the method.

4.2. Model Training

The deep learning environment of this research was based on Python 3.8.12 and
PyTorch 1.10.0. The operating environment was Microsoft Windows 11, and processing
was performed on an NVIDIA GeForce GTX 1650 with 4 GB VRAM. All experiments
were completed on the jupyter notebook. Considering the LSTM-GAN with a sample
size of 10 × 24 as an example, the training data were input into the LSTM-GAN-10 for
training, where the training process is illustrated in Figure 6. After about 2600 iterations,
the losses of the generator and the discriminator stabilized and were close to zero, reaching
an ideal state.
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4.3. Evaluating Indicator

In the FDD field, the precision, recall, and F1 metrics are typically used to measure the
performance of the evaluated methods [33]. Considering FDD for LREs, finding anomalies
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and faults in operation as soon as possible and avoiding false alarms is essential [23].
Nevertheless, due to abnormal sensors and significant transient parameter fluctuation
during the LRE operation, outliers that deviate significantly from the normal value may
occasionally appear in LRE commissioning data. When detecting outliers, it does not mean
a fault has occurred. Therefore, a continuity criterion is usually introduced that considers
the fault and issues an alarm after three consecutive abnormal detections. This strategy
improved the method’s reliability and reduced the false alarm rate.

Furthermore, this paper proposes three evaluation indicators to evaluate the proposed
method’s performance. The two qualitative indicators are the occurrences of false alarms
and missing alarms, and the quantitative indicator is the alarm time of the fault samples,
for which, the earlier, the better. We expect the proposed method will not issue false or
missing alarms, and can realize early detection of faults from the fault test data.

4.4. Fault Detection Based on Discriminator

The discriminator only learned the sample distribution of normal data, so the discrim-
ination result for normal samples should be close to 1, and the discrimination result for
abnormal samples should be close to 0. Fault detection is carried out according to this
principle. The test data are input to the discriminator, which outputs the result. If the
discrimination result exceeds 0.5, the output is set to one, indicating normal conditions.
Otherwise, the output is set to zero, indicating abnormal conditions. When three consecu-
tive abnormal samples occur, it is considered that a fault has occurred, and an alarm is sent.
The difference between the alarm and fault injection times, called the detection delay, is
calculated and recorded.

The LSTM-GAN having different sample sizes presented no false alarms on the test set,
proving that the discriminator has successfully learned the entire LRE operation and does
not give any false alarms during the operating condition conversion. The corresponding
performance on the six fault test sets is reported in Table 3, which highlights that the
LSTM-GAN having a sample size of 30 × 24, 40 × 24, and 50 × 24 has missing alarms. The
LSTM-GAN having a sample size of 10 × 24 and 20 × 24 can detect the injected fault in
time, proving that the discriminator accurately judges the consistency between the test and
the training samples. Hence, the results demonstrate that the developed fault detection
method meets the requirements of timeliness and effectiveness.

Table 3. Detection delay of LSTM-GAN having different sample sizes.

Test No. 10 × 24/s 20 × 24/s 30 × 24/s 40 × 24/s 50 × 24/s

11 0.006 0.100 0.020 0.006 0.040
12 0.020 0.012 / / /
13 0.010 0.016 0.204 0.006 0.166
14 0.006 0.012 0.010 0.036 0.010
15 1.136 1.390 1.152 1.374 1.350
16 1.554 1.164 / 2.024 3.286
17 1.552 2.336 / 1.668 3.118

‘/’ means missing alarm.

In most cases, the LSTM-GAN having a sample size of 10 × 24 performs well. Thus,
we compared it with RCS, ATA, and SVM, as shown in Figure 7. It can be seen that the
detection delay of LSTM-GAN on other test sets is significantly lower than that of RCS, ATA,
and SVM, except that the detection delay of test 16 is higher than that of SVM. Therefore,
compared with RCS, ATA, and SVM, LSTM-GAN performs better in terms of timeliness.
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4.5. Fault Diagnosis Based on Generator

Because of the complex LRE systems, the parameters in the startup process change
significantly and rapidly, which makes it challenging to realize fault diagnosis. Therefore,
this research only focuses on fault diagnosis for the steady-state process. According to the
conclusion in Section 4.4, the LSTM-GAN having a sample size of 10 × 24 performs best.
In addition, the data volume of the training set and test set is small, which significantly
reduces the cost. Therefore, the model was selected for fault diagnosis.
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We performed overlapping sampling according to the method described in Section 4.1,
with a sampling step size of 1 and a window size of 10 to obtain the generator’s input
data. The test data are input into the generator, which outputs the predicted samples and
calculates the absolute error between the predicted and the real value of each parameter.
The absolute error for the ith parameter at a time is calculated as:

AEi =
∣∣xi − xip

∣∣ (11)

where xi and xip are the real and the predicted values, respectively. There are many
parameters and a wide range, so it is inappropriate to take the absolute error between the
predicted value and the real value as the diagnostic index. The absolute error between the
predicted value and the true value is standardized, and called the standardized absolute
error (SAE). The calculation method of SAE for the ith parameter is calculated as:

SAEi =
AEi − µi

σi
(12)

where µi and σi are the mean and standard deviation of AEi respectively. In order to prevent
the introduction of test set information, the test set is standardized by using the mean and
standard deviation of the absolute error between the predicted value and the real value of
the training set. Finally, for each sample, the diagnostic index obtained is a 24-dimensional
vector, SAE, i.e.,

SAE = (SAE1, SAE2, . . . , SAE24) (13)

The corresponding fault diagnosis results are obtained by analyzing the diagnosis
index. The faults of tests 11–14 are injection faults and the time of occurrence of the faults is
clear, rapid, and complex. Therefore, the SAE of five consecutive samples after the injection
fault was analyzed. The SAE of the five consecutive samples after the injection fault of tests
11–14 is shown in Figures 8–11.
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As shown in Figure 8, for test 11, the SAEs of pc, Tc, and mt increase rapidly and are
much larger than that of other parameters. Assuming that the fault of test 11 is a combustion
chamber fault, the SAE of pc and Tc first increases when the combustion chamber fails.
Then, the failure affected the main turbine directly connected to it, causing the SAE of mt to
increase. This process is consistent with the assumption. Therefore, the diagnosis result of
test 11 is a combustion chamber fault, which is consistent with the injection fault.
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As shown in Figure 9, for test 12, the SAEs of pofp1 and poop increase rapidly and are
much larger than those of other parameters. In addition, nt is also significant. According to
Figure 2, the main turbine, oxidant pump, and fuel primary pump are connected through a
bearing. Therefore, the diagnosis result of test 12 is a bearing fault, which is consistent with
the injection fault.

As shown in Figure 10, for test 13, the SAEs of poop and qop increase rapidly and are
much larger than those of other parameters. Therefore, the fault diagnosis result of test 13
is an oxidizer pump fault, which is consistent with the injection fault.

As shown in Figure 11, for test 14, the SAEs of piopp, poopp, qopp, and piop are large.
It is assumed that the fault of test 14 is the pipeline fault between the oxidant preloading
pump and the oxidant pump. When the pipeline fails, the SAEs of the outlet pressure
(poopp) and flow (qopp) of the oxidant preloading pump located upstream rapidly increase,
and the SAE of the inlet pressure of the oxidant pump (piop) located downstream rapidly
increases. This process is consistent with the assumption. Therefore, the diagnosis result of
test 14 is the pipeline fault between the oxidant preloading pump and the oxidant pump,
which is consistent with the injection fault.

5. Conclusions

This research proposes a fault detection and diagnosis method based on LSTM-GAN
for the startup and steady-state process of a liquid oxygen/kerosene rocket engine. The
performance of the proposed method was verified on the simulation data set. The corre-
sponding results reveal that the proposed method will not produce false or missed alarms,
and can realize the timely detection of faults in the LRE startup and steady-state pro-
cesses. The fault components can be identified by analyzing the standardized absolute error
between each parameter’s predicted and true values, and fault diagnosis can be realized.

The advantage of our method is that it solely utilizes normal data to effectively train
the LSTM-GAN model, overcoming the difficulty of insufficient fault data and realizing the
detection and diagnosis of unknown faults. Of course, the proposed method also has some
limitations. Due to the complexity of the startup process, it is challenging to realize fault
diagnosis only by SAE. In order to address this problem, further research will be necessary
in the future.
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