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Abstract: Morphing aircraft can alter their aerodynamic configuration to obtain multitask adaptability
and improve flight performance. In this paper, we apply the variable sweep concept on a tandem-
wing micro aerial vehicle (MAV) for multitask adaptability, the two canards of which can undergo
backward sweep and the two wings can undergo forward sweep. The variable sweep morphing
mode can not only weaken the additional inertia forces and moments caused by morphing, but
can also maintain the longitudinal dynamic balance without elevator changes, which generates
trim drag. What is more, it was demonstrated that sweep morphing can exert a great effect on
the aerodynamic characteristics during the transition process, which are functionalized with the
sweep inputs. The effect of addition forces and moments during the transition process was analyzed
by dynamic response, and the longitudinal stability of the MAV were evaluated based on a linear
parameter varying (LPV) model. Due to the dramatic effects of sweep morphing on the longitudinal
stability, a gain scheduled transition controller based on a convex hull algorithm is proposed to
guarantee the transition stability and improve the robustness, and a linear quadratic regulator (LQR)
is used to guarantee the stability of the boundary point with the consideration of input saturation.
Finally, the superior performance of the proposed controller was demonstrated by a theoretical
simulation based on a nonlinear model.

Keywords: variable sweep; morphing aircraft; gain scheduled; tandem-wing; mode transition;
input saturation

1. Introduction

The morphing concept has the capability to enhance the overall performances of
aircraft [1]. One area of focus is to vary the geometry of the aircraft using an evolutionary
morphing wing scheme for different flight conditions, with corresponding targets and
requirements, such as a reliable cruise configuration or an efficient high-speed dash con-
figuration [2,3]. The variable sweep wing is the first significant design for altering aircraft
shape and can increase sweep angle for high-speed flight applications [4]. As a potential
morphing technology to achieve multitask requirements, large-scale morphing unmanned
aerial vehicles (UAVs) based either on material or shape morphing mechanisms have
emerged in recent years [1]; these include shape memory alloy morphing UAV [5], various
gull-wing configurations [6], span morphing UAV [7], bioinspired wing morphing [8,9],
variable span and variable sweep UAV [10], etc. These UAVs are well-developed with the
goal of obtaining optimal flight performance and adapting to different flight environments.

However, large-scale morphing will inevitably cause the inertia of moment, aero-
dynamics, and dynamics of the UAV to vary more dramatically [11], and the generated
time-varying and nonlinear characteristics will cause model uncertainty, which may af-
fect the flight quality and even threaten the flight safety, especially during the transition
process [12]. Additionally, for variable sweep aircraft, sweep morphing can be considered
as a new control input; when the aircraft transforms from one state to another with the
sweep morphing command, the aircraft needs to be trimmed again with an elevator for the
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new balanceable state [13]. Therefore, more attentions should be paid to the stability and
controlling problems in the transition process of variable sweep UAV.

To evaluate the transition stability, the time-varying effects of the transition process
must be considered. The gain scheduled control technique based on the LPV model has
been proven to be an appropriate method for the aircraft’s time-varying dynamic effects [14].
Yue et al. presented a gain self-scheduled H∞ robust control system for a tailless folding-
wing morphing aircraft, which can keep the altitude and speed constant during the whole
wing folding process [15]. He et al. proposed a gain scheduled control design based on
a tensor product model for morphing aircraft in the transition process [16]. Moreover, a
smooth switching gain scheduled controller was also applied on a variable sweep aircraft to
guarantee the stability of the morphing phase [17]. In addition, the gain scheduled method
allows for arbitrary morphing rates of scheduled variables to adapt to the aircraft’s dynamic
response, and it is able to maintain stability in various operating conditions [18–20].

In the existing literature, the additional inertia forces and moments caused by mor-
phing are always neglected and regarded as an unmodeled term. However, the effects on
the dynamics of additional inertia forces and moments are inevitable during the morphing
progress, especially at the onset and end of a morphing maneuver, and the dominant forces
of the additional terms are proportional to the morphing velocities and accelerations of
the wing mass components [6]. Yan et al. found that a higher sweep morphing speed led
to greater amplitudes of additional morphing forces and then greater amplitudes of the
short-period mode parameters, and they proposed an adaptive super-twisting algorithm
sliding mode controller that had good robustness for the effects of additional morphing
forces [21]. Dai et al. proposed a nonlinear disturbance observer to estimate the morphing
force and moment and designed a nonlinear model predictive controller considering the
estimated disturbances [22]. In addition, with an appropriate morphing strategy, the addi-
tional inertia forces and moments can also be weakened, thereby relieving the burden of
the control system [23].

In this paper, an innovative morphing scheme is investigated to weaken the additional
inertia forces and moments caused by morphing. The morphing scheme is based on
the tandem-wing MAV in our previous work [24]; the MAV has four variable sweep
airfoils instead of conventional elevator and aileron, which can morph symmetrically or
asymmetrically for pitch or roll control. Therefore, the shape control and flight control of
the MAV are integrated, which is similar to that found in nature, inspiring us to explore
appropriate morphing strategies for in-flight adaptability. Moreover, in order to satisfy
multitask adaptability, the MAV needs to morph into loitering or dash configurations,
which inevitably results in input saturation of the sweep morphing, which may degrade
the performance of the control system or even lead to instability [25]. This also motivated
us to investigate the transition control with consideration of input saturation for such a
tandem-wing MAV with variable sweep. Compared with the existing results, the primary
contributions of this paper are summarized as follows:

(1) An innovative variable sweep scheme integrating shape control and flight control is
applied on a tandem-wing MAV for multitask requirements; the morphing scheme not only
weakens the additional inertia forces and moments, but also has no trim drag generated by
the traditional elevator.

(2) A gain scheduled controller with the consideration of input saturation is proposed
based on the LPV model to guarantee transition process stability and satisfactory flying
performance, and to improve the robustness of the considered MAV.

The remainder of this paper is outlined as follows. In Section 2, the scheme of variable
sweep is presented, and the aerodynamic characteristics are systematically investigated. In
Section 3, the longitudinal dynamic equations of the variable sweep MAV are linearized by
the Jacobian linearization approach to achieve the LPV model, and dynamic response and
longitudinal stability are analyzed. In Section 4, a gain scheduled transition controller with
the consideration of input saturation is designed based on a polytopic model to realize the
required control objectives. In Section 5, numerical simulation is carried out to verify the
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performance of the gain scheduled transition controller. Finally, conclusions based on the
presented results are presented in Section 6.

2. Variable Sweep Scheme and Aerodynamic Characteristics
2.1. Configuration of the Variable Sweep MAV

The schematic diagram and prototype of the multitask tandem-wing MAV with
variable sweep are presented in Figure 1. It is a catapult launched MAV; there are four
variable sweep airfoils actuated by servos with connecting rods (Figure 1a), and there is
no conventional elevator or aileron. The two canards undergo backward sweep and the
two wings undergo forward sweep. Using symmetric sweep morphing for pitch control,
asymmetric sweep morphing for roll control can be effectively realized (Figure 1c). The
MAV can change sweep angles symmetrically to reduce the wing area and wingspan for the
multitask requirements. Furthermore, by allocating the sweep angles of the canards and the
wings, the flight state can be trimmed without an elevator. A no-sweep configuration is used
for loitering, while dashing can be realized with the large symmetric sweep configuration.
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Figure 1. Schematic diagram and prototype of the multitask tandem-wing MAV with variable sweep.
(a) Schematic diagram of the sweep morphing; (b) Prototype of the tandem-wing MAV in different
variable sweep configurations: no-sweep configuration, symmetric sweep morphing, asymmetric
sweep morphing; (c) Flight test of symmetric morphing for pitch control.
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2.2. Variable Sweep Scheme

The backward sweep angle of the canards and the forward sweep angle of the wings
are defined as δ1 and δ2, respectively, as shown in Figure 2. When the MAV morphs from
loitering configuration to dashing configuration, δ1 and δ2 increase according to a law that
can maintain flying stability. Ob is the mass center of the fuselage, Oa is the mass center of
each airfoil, l is the distance between the rotation center and the mass center of each airfoil,
ac and aw are the distances between Ob and the rotation center of the canards and wings in
the xb axis, respectively, and bf and c are the distances between Ob and the rotation center
of the airfoils in the yb and zb axis, respectively. The main MAV geometric parameters and
mass properties of the no-sweep configuration are shown in Table 1.
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Table 1. Main geometric parameters of the MAV.

Parameter Unit Value

Length of fuselage, lf m 0.72
Mean aerodynamic chord, cA m 0.077

Span, b m 0.89
Reference area, S m2 0.1345

Distance between airfoil mass
center and rotation center, l m 0.14

Distance between Ob and
canard rotation center, ac

m 0.165

Distance between Ob and
wing rotation center, aw

m 0.235

Distance in ybaxis between Ob
and rotation center, bf

m 0.04

Distance in zb axis between Ob
and rotation center, c m 0.015

Mass of the MAV, m kg 1.668
Mass of single airfoil, ma kg 0.08

Moment of inertia of fuselage,
J f
y

kg·m2 2.42 × 10−2

Because the oversize sweep angle will decrease the aspect ratio of the MAV signifi-
cantly, thereby reducing lateral stability, δ1 and δ2 are limited from 0◦ to 30◦. The morphing
input saturation function can be defined as:

λi =
δi

δmax
=


1, δicmd > δmax
δicmd
δmax

, 0◦ ≤ δicmd ≤ δmax

0, δicmd < 0◦
(1)
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where λi indicates the actual variation ratio, δicmd indicates the command of sweep morph-
ing, i = 1 and 2 denote the canards and the wings, respectively, and δmax = 30◦ indicates the
maximum sweep angle.

2.3. Aerodynamic Characteristics

Variable sweep can alter the aerodynamic characteristics of the MAV significantly to
realize multitask capabilities; symmetric sweep morphing mainly affects the longitudinal
aerodynamics. In our study, we computed the aerodynamic forces and moments under the
quasi-steady assumption. The longitudinal aerodynamic forces and moments of the MAV
can be expressed by the following equation:

L = 0.5ρV2SCL(λ1, λ2, α)
D = 0.5ρV2SCD(λ1, λ2, α)
M = 0.5ρV2ScACm(λ1, λ2, α, q)

(2)

where L, D, and M are the lift, drag, and pitch moment of the MAV, respectively; CL, CD,
and Cm are the coefficients of lift, drag, and pitch moment, respectively; α is attack angle; q
is the pitch angular velocity; ρ is the air density; V is the flight velocity; S is the reference
area; and cA is the mean aerodynamic chord.

According to the quasi-steady assumption, the aerodynamic forces and moments
varying with λ1 and λ2 are computed using the computational fluid dynamics (CFD)
approach (Figure 3a); the aerodynamic derivatives are estimated by the vortex lattice
method (VLM) (Figure 3b), with the same configuration. The basic non-dimensional
aerodynamic coefficients of the variable sweep MAV, varying with the variation ratio and
attack angle, are then fitted. The detailed expressions of aerodynamic coefficients are
expressed as follows:

CL = 1
100 (47.95− 4.077λ2

1 − 4.579λ2
2 + 16.89λ2

1λ2 + 17.44λ1λ2
2 − 20.41λ1λ2 − 16.23λ2

1λ2
2)(9.448α + 0.3397)

CD = 1
1000 (83.58− 5.229λ2

1 − 0.1296λ2
2 − 4.34λ1 − 9.409λ2 + 3.595λ1λ2)(28.85α2 + 0.2363α + 0.8429)

Cm = 1
100 [(−8.103− 11.67λ2

1 − 4.525λ2
2 − 27.26λ1 + 37.47λ2)(−8.207α2 + 10.03α + 0.34)

+(7.248λ1 + 36.89λ2 − 69.24)q]

(3)

Figure 3 shows the longitudinal aerodynamic coefficients in static state, varying with
λ1 and λ2 at α = 4◦. The lift coefficient and drag coefficient decrease gradually as λ1 and
λ2 change from 0 to 1. The maximum of the lift coefficient and the drag coefficient are
0.4895 and 0.0836, respectively, when λ1 and λ2 are both equal to zero so that no morphing
occurs. The minimum of the lift coefficient and the drag coefficient are 0.3698 and 0.0681,
respectively, when λ1 and λ2 are both equal to 1, so that the MAV reaches the maximum
variation ratio. The pitch moment coefficient decreases as λ1 increases, while it increases as
λ2 increases, and the absolute value of the gradient around λ1 is larger than that around λ2.
The main reason for this is that the effect of downwash caused by the canards would reduce
the aerodynamic loads on the wings, causing the aerodynamic variation of the canards to
be greater than the variation of the wings at the same variation ratio [26].
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3. Longitudinal LPV Dynamic Modeling and Stability Analysis of the Variable
Sweep MAV
3.1. Longitudinal Dynamic Modeling

In the transition process of the MAV, the moment of inertia, center of gravity, and
aerodynamic forces and moments have distinct changes, exhibiting clear time-varying
and nonlinear characteristics. Thus, it is necessary to build an accurate and insightful
dynamic model. The rigid-body dynamics method could generate many moments of
inertia derivative arguments. The multi-body dynamics based on the Kane method will
greatly reduce the differential operations through introducing analytical mechanics and
vector mechanics [27], which would benefit the linearization of the dynamics equations.
Therefore, the nonlinear dynamics equations of the MAV can be formulated based on the
Kane method. Here, we only consider the longitudinal motion during the transition process
of the MAV, ignoring the wind gusts and cross-flow. The longitudinal dynamic equations
have been decoupled from the nonlinear multi-body dynamic model of the variable sweep
MAV established in [24]. After simplification, they could be expressed as follows:

m(
.
u + wq)− Fx − Fxδ = 0

m(
.

w− uq)− 2ma
.
q(l1 − l2)− Fz − Fzδ = 0

J
.
q− 2ma(

.
w− uq)(l1 − l2) + 2mag cos θ(ac − aw)−M−Mδ −MGδe = 0

.
θ − q = 0

(4)

where m is the mass of the entire MAV and ma is the mass of a single airfoil. The mass
properties of the MAV are shown in Table 1; u and w are the flight velocity in the xb and
zb axis of the body coordinate frame, respectively, θ is the pitch angle, J represents the
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time-varying moment of inertia around the yb axis, and l1 and l2 represent the time-varying
gravity center moving of the airfoils; they are expressed as:

J = J f
y + 4mac2 + 4Ja

y + 2ma(l12 + l22)

l1 = ac − l sin δ1
l2 = aw − l sin δ2

(5)

Fx and Fy are forces in the xb and zb axis of the body coordinate frame, respectively.
According to the relationship between the body coordinate frame and the wind coordinate
frame, they can be expressed as follows:{

Fx = P−mg sin θ − D cos α + L sin α
Fz = mg cos θ − D sin α− L cos α

(6)

where P is the thrust, and the thrust line passes through the origin of the body coordinate
frame and is parallel to the xb axis.

Fxδ, Fzδ, Mδ, and MG are the additional inertia force in the xb axis, the additional inertia
force in the zb axis, the additional inertia pitch moment, and the pitch moment generated
by the mass center shift, respectively; they are labeled as follows:

Fxδ = 2mal(−
.
δ

2
1 sin δ1 +

.
δ

2
2 sin δ2 +

..
δ1 cos δ1 −

..
δ2 cos δ2)

Fzδ = −2maql(
.
δ1 cos δ1 −

.
δ2 cos δ2)

Mδ = 2macl(
..
δ1 cos δ1 +

..
δ2 cos δ2 −

.
δ

2
1 sin δ1 −

.
δ

2
2 sin δ2) + 2maql(l1

.
δ1 cos δ1 + l2

.
δ2 cos δ2)

MGδe = 2magl cos θ(sin δ1 − sin δ2)

(7)

The movements of the airfoils are parallel to the Oxbyb plane when the MAV morphs,
so transition morphing will only cause gravity center change in the xb axis; the shift of
gravity center, ∆xcg, is expressed as:

4 xcg =
2mal(sin δ2 − sin δ1)

m
(8)

Because δ1 and δ2 are limited from 0◦ to 30◦, according to the parameters in Table 1,
∆xcg is not exceeding ±7 mm.

3.2. Dynamic Response Analysis during Transition Process

The open-loop dynamic responses of the transition process from loitering configuration
to dashing configuration have been performed at straight and level initial flight condition at
V = 20 m/s and α = 4◦. The transition starts at 1 s and finishes at 3 s, as shown in Figure 4a.
When the MAV morphs from the loiter configuration to the dash configuration, the canards
sweep backward, and the wings sweep forward. Due to the effect of downwash on the
wings, the variation ratios of the canards and the wings are different; λ1 varies from 0 to
0.83, λ2 varies from 0 to 1.

Figure 4b–d show variations of addition forces and moments during the transition
process. It is obviously seen that the variations of the additional terms increase sharply
at the onset and end of the transition, especially Fxδ and Mδ. In addition, according to
Equation (7), the additional inertia forces and moments are relevant to the angular velocities
and angular accelerations of the airfoils. Therefore, the additional terms generated by
morphing all decay to zero when the transition is over. The phenomenon is similar to the
results in Refs. [6,21]. However, the results in our study are quite small. The maximum
of Fxδ, Fzδ, and Mδ are about 0.045 N, 7 × 10−5 N, and 4 × 10−3 N·m, respectively. They
are considerably smaller than the aerodynamic forces and moments. This is due to the
canards and wings moving towards one another during the transition process; although
the variation ratios are different, the additional forces and moments generated by the
canards and wings are opposite and neutralize each other, resulting in the smaller results.
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Moreover, the pitch moment, MG, generated by the mass center shift still exists after
transition, but the quantity is approximately 0.017 N·m, as shown in Figure 4e, and it is
easy to eliminate the effect by a small amount of morphing. The shift of gravity center,
∆xcg, is also quite small, and the maximum is approximately 1 mm, as shown in Figure 4f.
Therefore, the additional forces and moments and the changes of gravity center caused by
the mode transition process for multitask capability are negligibly small, which is one of
the advantages compared with conventional variable sweep aircraft.
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3.3. LPV Model Establishing

According the analysis in Section 3.2, the dynamic inertial forces and moments are
so small that they may have little effect on the flight control design; thus, the dynamic
effects are ignored to reduce the associated complexity in the control design, but they are
considered in the simulation. Instead, the controllers are required to be sufficiently robust
to the dynamic effects. In order to analyze the flight state directly, the nonlinear dynamics
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model can be transformed in the wind coordinate frame. By combining with the height
equation, the longitudinal motion equations can be represented as follows:

−m
.

V + 2ma
.
q(l1 − l2) sin α + P cos α− D + mg sin(α− θ) = 0

−mV
.
α + mVq + 2ma

.
q(l1 − l2) cos α− P sin α− L + mg cos(α− θ) = 0

−J
.
q + 4m2

a(l1−l2)
2 .
q

m + 2Fzma(l1−l2)
m + M− 2mag cos θ(l1 − l2) = 0

−
.
θ + q = 0
−

.
h + V sin(θ − α) = 0

(9)

where h is the height, V is the flight velocity in the wind coordinate frame, and u = V cosα
and w = V sinα.

It is difficult to design the controller directly for such a complex time-varying nonlinear
system. In this paper, the Jacobian linearization approach is used to obtain the LPV model
of the variable sweep MAV. By combining (2), (3), (6), and (9), the LPV model can be
presented in state-space form as:

E(t)∆
.
x = A(t)∆x + B(t)∆u (10)

where ∆x = [∆V, ∆α, ∆q, ∆θ, ∆h]T and ∆u = [∆λ1, ∆λ2, ∆δT]T, δT is the thrust control and
“∆” is the deviation between the variables and their equilibrium state. E(t), A(t), and B(t)
are the time-varying configuration matrices and are given as follows:

E =


m 0 −2ma(l1 − l2) sin α 0 0
0 mV −2ma(l1 − l2) cos α 0 0

0 0 J − 4m2
a(l1−l2)

2

m 0 0
0 0 0 1 0
0 0 0 0 1

 (11)

A =


− ∂D

∂V + ∂P
∂V cos α − ∂D

∂α − P sin α + mg cos(α− θ) 0 −mg cos(α− θ) 0
− ∂L

∂V −
∂P
∂V sin α + mq − ∂L

∂α − P cos α−mg sin(α− θ) mV mg sin(α− θ) 0
∂M
∂V + 2ma(l1−l2)

m
∂Fz
∂V

∂M
∂α + 2ma(l1−l2)

m
∂Fz
∂α

∂M
∂q 0 0

0 0 1 0 0
sin(θ − α) −V cos(θ − α) 0 V cos(θ − α) 0

 (12)

B =


− ∂D

∂λ1
− ∂D

∂λ2
∂P
∂δt

cos α

− ∂L
∂λ1

− ∂L
∂λ2

0
2ma(l1−l2)

m
∂Fz
∂λ1

+ ∂M
∂λ1

2ma(l1−l2)
m

∂Fz
∂λ2

+ ∂M
∂λ2

0
0 0 0
0 0 0

 (13)

Because l1 and l2 change little with the sweep morphing, the derivatives around l1
and l2 are ignored in configuration matrix B(t) to reduce the complexity. For each trim
condition, the new configuration matrices are computed by (11)–(13). Usually, the effects
of control input on the configuration matrices are ignored in traditional aircraft, and the
sweep morphing as the control input can not only affect the control moment but also the
configuration matrices in our study. This aspect is the difference between a variable sweep
MAV and an aircraft with traditional control surfaces.

3.4. Stability Analysis

During sweep morphing, the equilibrium states are expressed as functions of the
control input. When the MAV is in level flight, the derivatives and dynamic inertial forces
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and moments are all zero, thus the function of the equilibrium state around the control
input can be obtained from Equation (9) using the following equation:

P−mg sin θ − D cos α + L sin α = 0
mg cos θ − D sin α− L cos α = 0
M− 2mag cos θ(l1 − l2) = 0
α = θ

(14)

Multitask capability requires stable MAV morphing from a loitering configuration to a
dashing configuration. Here, we chose several typical equilibrium states obtained using
Equation (14) in loitering and dashing configurations, respectively. The corresponding trim
results are summarized and presented in Table 2. Condition 1 is the initial cruising level
flight state of the no-sweep configuration, corresponding to the loitering configuration
where flight velocity is 20 m/s with α = 4◦. Condition 2 represents the flight state at
V = 20 m/s but in dashing configuration, with the purpose of comparing the thrust with
Condition 1 at the same velocity. Conditions 3 and 4 are the equilibrium states under
the influence of the maximum thrust P = 5 N, with minimal and maximal variation ratio,
respectively. The purpose is to compare the maximum velocity with the same thrust under
the two different configurations. By comparing the trim results obtained in the loitering
and dashing configurations, we can see that the sweep morphing can result in a maximal
decrease by 5.72% in thrust with V = 20 m/s or a maximal increase by 9.25% in flight velocity
with P = 5 N. Moreover, in each equilibrium state except the no-sweep configuration, λ2 is
larger than λ1, which indicates that the control effectiveness of the canards is greater than
that of the wings.

Table 2. Parameters of several equilibrium conditions.

Condition 1 2 3 4

λ1 0 0.8356 0 0.8305
λ2 0 1 0.0051 1

α (◦) 4 5.481 0.806 0.926
θ (◦) 4 5.481 0.806 0.926

V (m/s) 20 20 29.2 31.9
P (N) 2.761 2.603 5 5

The longitudinal mode eigenvalues of the corresponding equilibrium conditions are
presented in Table 3. The negative real part of the eigenvalues demonstrate the stability
of the aircraft. Remarkably, not all of the eigenvalues have negative real parts; thus, the
longitudinal motion modes are not always stable under different conditions, as is the transition
process between the loitering configuration and dashing configuration. In addition, the real
eigenvalues represent overdamping motion, which will lead to excessive energy consumption
and weak maneuver performance. Consequently, a flight control system must be applied to
guarantee satisfactory flying quality and the stability of transition process.

Table 3. Eigenvalues of the corresponding equilibrium conditions.

Condition 1 2 3 4

Short-period −8.2238 ± 2.9512 i * −4.6568 ± 4.4176 i −21.3151, −10.4596 −9.9703 ± 6.8222 i
Phugoid −0.2584, 0.0901 −0.3042, 0.188 −0.2177, −0.0047 −0.1931, −0.0034

* The symbol “i” represents imaginary unit.

4. Gain Scheduled Transition Controller Synthesis with Input Saturation

According to the previous analysis, the MAV cannot remain stable all the time, es-
pecially during the transition process. Thus, the controller is designed to realize the two
objectives with the consideration of input saturation:
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(1) The close-loop system is asymptotic stable at the arbitrary frozen equilibrium condition.
(2) The close-loop system is affine quadratic stable during the morphing process.

4.1. Polytopic Model Conversion

If LPV systems can be converted to the polytopic model, due to the similarity between
the polytope and convex hull, stability analysis and controller synthesis are only conducted
for the subsystem of the vertices. The method will reduce the infinite constraints imposed
on the LMIs formulation to a finite number, and it can also adjust to the variations in the
plant dynamics in order to maintain stability [28]. The gain scheduled robust control based
on the convex hull algorithm is used to satisfy the performance requirement along all
parameter trajectories; the LQR is used to guarantee the stability of the boundary point
with the consideration of input saturation.

Notations: For real symmetric matrices, M, the notation M > 0 stands for positive
definite and indicates that all the eigenvalues of M are positive. Similarly, M < 0 means
negative definite, that is, all the eigenvalues of M are negative.

The LPV model of a variable sweep MAV can be transformed into the form as:[ .
x
y

]
=
[

A(σ) B(σ)
C(σ) D(σ)

][
x
u

]
= S(σ)

[
x
u

]
(15)

where A = E−1A, B = E−1B, y is the output, σ is a vector of scheduling variables that
consists of system outputs and inputs depended on (14), A(σ), B(σ), C(σ) and D(σ) are
the continuous state-space matrices depended affinely on σ, σ= (p1, p2, . . . , pn) ∈ Θ,
pi ∈ [pimin, pimax], and Θ is the set of all affine parameters, σ, and has 2n vertices; we define
the set of vertices as Θ0.

Definition 1. A matrix polytope is defined as the convex (Co) hull of a finite number of matrices,
Ti, with the same dimensions [29]:

Co{Ti, i = 1, 2, · · · , k} =
{

k

∑
i=1

ρiTi : ρi ≥ 0,
k

∑
i=1

ρi = 1

}
(16)

where ρi represents the convex decomposition coefficient of the ith vertex of the polytopic model,
which is a function of σ.

Thus, a polytopic model can be written as:

S(σ) ∈ Co{S1, S2, · · · , Sk} =
{

k

∑
i=1

ρiSi : ρi ≥ 0,
k

∑
i=1

ρi = 1

}
(17)

where Si =

[
A(σi) B(σi)
C(σi) D(σi)

]
is the polytopic subsystem matrix of the ith vertex correspond-

ing to the state vector σi, i = 1, 2, . . . , k, k = 2n. The time-varying vector, σ, varies within a
polytope of vertices as:

σ ∈ Θ = Co{σ1, σ2, · · · , σk} =
{

k

∑
i=1

ρiσi : ρi ≥ 0,
k

∑
i=1

ρi = 1

}
(18)

and
Θ0 = {σ1, σ2, · · · , σk}, k = 2n (19)

The obtained polytopic model is different according to the different weighting rules. In
order to achieve a more reliable control effect, it is necessary to select appropriate weighting
rules to make the polytopic model more similar to the LPV model. For the LPV model
of variable sweep MAV, the configuration matrices computed by (11)–(13) mainly vary
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with flight velocity, V, and the angular variation ratio, λ1 and λ2, during the morphing
process. However, λ1 and λ2 are not only independent morphing inputs but also flight
control inputs whose relationship is dependent on (14). Considering this, we define the
scheduling parameter of the variation ratio as λ and λ = λ1 + λ2. According to (11)–(13),
using the least squares fitting method, the LPV model can be expressed as:

S(σ) =
[

A0 B0
C0 D0

]
+ λ

[
A1 B1
C1 D1

]
+ V2

[
A2 B2
C2 D2

]
(20)

Therefore, the time-varying vector will be σ = (λ, V), and a convex hull shown in
Figure 5 will be formed with four vertices given by following:

σ1 = (λmin, Vmin), σ2 = (λmax, Vmin), σ3 = (λmin, Vmax), σ4 = (λmax, Vmax) (21)
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Because the LPV systems are linearly dependent on scheduling parameters, σ, the convex
decomposition coefficient can be written as follows, based on the interpolation algorithm:

ρ1 = (1− x)(1− y), ρ2 = x(1− y), ρ3 = (1− x)y, ρ4 = xy (22)

x =
λ− λmin

λmax − λmin
, y =

V2 −V2
min

V2
max −V2

min
(23)

Based on the above weighting rules, the LPV model can be approximately transformed
into a polytopic model:

[A(t) B(t)] ≈ [
4
∑

i=1
ρiA(σi)

4
∑

i=1
ρiB(σi)] (24)

To evaluate the accuracy of the polytopic model, ε(σ) is defined as the relative mis-
matching error between the LPV model and polytopic model [16], written as follows:

ε(σ) = [A(t) B(t)]− [
4
∑

i=1
ρiA(σi)

4
∑

i=1
ρiB(σi)] (25)

And ε(σ) is calculated using the matrix two-dimensional norm:

ε(σ) =
‖ε(σ)‖2∥∥[A(t) B(t)]

∥∥
2

(26)

The calculation results are shown in Figure 6. As can be seen, within the range of
scheduling parameter variation, the average value of the mismatching error is about 2.9%,
and the maximum value is less than 5%, which to some extent demonstrates the accuracy
of the polytopic model.
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Figure 6. The mismatching error between the LPV model and the polytopic model.

4.2. Gain Scheduled Robust Control Design

Considering the polytopic model of the MAV, the gain scheduled controller is a state
feedback controller in the form of the following to guarantee the affine quadratic stable of
the system for all σ ∈ Θ:

u = −K(σ)x (27)

where:

K(σ) ∈ Co{K(σ1), K(σ2), · · · , K(σk)} =
{

k

∑
i=1

ρiK(σi) : ρi > 0,
k

∑
i=1

ρi = 1

}

Then, the close-loop system can be transformed into the form as follows:

.
x = Ac(σ)x = A(σ)x− B(σ)K(σ)x (28)

According to the previous analysis of aerodynamic characteristics, the changes of
aerodynamic characteristics are approximately linear with each control input. Therefore,
we assume that B(σ) is a constant matrix as it varies in a very small range. According to
this assumption, Ac(σ) depends affinely on σ, σ ∈ Θ, and:

Ac(σ) =
k

∑
i=1

ρi[A(σi)− BK(σi)] = Ac0 + p1Ac1 + p2Ac2 + · · ·+ pnAcn (29)

Theorem 1 ([30]). The sufficient condition for affine quadratic stability of the LPV system governed
by (28) is the existence of n + 1 symmetric matrices P0, P1, . . . , Pn, for all σ ∈ Θ0, satisfying the
following LMIs:

AT
c (σ)P(σ) + P(σ)Ac(σ) < 0 (30)

P(σ) > 0 (31)

AT
ciPi + PiAci ≥ 0 (32)

where:
P(σ) = P0 + p1P1 + p2P2 + · · ·+ pnPn (33)

When the LMIs (30)–(32) are feasible, V(x,σ) = xTP(σ)x is a Lyapunov function of
the system for all values, σ ∈ Θ. Theorem 1 has been proven in [30]. Theorem 1 relies
on the concept of multi-convexity, and the additional constraint restrictions on P(σ) may
increase conservatism; however, the resulting criterion will always improve on the standard
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quadratic stability. Furthermore, Theorem 1 can be combined with a branch-and-bound
scheme to reduce conservatism through dividing the variables box into smaller hyper-
rectangles and reapplying Theorem 1 to each of these hyperrectangles. In our study, the
scheduling variable, pi, is assumed to be time-invariant and valued in the interval [pimin,
pimax]; thus, it is easy to establish affine quadratic stability over the entire variables box [30].
The affine LPV modeling method is based on the concept of convex hulls, and the multi-
convexity requirement is equivalent to the additional constraint (32); thus, constraint (32)
can be satisfied for the polytope system (28). According to Theorem 1, we can summarize
the corollary as follows.

Corollary 1. Considering the polytopic model (24), if there exists, K(σi), a positive definite matrix,
P(σi), satisfying the constraint (30) for all σi ∈ Θ0, i = 1, 2, . . . , 2n, the gain scheduled controller
in the form of (27) can guarantee the affine quadratic stability of the close-loop system for all σ ∈ Θ.

Therefore, if the constraint (30) is satisfied for the polytopic model, the gain scheduled
controller, K(σ), at any point inside the rectangular convex hull can be decided by (22), (23),
and (37).

4.3. LQR State Feedback Control Design with Input Saturation

The LQR technique is applicable to linear time invariant (LTI) systems and has been ap-
plied in various aircraft models for stabilization augmentation and trajectory tracking [29].
A properly designed LQR controller can not only guarantee the stability of a closed loop
system, but also provides optimal control performance [15]. Therefore, LQR state feedback
is appropriate for the LTI system of the vertex in Θ0. In addition, the energy consumption
by large-scale sweep morphing can also be reduced with the optimal control law, which is
required to minimize the performance index function, defined as:

J =
1
2

∞∫
0

(xTQx + uTRu)dt (34)

where Q and R are weighting matrices and Q = QT ≥ 0, R = RT> 0. The corresponding full
state feedback controller is given by:

u = −K(σi)x (35)

Selecting appropriate Q, R, and solving the Riccati equation;

PA + ATP− PBR−1BTP + Q = 0 (36)

where P = PT > 0. The optimal control gain matrix can be obtained as:

K(σi) = R−1BTP (37)

The Lyapunov function V(x,σi) = xTPx is considered because P is a symmetric positive
definite matrix, so:

V(x, σi) > 0 (38)

Combining (15) and (34)–(36), the time derivative of the function V(x,σi) can be
evaluated as:

.
V(x, σi) =

.
xTPx + xTP

.
x

= xT [(A− BK)TP + P(A− BK)]x
= xT [(AT − PBR−1BT)P + P(A− BR−1BTP)]x
= −xT(Q + PBR−1BTP)x
= −xTQx− uTRu

(39)



Aerospace 2022, 9, 463 15 of 22

As Q ≥ 0, R > 0, we can assume that:

.
V(x, σi) ≤ 0 (40)

Obviously, if and only if x = 0, then
.

V = 0. Thus,
.

V ≡ 0, and according to the Lyapunov
theory, the LQR controller can guarantee the LTI model to be asymptotic and stable.

However, the inputs are restricted by the actuators; umax is defined as the maximum
input and ujmax is the jth element of umax. According to this, the system at each vertex can
actually be semi-globally stabilized [31] by the state feedback law (35) for the prescribed
bounded set Ωi ⊂ Rn; Ωi is contained in the domain of attraction of the equilibrium state
and defined as:

Ωi =
{

x
∣∣∣∣kijx

∣∣ ≤ ujmax, j = 1, 2, 3
}

(41)

where kij is the jth row of the matrix K(σi).
Moreover, due to the structural restriction of the morphing MAV, the input is further

restricted at the vertex condition so that the control effectiveness will reduce, thereby
possibly causing the MAV to become uncontrolled. In this scenario, the closed-loop LTI
model system can be rewritten as:

.
x = Ax + Bsat(u) (42)

where sat(u) is the control input with actuator saturation restriction.
Through the aerodynamic characteristics analysis, we can see that the aerodynamic

forces vary monotonically with the control inputs λ1 and λ2, and the effect of λ1 and λ2
are opposite. Furthermore, the input saturation will only restrict the control input in one
direction, thus the control torque, Bsat(u), is expected to satisfy:

1
2
‖Bu‖ ≤ ‖Bsat(u)‖ ≤ ‖Bu‖ (43)

And we assume that:
Bsat(u) = τ(t)Bu (44)

where τ(t) is a time-varying weighting coefficient and 1/2 ≤ τ(t) ≤ 1.
Then, the time derivative of the function V(x,σi) can be evaluated as:

.
V(x, σi) =

.
xTPx + xTP

.
x

= [Ax + Bsat(u)]TPx + xTP[Ax + Bsat(u)]
= [Ax + τ(t)Bu]TPx + xTP[Ax + τ(t)Bu]

= xT [(AT − τPBR−1BT)P + P(A− τBR−1BTP)]x
= −xT [Q + (2τ − 1)PBR−1BTP]x

= −xTQx− (2τ − 1)uTRu

(45)

Due to 2τ – 1 ≥ 0, Q ≥ 0 and R > 0, such that the LMI (40) can still hold. If and only
if x = 0, then V = 0

.
V = 0. Thus,

.
V ≡ 0, and according to the Lyapunov theory, the close-

loop system (42) can still be semi-globally stabilized by the state feedback law (35) when
x ∈ Ωi. This implies that the controller, K(σi), designed by the LQR technique for each
vertex can satisfy constraint (30). Then, according to Corollary 1, the gain scheduled
controller, K(σ), can guarantee the affine quadratic stability of the close-loop system for the
prescribed bounded set, Ω ⊂ Rn, defined as:

Ω =
{

x
∣∣∣∣k jx

∣∣ ≤ ujmax, j = 1, 2, 3
}

(46)

where kj is the jth row of the matrix, K(σ).
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5. Simulation Results and Analysis

In order to verify the performance of the gain scheduled transition controller obtained
by the method in Section 4 with the vertex flight conditions shown in Table 2, close-loop
simulations of the transition process were conducted based on the nonlinear dynamic model.
The block diagram of the flight controller structure is shown in Figure 7. The observer
is designed to estimate the system states. In this research, the loitering configuration
corresponds to Condition 1, and the dashing configuration corresponds to Condition 4. The
following two situations are considered: transition process from the loitering configuration
to the dashing configuration, transition process from the dash configuration to the loiter
configuration. The effect of morphing rate is also taken into account in the simulation. The
airfoils are actuated by four servos housed in the fuselage. Here, we assume that the servos
are described as a second order system and can provide the required moments and powers
to assert the behavior [24].

Figure 7. Control block diagram.

Figure 8 shows the close-loop dynamic responses of the transition process from loi-
tering configuration to dashing configuration within 2 s, 5 s, and 10 s, respectively. The
morphing starts with an initial flight velocity of 20 m/s at 1 s. As the morphing occurs, the
flight velocity, V, increases and then converges to 31.9 m/s gradually, which corresponds to
Condition 4 after the morphing finishes. Furthermore, the attack angle, α, and pitch angle,
θ, are also convergent to the new equilibrium state. During the whole transition process,
the variation range of altitude, h, is less than 0.1 m, and h eventually retains the initial
height. In addition, it is worth noting that the close-loop system with the three different
morphing rates are all stable during the transition process, and the faster morphing rate
would result in a faster convergence rate as well as a larger oscillation amplitude of the
state parameters. After the morphing command finishes, the sweep input, λ2, remains
almost constant due to the actuator saturation restriction, while the λ1 and thrust, P, would
continue to adjust until achieving a new balance. Moreover, λ1 and thrust, P, both vary
within acceptable ranges for the different morphing rates, which demonstrates that the
gain scheduled controller can realize the transition control objective for situation 1.
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Figure 9 shows the close-loop dynamic responses of the transition process from dash-
ing configuration to loitering configuration, the corresponding flight state transforming
from high speed to low speed, and the simulation was conducted with the three differ-
ent morphing rates. It is observed that the transition process in situation 2 is stable. As
morphing occurs, the flight velocity, V, gradually decreases from 31.9 m/s to 20 m/s, with
the thrust decreasing, and all the longitudinal motion parameters finally converge to the
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equilibrium state of flight condition 1. Similarly, the convergence rate is faster and the
oscillation amplitude of α, θ, and pitch angular velocity, q, are larger with a faster morphing
rate. Furthermore, the variation range of altitude, h, is below 0.3 m and is smaller with
lower morphing rates. Furthermore, q varies more placidly than that in situation 1, which
demonstrates that guaranteeing the transition process stability from loitering configuration
to dashing configuration faces much more challenges. Due to the placid motions, it is easy
to achieve a new balanced state with only minor adjustments of the sweep control inputs.
In consequence, the gain scheduled controller based on the LPV model can eliminate the
disturbance caused by sweep morphing and guarantee the stability of the transition process
in these two situations.
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As we know, unpredictable atmosphere disturbance and unmodeled dynamics exist
in nearly all aircraft systems, and it is almost impossible to describe them precisely using
mathematical models. Therefore, the gain scheduled controller needs to be sufficiently
robust against the dynamic effects. In the following described simulations, the Gaussian
white noise shown in Figure 10 is added in the pitch moment as an interference signal to
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verify the robustness. Figure 11 shows the close-loop dynamic responses of the transition
process in the two situations under the white noise condition. The flight velocity, V, and
altitude, h, present small amplitude fluctuations under the effect of disturbance moment,
while the morphing proceeds as usual without any trend of divergence. With the successive
adjustments of sweep control inputs λ1 and λ2, the difference values of V and h between
the equilibrium states are less than 0.2 m/s and 1.5 m, respectively. The simulation results
demonstrate that the designed gain scheduled transition controller has strong robustness
for random disturbance.
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6. Conclusions

In this paper, an innovative variable sweep scheme was applied to a tandem-wing
MAV of which the shape control and flight control are integrated, and multitask adapt-
ability could be achieved by symmetric sweep morphing to alter the configuration of the
considered MAV without elevator changes. For the large-scale morphing MAV, the aerody-
namic effects caused by sweep morphing were presented through a numerical simulation
method and functionalized with the sweep inputs. A nonlinear longitudinal dynamic
model for the considered MAV was then proposed, and the additional terms generated by
morphing were decomposed and simulated by open-loop dynamic response. The results
showed that the additional forces and moments and the changes of gravity center caused
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by the mode transition process were negligibly small. The LPV model was obtained by
the Jacobian linearization approach to approximately characterize the complex behavior
of the transition process. The stability analysis based on the LPV model showed that the
MAV was not always stable under different equilibrium conditions, as well as during the
transition process. Furthermore, the LPV model was converted to a polytopic model, and
the average value of mismatching error between the LPV model and the polytopic model
was about 2.9%. Based on the polytopic model, a gain scheduled controller was proposed
to guarantee the affine quadratic stability of the close-loop model during the morphing
process, and the LQR method was used to guarantee asymptotic stability and improve the
robustness at the arbitrary frozen equilibrium condition. Furthermore, the Lyapunov function
proved that the controller could still satisfy the asymptotic stability with the consideration of
input saturation. Finally, the results of simulation based on the nonlinear model demonstrated
that the proposed controller exhibits great performance during the transition process between
the loitering configuration and dash configuration. In addition, the simulation under the effect
of disturbance moment illustrated that the designed gain scheduled transition controller had
strong robustness against random white noise.

In our future works, we will pay attention to adaptive sliding mode control for attitude
control; the morphing MAV’s dynamic model representation will be further optimized to
improve control precision, and flight tests will also be carried out.
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Abbreviations

λ1 variation ratio of canard Fy forces in zb axis
λ2 variation ratio of wing P thrust
δ1cmd command of canard morphing Fxδ additional inertia force in xb axis
δ2cmd command of wing morphing Fzδ additional inertia force in zb axis
L lift Mδ additional inertia pitch moment
D drag MG pitch moment generated by the mass center shift
M pitch moment ∆xcg shift of gravity center
CL lift coefficient h height
CD drag coefficient δT hrust control
Cm pitch moment coefficient “∆” deviation between the variables

and equilibrium state
α attack angle ρi convex decomposition coefficient
q pitch angular velocity σ vector of scheduling variables
ρ air density Θ set of all affine parameter
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V flight velocity Θ0 set of vertices
u flight velocity in xbaxis ε(σ) relative mismatching error
w flight velocity in zb axis Q weighting matrix
θ pitch angle R weighting matrix
J time-varying moment of inertia K(σ) gain scheduled controller
Fx forces in xbaxis sat(u) control input with actuator

saturation restriction
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