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Abstract: To solve the problem of high-precision optical navigation for the descent landing of lunar
and planetary probes, an optical navigation method based on the spatial position distribution model
is proposed. The method is based on crater detection, and an imaging cosine equivalent mathematical
model based on the correspondence of crater objects is constructed. The geometric distribution of
the probe spatial position is described to form an Abelian Lie group spatial torus to achieve absolute
positioning for parametric optical navigation, Finally, the effect of the measurement error of crater
detection on the positioning and attitude of the optical navigation system is discussed, with a fitted
ellipse used as a typical analysis object. The effects of different crater distribution configurations
and different detection errors on the performance of the proposed optical navigation algorithm are
analyzed. The results of Monte Carlo simulation experiments showed that the algorithm proposed
in this paper had the advantages of high stability, high accuracy, and good real-time performance,
compared with existing methods.

Keywords: optical navigation; crater detection algorithm; spatial position distribution; torus; lu-
nar exploration

1. Introduction

The main topographical characteristics of the lunar surface include lunar seas, lunar
land, craters, and lunar crater rays, among which craters are the most obvious topographical
characteristic. Craters are usually bowl-shaped depressions with diameters ranging from
meters to hundreds of kilometers [1].

Craters have the advantages of being clear, stable, and easy-to-extract structures
and are widely distributed on the surface of the moon [2,3], Mars [4], asteroids [5], and
satellites [6], and are widely used for optical navigation. The crater detection algorithm
(CDA) is designed to extract the crater in an image based on optical-image or laser-elevation
information obtained by the detector. It is essential in the optical navigation system
for planetary exploration landing based on the detection of craters, stones, and other
characteristic aspects of terrain. The CDA and its developed curve fitting, semicircle fitting,
and other methods are widely used, and the corresponding algorithms are also used in
astronomical interplanetary navigation [7].

There are many methods for extracting craters. At present, CDA using morphology,
shading analysis, Canny edge detection, CNNs (convolutional neural networks), deep
learning, maximum entropy threshold ternary [8], and other algorithms have been proposed
and applied to lunar and planetary exploration [9–12]. From an analysis of the underlying
logic of identifying the crater, the technical approaches formed by the above algorithms
mainly include the following two types: first, pre-modeling the shape, imaging, structure,
and other characteristics of the crater, then approximating this model with some algorithm
mentioned above for crater identification; second, applying crater detection data as learning
samples for crater detection, using machine learning and other algorithms to identify and
select the typical features of craters that are different from other terrains, and completing
the selection of craters without artificially defining craters specifically.
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CDA-based optical navigation (CDA-OPNAV) based on crater detection is usually not
used alone, but in combination with inertial navigation and astronomical navigation, etc. The
combination can be divided into loose and deep-tight, and the differentiation criteria
are the degree of utilization of detection information and the degree of mutual assistance.
Regardless of the algorithm used for crater identification and the combination of navigation,
the algorithm core is the same, that is, under the condition of identifying the lunar terrain,
the imaging mathematical relationship between the images is constructed by analyzing
the imaging of the optical navigation camera. Then, the current position and attitude
information of the detector are calculated to complete the hazard relative navigation (HRN)
or terrain relative navigation (TRN).

In recent years, with the implementation and development of deep space exploration
missions, such as those to the moon and Mars, many researchers have carried out research
on CDA-OPNAV and obtained abundant results. One study [13] analyzed feature-based
observability and used Fisher information to calculate the lower bound of error. The US
Mars Rover used feature point extraction and matching between sequential images for
relative navigation [14]. Another study [15] combined feature point vector observation
with inertial guidance systems. However, there are still problems with optical navigation
systems, such as difficulty in calculating absolute navigation parameters in geographic
coordinate systems. Cui et al. introduced curve features into the OPNAV system to achieve
higher accuracy optical navigation, based on the curve features at the edge of craters
on the lunar surface [16]. In addition to craters, the lunar surface also has information
on factors such as rocks, ridges, and shadow features, which can be used to construct
image measurement information, angle measurement information, line of sight measure-
ment information, distance measurement information, and line of sight + distance vector
measurement information to complete the navigation solution [17].

In summary, the following two main problems exist in previous studies: first, inad-
equate utilization of feature information; second, the lack of clear analysis and effective
treatment of the transmission relationships of observation errors, such as feature fitting
in optical navigation systems and its effects. Specifically, after acquiring the topographic
coordinates of the surface features of the Moon, Mars, and other celestial bodies and their
imaging relationships, the existing optical navigation methods directly apply the measure-
ment information to the integrated navigation system, failing to fully mine the distribution
characteristics of the detector’s position in space, and making insufficient use of craters
and other feature information. However, no matter what feature recognition method is
adopted, the detected terrain characteristics, the fitted ellipse, and other curves cannot
be completely consistent with their real positions and shapes. This error is transferred
to the detector position and attitude information solved by optical navigation with the
process of the camera imaging projection relationship, the least squares with error, and the
iterative solution of nonlinear equations, which contain error propagation characteristics
that require in-depth analysis.

In general, the optical navigation system of the detector based on optical detection
information can be divided into two types: one is optical navigation based on extracting
feature points, such as methods based on SURF (Speeded-up Robust Features), SIFT (Scale-
Invariant Feature Transform), ORB (Oriented FAST and Rotated BRIEF), and Harris features;
the other type of navigation is based on terrain characteristics, such as craters, rocks,
ridges, and human-made beacons. The second-type OPNAV method can also be called the
landmark information-based navigation method [18]. Compared to traditional methods
based on extracting feature points, feature terrain-based navigation methods, such as
CDA-OPNAV, have the following advantages: (1) CDA-OPNAV can be used to calculate
the absolute position information of the detector in real time and obtain the geographic
coordinates of the detector, while the method based on extracted feature points makes it
difficult to calculate the geographic coordinates of feature points extracted in real time, and
can generally only be used to perform inter-frame matching and construct visual odometry
to complete relative navigation; (2) CDA-OPNAV integrates the global information of
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captured images and is not easily affected by shooting conditions and shooting angles,
while the method based on extracting feature points is easily affected by detector maneuvers
and shooting angles, and is prone to mismatching; (3) CDA-OPNAV has a “what you see is
what you get” feature. The optical navigation system can calculate the absolute coordinates
of the rover at the current moment in real time from the captured images, while the feature
point extraction-based methods often require frame matching, followed by a period of
filtering or optimization to solve for the displacement over time. In addition, in lunar and
planetary exploration missions, the landing point is often given in the form of absolute
coordinates of the geographic system, and the guidance system also needs the current
absolute coordinates of the probe to carry out path planning. Therefore, it is necessary
to carry out research on navigation methods based on terrain characteristics, especially
CDA-OPNAV methods based on crater detection information.

This paper presents an optical navigation method based on the spatial position distri-
bution model of the detector for the descending landing phase in planetary exploration,
and the altitude range is about 2.4 km to 100 m. After achieving robust crater detection,
the spatial distribution of the detector’s position under the condition of acquiring surface
feature information of celestial bodies is described by the Abelian Lie group spatial torus to
form the Torus-OPNAV navigation method. In addition, although the crater is taken as the
typical analysis object and main description feature in this paper, the points, lines, curves,
circles, etc. are all special cases of the crater-fitting ellipse under different parameters,
indicating that the method has a general application that can be widely used in imaging
detection navigation technology. On this basis, the ellipse fitting error caused by imaging
detection error is analyzed, and its error propagation characteristics in the process of optical
imaging, coordinate transformation, ellipse parameter fitting, nonlinear iteration, and so
on are defined, and the impact of crater fitting error on optical navigation positioning and
attitude determination is described by the imaging cosine variance contribution function.

2. Crater Detection and Ellipse Fitting Considering Errors

Strictly speaking, the craters are not perfectly elliptical, and the longitudinal profile
of the craters can be mainly divided into basin-shaped and bowl-shaped structures, due
to the superposition and burial of old craters during the formation of new ones. This
paper mainly considers the projection of the crater onto the image plane during the optical
imaging process, and the projected image can be approximated as an ellipse [19].

Crater detection based on maximum entropy thresholds (METS-CDA) and the ellipse
fitting method proposed in Reference [8] are used as the sources of optical navigation
information. The METS-CDA algorithm consists of four parts: maximum entropy threshold
segmentation; image preprocessing and edge detection; normalized multi-index constraint
matrix construction and edge matching; crater ellipse fitting and algorithm performance
evaluation. As shown in Figure 1, the technical route of the METS-CDA method is briefly
described below.

Firstly, the Gauss kernel function G(x, y) was selected to preprocess the original
image Io, and, then, the image segmentation double threshold [α, β], corresponding to the
maximum information entropy, was calculated to complete the ternary image; on this basis,
the crater edge detection was completed. The length, distance, light and shade, direction,
and other information of the crater edge were comprehensively extracted, and a normalized
multi-index constraint matrix Ji(i = 1, 2 . . . 6) was constructed to complete the crater edge
matching. Finally, the crater ellipse fitting was carried out, and the quality of the crater was
evaluated and extracted by quality parameters, such as detection rate D, detection quality
Q, and branch factor B, and detection accuracy P. The results of the crater extraction are
shown in Figure 2.
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Figure 1. Technology roadmap of METS-CDA.

The lunar crater is modeled as an ellipse, which is described in Formula (1), and X is
the gray coordinate point set at the edge of the crater:

F(X) = XTAX + bTX + 1 = 0 (1)

Xi =

[
xi
yi

]
, b =

[
β1
β2

]
(2)

Due to the imaging error, there is an error between the coordinates of the edge of the
crater obtained from the actual measurement and the coordinates of the real edge of the
crater. Therefore, the actual measured coordinates of each point on the edge and the fitting
equation are:

F̃(X) = XTAX + bTX + 1 = ε (3)

X̃i =

[
x̃i
ỹi

]
=

[
xi + δx
yi + δy

]
(4)
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The least squares method (LSM) is used to calculate the parameters A and b in
Formula (3):

A =

[
α1 0.5α2

0.5α2 α4

]
b =

[
β1
β2

]
(5)

Construction of the ellipse coordinate matrix H
(

X̃
)

is completed by using the follow-
ing equation:

Hi(Xi) =
[

x2
i xiyi y2

i xi yi
]T (6)

For the whole crater coordinate point set with errors X̃:

H
(

X̃
)
=
[
H1

(
X̃1

)
H2

(
X̃2

)
· · · Hn

(
X̃n

)]T
(7)

Bring (5), (6), and (7) into Formula (4) to obtain the ellipse fitting formula with error;
:= represents the definition of intermediate vector and matrix:

H
(

X̃
)[

α1 α2 α4 β1 β2
]T

+ 1n×1 = H
(

X̃
)

Θ(A, b) + 1n×1 = ε (8)

The ellipse parameter vector Θ(A, b) of the crater is solved using the following equations:

minJ(Θ(A, b)) = εTε =
(

H
(

X̃
)

Θ(A, b) + 1n×1

)T(
H
(

X̃
)

Θ(A, b) + 1n×1

)
(9)

Θ(A, b) = −
(

HT
(

X̃
)

H
(

X̃
))−1

HT
(

X̃
)

1n×1 (10)



Aerospace 2022, 9, 496 6 of 28

The fitting ellipse center coordinates Xo are:

Xo =

[
xo
yo

]
= −1

2
A−1b (11)

3. Lander Optical Navigation Method Based on Crater-Detection Algorithm
3.1. Optical Navigation Imaging Measurement Model

After extracting the crater by the METS-CDA method, the position and attitude
information of the lander (camera) can be calculated according to the relationship between
the homogeneous imaging pixel system coordinates of the crater Puv, the homogeneous
coordinates of the planetary surface fixed geographical system of the center of the crater
P f , and the camera system coordinates PC:

Puv =
[

u v 1
]T

P f =
[

X f Y f Z f 1
]T

PC =
[

XC YC ZC ]T (12)

The direction cosine matrix from the lander body system Ob −XbYbZb to the planetary
surface fixed geographical system O f − X f Yf Z f is C f

b , and the position of the lander under
the geographical system is T:

Cb
f =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 =

cT
1

cT
2

cT
3

, (13)

T =
[
XC YC ZC

]T. (14)

The imaging model of crater j is:

Uj =
uj
f =

XC
j

ZC
j

, Vj =
vj
f =

YC
j

ZC
j

. (15)

where f is the focal length, and XC
j , YC

j , and ZC
j are geographical system coordinates of

crater j. Define the inhomogeneous imaging pixel system coordinates P̃j
UV of crater j:

P̃j
UV =

[
Uj Vj

]T. (16)

Linking the lander pose information with the optical imaging:

XC
j

YC
j

ZC
j

 =

c11 c12 c13
c21 c22 c23
c31 c32 c33




X f
j

Y f
j

Z f
j

+

XC
YC
ZC

. (17)

Rewrite the above formula into homogeneous form:

PC =
[
Cb

f |T
]
P f

j . (18)

The optical navigation of the lander, based on the CDA, is to obtain the values of
Formulas (13) and (14), that is, to solve the 12 variables

[
Cb

f |T
]

in Formula (18).
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Consider two kinds of constraints. For any crater j, simultaneous Formulas (15) and (17)
can construct two of the first types of detection constraints πj

1:

π1
j :


Uj =

c11X f
j + c12Y f

j + c13Z f
j + XC

c31X f
j + c32Y f

j + c33Z f
j + ZC

Vj =
c21X f

j + c22Y f
j + c23Z f

j + YC

c31X f
j + c32Y f

j + c33Z f
j + ZC

. (19)

Write Formula (19) into matrix form:
[
cT

1 |XC
]
P f

j −Uj
[
cT

3 |ZC
]
P f

j = 0[
cT

2 |YC
]
P f

j −Vj
[
cT

3 |ZC
]
P f

j = 0
. (20)

Rewriting Formula (20) with inhomogeneous coordinates of crater imaging:[cT
1 XC

cT
2 YC

]
P f

j − PUV
j

[
cT

3 |ZC

]P f
j = 0. (21)

The second type of constraint π2 is the directional cosine matrix constraint:(
Cb

f

)T
Cb

f = I. (22)

To reduce the computational complexity, the traditional optical navigation method
usually carries out the navigation solution after identifying and selecting four craters. The
corresponding constraint πj

1 is:

π1
j=1:4

([
Cb

f |T
])

= 0. (23)

Supplementary formula π2:

π2
([

Cb
f |T
])

=


cT

1 c1 − 1
cT

2 c2 − 1
cT

3 c3 − 1
cT

1 c2

 = 0. (24)

The simultaneous two types of constraints π1 and π2 are as follows:

π
([

Cb
f |T
])

=

π1
([

Cb
f |T
])

π2
([

Cb
f |T
]) = 0. (25)

πk = π
([

Cb
f |T
]

k

)
, (26)

Formula (26) can be solved by the Gauss–Newton method:

[
Cb

f |T
]

k+1
=
[
Cb

f |T
]

k
−πk

 ∂πk

∂
[
Cb

f |T
]

k


−1

. (27)
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3.2. Improved Gradient Descent Method in OPNAV

Formula (27) usually converges slowly. To solve this problem, an improved gradient
descent (IGD) method is proposed. The gradient of the solution objective function is
constructed as follows:

J
([

Cb
f |T
])

=
1
2

(
π1

j=1:3
π2

)T(
π1

j=1:3
π2

)
. (28)

Design the iteration step λ and direction g of the improved gradient descent method:

λ =


λ0 J

([
Cb

f |T
]

k+1

)
− J
([

Cb
f |T
]

k

)
≤ 0

0.5 ∗ λ J
([

Cb
f |T
]

k+1

)
− J
([

Cb
f |T
]

k

)
> 0

, (29)

g =
∂π
([

Cb
f |T
])

∂
[
Cb

f |T
] +

(
J
([

Cb
f |T
]

k+1

)
− J
([

Cb
f |T
]

k

))^
g⊥. (30)

The value λ0 is the initial iteration step size, and
^
g⊥ is the vertical vector of the

iteration direction of the previous step. The improved gradient descent formula is shown in
Formula (31). [

Cb
f |T
]

k+1
=
[
Cb

f |T
]

k
− λg. (31)

Compared with Formula (27), Formula (31) can significantly improve the solution speed.
When more than four craters are detected at the same time, there are two methods

to solve the position and attitude of the aircraft. The first method is to comprehensively
consider the detection information of all craters and obtain the optimal solution that
conforms to all imaging relations. The second method is to select four optimal craters from
all detected craters for solution.

When the first method is adopted, the variable covariance matrix Q is introduced to
Formula (28), to improve the objective function. The new objective function is:

J
([

Cb
f |T
])

=
1
2

(
π1

j=1:3
π2

)T

Q

(
π1

j=1:3
π2

)
. (32)

The variable covariance matrix Q is shown in Formula (33), which is the crater de-
tection reliability matrix, and n is the number of detected craters. The value Σ2n×2n is a
diagonal matrix, and each element in the diagonal matrix is the corresponding covariance
of the craters.

Q = blkdiag[Σ2n×2n, I6×6] (33)

Σ2n×2n = diag
[
σ2

i
]

i = 1, 2, · · · , n (34)

This method enlarges the dimension of the formula, increases the complexity of solving
the formula, and reduces the real-time performance of the navigation system.

3.3. Spatial Positioning Distribution Model of Torus-OPNAV

The traditional lander positioning method based on optical crater detection infor-
mation usually needs to detect four craters to complete the navigation solution. When
the number of detected craters is less than 4, the observation vector corresponding to the
detected craters is often taken as the analysis object, and the observation vector error is
taken as the observation to construct the error transfer formula for navigation. This kind of
optical navigation method has three disadvantages:
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(1) When the number of the reference feature terrain is less than 3, the calculation
results of the optical navigation system may not converge.

(2) The detection information of the detected craters is not fully utilized, and the spatial
position distribution and other information contained in the optical imaging mathematical
model are not fully analyzed.

(3) Under some observation conditions, the solution space of lander position solution
may be flat, as shown in Figure 3, which brings challenges to iterative solution methods,
such as the gradient descent (GD) method.
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In addition, to improve the efficiency of the navigation system, when there are many
detected craters and other terrain characteristics, it is necessary to select several craters
from all the detected craters for optical navigation, which may mean the optical navigation
solution is unable to reach an optimal result. Ref. [13] analyzed the infimum of optical
navigation position estimation error under the condition of n detected craters by calculating
the Fisher information matrix and the Cramér–Rao bound:

3
tr(Fn)

=
3(σuzc)2

2n f 2 +
n
∑

i=1

(
u2

i + v2
i
) . (35)

In Formula (29), Fn is the Fisher information matrix, σu is the measurement noise
variance, zc is the z-direction projection of the observation feature in the camera system
coordinate system, f is the focal length of the navigation camera (NAVCam), and [ui, vi] are
the imaging coordinates of the observation feature. Formula (29) shows that when the lander
height is constant, the lower bound of position estimation error decreases with the increase
in the number of detection characteristics. In actual engineering, geometric distribution
method, or information entropy method are usually used to select several optimal craters
for a navigation solution, so the infimum by Fn of error makes it difficult to meet the design
requirements of the navigation system. Therefore, it is necessary to fully mine the optical
detection information and analyze the general form of error propagation characteristics.

An OPNAV algorithm independent of the observation vector of the crater is con-
structed, as shown in Figure 4. The figure depicts the planetary surface fixed geographic
coordinate system O f − X f Yf Z f , body coordinate system Ob − XbYbZb, camera system
coordinate system OC − XCYCZC, imaging coordinate system o − uv, and their attitude
conversion relationships used in the optical navigation system. After successful detection,
the craters are projected onto the image plane, and the imaging cosine equivalent model be-
tween objects and images is established to realize optical navigation attitude determination
and position determination.
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When the optical NAVCam of the lander detects any two craters Pi,j, the imaging

cosine
〈

PUV
i,j

〉
of the two craters in the image coordinate system is:

〈
PUV

i,j

〉
=

UiUj + ViVj + 1√
U2

i + V2
i + 1

√
U2

j + V2
j + 1

. (36)

At the same time, considering the inhomogeneous coordinates P̃
f
i,j of the craters and

the position coordinates r of the lander in the geographical system:

〈
PUV

i,j

〉
=

r2 − 2
(

P̃
f
i + P̃

f
j

)
r + P̃

f
i P̃

f
j∣∣∣r− P̃

f
i

∣∣∣∣∣∣r− P̃
f
j

∣∣∣ , P̃
f
i,j =

[
X f Y f Z f ]T. (37)

When only two craters are observed, although the lander position cannot be solved,
Formulas (36) and (37) reflect the spatial position distribution of the lander in the geographical
system, and the lander exists in the spatial position distribution surface described in Figure 5.

The surface described in Figure 5 is a torus. It is defined as the product of two circles
and is an Abelian Lie group [20]:

S1 × L1 = T2 (38)
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Torus in optical navigation can be obtained from a set of parametric Formula (39). The
parametric formula consists of two parts: the point set Pl ∈ L, describing the circle L in space;
and the point set Ps ∈ S, describing the surface S where the lander is located in space:

L :


∣∣∣2Pl −

(
P̃

f
i + P̃

f
j

)∣∣∣ = d tan−1
〈

PUV
i,j

〉(
2Pl −

(
P̃

f
i + P̃

f
j

))
•
(

P̃
f
i − P̃

f
j

)
= 0

S : 2|(Ps − Pl)| sin
〈

PUV
i,j

〉
= d

(39)

In Formula (39), d is the Euclidean distance between two craters. When given a pair
of crater detection results or an imaging cosine, the spatial position distribution of the
lander can be accurately described mathematically. We avoid introducing the calculation of
formulas such as Gauss–Newton, GD or IGD and reduce the amount of calculation.

When three craters are given, three sets of constraints {L, S} can be constructed to
numerically solve the position P of the lander:

P = {L, S}12 ∩ {L, S}13 ∩ {L, S}23 (40)

Four solutions Λi (i = 1, 2, 3, 4) conforming to the constraints can be obtained from
three sets of constraints. As shown in Figure 6, the lander must be in the position of one
of the solutions. Combined with the height constraint h > 0 and the velocity direction
constraint, the position Pk of the lander at time k can be uniquely determined:

Pk= argmin(X (Λ) +X (P))
= argmin

∥∥∥(Λi
k −Λi

k−1

)
+
(
Pk − Pk−1

)∥∥∥
2

i = 1, 2, 3, 4 (41)

[Pk]z = h ≥ 0 (42)
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In Formula (41), X (Λ) is an objective function of solution Λi, X (P) is an objective
function of the position.

After the position of the planetary lander is solved, the attitude is solved by using its
coordinate information. According to Formula (17), after the lander position information
is given, the attitude information is decoupled from the positioning result and can be

calculated directly. Considering all the geographical system coordinates P̃
f

and camera
system coordinates PC of the crater during the imaging process, the following conversion
relations exist between them:

PC = CC
f P̃

f
= Cb

f

(
P̃

f
+ r
)
= Cb

f
¯
P

f

. (43)

where
¯
P

f

is the augmented homogeneous geographical system coordinate:

¯
P

f

= P̃
f
+ r. (44)

The lander attitude is:

Cb
f = PC

(
¯
P

f
)T
¯

P
f
(

¯
P

f
)T
−1

. (45)

4. Torus-OPNAV Error Analysis and Its Influence

By analyzing Formulas (1) and (3), due to the detection error, the extracted crater edge
does not necessarily coincide with the real edge, so the crater ellipse fitting also produces
errors. Crater fitting error directly reflects the influence of detection error.

The essence of the CDA-OPNAV method is to fit the crater ellipse formula and calcu-
late the ellipse center coordinates through the least squares algorithm when the crater is
detected, analyze the mathematical relationship between the image point coordinates and
the camera system coordinates in the imaging process of the ellipse center, and complete
the lander navigation solution.

4.1. Error Analysis of Crater Ellipse Fitting

The detection error of crater obeys normal distribution:

X̃i =
[
x̃i ỹi

]T
= Xi + υi υi ∼ N

(
0, RXiXi

)
(46)
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For one point on the crater X̃i, the imaging error is:

ε
(

X̃i

)
= εi = Hi

(
X̃i

)
Θ(A, b) + 1n×1. (47)

The Taylor expansion of Formula (47) is as follows:

ε
(

X̃i

)
= ε(Xi) +

∂ε(Xi)

∂Xi

(
X̃i −Xi

)
+ O(δXi), (48)

where O(δXi) is the higher-order infinitesimal of δXi. Only the first-order term of
Formula (48) is considered:

δεi = ε
(

X̃i

)
− ε(Xi) =

∂ε(Xi)

∂Xi

(
X̃i −Xi

)
=

∂εi
∂Xi

δXi. (49)

Substitute Formulas (3) and (5) into Formula (49):

∂ε(Xi)

∂Xi
=

[
2α1xi + α2yi + β1
α2xi + 2α4yi + β2

]T

. (50)

Then, the observation residual variance of the crater is:

σ2
i = E

[
δε2

i

]
=

∂εi
∂Xi

E
[
δXiδXT

i

]∂εi
T

∂Xi
=

∂εi
∂Xi

RXiXi

∂εi
T

∂Xi
. (51)

Next, the influence of the single point observation error of the crater on the crater ellipse
fitting is calculated. Substituting error Formula (51) into Formula (8), solve the ellipse coordinate
matrix with errors Hi

(
X̃i

)
, separate the errors and ignore the higher-order error term:

Hi

(
X̃i

)
=


x2

i + 2xiδxi
2

xiyi + xiδyi + yiδxi
y2

i + 2yiδyi
xi + δxi
yi + δyi

 =


x2

i
xiyi
y2

i
xi
yi

+


2xi 0
yi xi
0 2yi

I2

[δxi
δyi

]
:= Hi(Xi) + EδXi. (52)

Substituting Formula (52) into Formulas (9) and (10), the least squares estimation of

the crater parameter vector
^
Θ

(
^
A,

^
b
)

with error is:

^
Θ

(
^
A,

^
b
)
= −

(
H
(

X̃
)T

H
(

X̃
))−1

H
(

X̃
)T

1n×1. (53)

Let H = H(X), K :=
(
HTH

)−1, ignore the higher-order error term, and simplify
Formula (53):

^
Θ

(
^
A,

^
b
)
= −

(
(H(X) + EδX)T(H(X) + EδX)

)−1
(H(X) + EδX)T1n×1

= −
(
HTH

)−1HT1n×1 +
((

HTEδX + δXTETH
)
HT −KδXTET)1n×1

= Θ(A, b) +
((

HTEδX + δXTETH
)
HT −KδXTET)1n×1.

(54)

According to the comparison between Formula (54) and Formula (10),
^
Θ

(
^
A,

^
b
)

is

composed of two parts: one is the least squares term without error Θ(A, b), and the other
is the error term.
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From:

H(X)
^
Θ

(
^
A,

^
b
)
= εi − 1n×1, (55)

^
Θ

(
^
A,

^
b
)
=
(

HTH
)−1

HT(εi − 1n×1), (56)

the error term δ
^
Θ is:

δ
^
Θ

(
^
A,

^
b
)
=
(

HTH
)−1

HTδε = KHTδε. (57)

Thus, the error distribution σ2
Θ of

^
Θ

(
^
A,

^
b
)

is:

σ2
Θ = E

[
δ

^
Θ

2
]
= KHTE

[
δεδεT]HKT = KHTΣHKT.

Σ = diag
[
σ2

i
]

i = 1, 2, · · · n
(58)

The center coordinate of the measured crater after correction is:

^
Xo =

 ˆ
xo
ˆ
yo

 = Xo − δXo = − 1
2 (A + δA)−1(b + δb).

(δA, δb) =
[ δΘ(1, 1) 1

2 δΘ(2, 1)
1
2 δΘ(2, 1) δΘ(3, 1)

]
,
[

δΘ(4, 1)
δΘ(5, 1)

] ∼ N (0, σ2
Θ

) (59)

4.2. Crater Ellipse Fitting Error Influence on Position Determination

Due to the crater ellipse fitting error, the ellipse center imaging does not necessarily
correspond to the real crater center coordinates. In other words, the pixel system coordinates
Puv of the central point of the crater photographed by the optical navigation camera also
have errors, as shown in Formula (60):

(Puv)′ =
[
u′ v′ 1

]
=

^
P

uv

+ δPuv. (60)

where
^
P

uv

is the true value of the ellipse center imaging system coordinates. Substituting
Formula (60) into Formula (15), the imaging model of crater j considering error is:

U′j =
u′j
f =

XC
j + δXC

j

ZC
j + δZC

j

V′j =
v′j
f =

YC
j + δYC

j

ZC
j + δZC

j

. (61)

Analyze Formula (61) and separate its error:

Uj′ =
XC

j +δXC
j

ZC
j +δZC

j
= 1

ZC
j

(
XC

j + δXC
j

)(
1 +

δZC
j

ZC
j

)−1

= 1
ZC

j

(
XC

j + δXC
j

)(
1−

δZC
j

ZC
j

)
= Uj +

1
ZC

j
δXC

j +
XC

j(
ZC

j

)2 δZC
j .

(62)

For the same reason:

Vj′ = Vj +
1

ZC
j

δYC
j +

YC
j(

ZC
j

)2 δZC
j . (63)
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Therefore, the imaging pixel system coordinates of the center of the crater j considering
the error are:

(
˜
P

UV

j

)
′ =

[
Uj
Vj

]
+


1

ZC
j

0
XC

j(
ZC

j

)2

0 1
ZC

j

YC
j(

ZC
j

)2


δXC

j
δYC

j
δZC

j

 :=
˜
P

UV

j + WjδXo. (64)

The error distribution of δ
˜
P

UV

j is:

δ
˜
P

UV

j =

(
˜
P

UV

j

)
′ −

˜
P

UV

j = WjδXo, (65)

σ2
PUV = E

(δ
˜
P

UV

j

)2
 = WjE

[
δXoδXT

o

]
Wj

T. (66)

Calculate E
[
δXoδXT

o
]

according to Formula (59) and ignore the higher-order error term
in the above formula:

^
Xo = − 1

2 (A + δA)−1(b + δb)
= − 1

2 A−1(I + A−1δA
)−1

(b + δb)

= − 1
2 A−1b + 1

2 A−1[ A−1b −1
][ δA

δb

]
:= Xo + M

(
^
Θ

)
δ

^
Θ

(
^
A,

^
b
)

.

(67)

The crater ellipse parameter vector Θ(A, b) is introduced to rewrite the matrix, as
shown in Formula (68):

1
2

A−1[A−1b −1
][δA

δb

]
:= M(δΘ)δ

^
Θ (68)

Therefore:

δXo =
^
Xo −Xo = M

(
^
Θ

)
δ

^
Θ

(
^
A,

^
b
)
= Mδ

^
Θ, (69)

σ2
Xo

= E
[
δX2

o

]
= ME

[
δ

^
Θδ

^
Θ

T
]

MT = Mσ2
ΘMT. (70)

Substitute σ2
Xo

into σ2
PUV :

σ2
PUV = WE

[
δXoδXT

o

]
WT = Wσ2

Xo
WT = WMσ2

ΘMTWT. (71)

Next, use σ2
PUV to calculate error variance of imaging cosine σ2

(〈
PUV

i,j

〉)
. Define

intermediate parameters without errors ti,tj and gi,j:
ti := 1 + U2

i + V2
i

tj := 1 + U2
j + V2

j
gi,j := 1 + UiUj + ViVj

(72)

Define intermediate parameters with errors λi,j, γi,j and φ:

γi,j :=
Ui,j

ti,j
δUi,j +

Vi,j

ti,j
δVi,j, (73)
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λi,j :=
(
ti,j + 2Ui,jδUi,j + 2Vi,jδVi,j

)− 1
2 := t−

1
2

i,j
(
1− γi,j

)
, (74)

φ := UiδUj + UjδUi + ViδVj + VjδVi. (75)

The intermediate parameters λi,j, γi,j, and φ are all first-order terms of deviation δPUV
i,j .

Therefore, in the imaging cosine simplification with errors, the product of any parameter term
with errors can be regarded as a higher-order small term and can be ignored, which simplifies
the operation. Expand Taylor of Formula (36) and ignore the higher-order error term:〈(

PUV
i,j

)
′
〉
=
(

gi,j + φ
)
λiλj

=
(

gi,j + φ
)
t−

1
2

i t−
1
2

j
(
1− γi − γj + γiγj

)
=
(

gi,j + φ
)
t−

1
2

i t−
1
2

j −
(
γi + γj − γiγj

)(
gi,j + φ

)
t−

1
2

i t−
1
2

j

=
〈

PUV
i,j

〉
+
(
φ− gi,j

(
γi + γj

))
t−

1
2

i t−
1
2

j .

(76)

Substitute intermediate parameters with error and without error into Formula (76):

δ
〈

PUV
i,j

〉
=

〈(
PUV

i,j

)′〉
−
〈

PUV
i,j

〉
=
(
φ− gi,j

(
γi + γj

))
t−

1
2

i t−
1
2

j

= t−
1
2

i t−
1
2

j

[
Uj − g Ui

ti
Vj − g Vi

ti
Ui − g

Uj
tj

Vi − g
Vj
tj

]
δUi
δVi
δUj
δVj



= t−
1
2

i t−
1
2

j



−gi,jt−1

i 0 1 0
0 −gi,jt−1

i 0 1
1 0 −gi,jt−1

j 0
0 1 0 −gi,jt−1

j




Ui
Vi
Uj
Vj




T[
δPUV

i
δPUV

j

]

= t−
1
2

i t−
1
2

j

[
PUV

i

∣∣PUV
j

][−gi,jt−1
i I2 I2

I2 −gi,jt−1
j I2

]T[
δPUV

i
δPUV

j

]
:= C

[
δPUV

i
δPUV

j

]
.

(77)

Substitute Formula (77) into Formula (71):

σ2
(〈

PUV
i,j

〉)
= E

[
δ
〈

PUV
i,j

〉
δ
〈

PUV
i,j

〉T
]

= CE

(δ
˜
P

UV

i

)2

+

(
δ

˜
P

UV

j

)2
CT

= C
((

σ2
PUV

)
i
+
(

σ2
PUV

)
j

)
CT

= C
(

Wi

(
σ2

Xo

)
i
Wi

T + Wj

(
σ2

Xo

)
j
WT

j

)
CT.

(78)

Simultaneous Formulas (51), (58), (70) and (78) are used to obtain the influence of
crater ellipse fitting error on imaging cosine:

σ2
(〈

PUV
i,j

〉)
= CWiMKHT

(
∂εi
∂Xi

RXiXi
∂εi

T

∂Xi
+

∂ε j
∂Xj

RXjXj

∂ε j
T

∂Xj

)
HKTMTWi

TCT

= CWiMKHTσ2
i HKTMTWi

TCT + CWjMKHTσ2
j HKTMTWj

TCT.
(79)

Define imaging cosine variance contribution function (ICVCF) Ψ(X) of crater X:

Ψ(X) := CWMKHTσ2HKTMTWTCT. (80)



Aerospace 2022, 9, 496 17 of 28

σ2
(〈

PUV
i,j

〉)
can be rewritten as:

σ2
(〈

PUV
i,j

〉)
= Ψ(Xi) + Ψ

(
Xj
)
. (81)

Finally, the influence of error variance σ2
(〈

PUV
i,j

〉)
to position determination is calcu-

lated. Formula (81) is substituted into Formulas (37) and (45).
Formulas (37) and (36) are similar. Refer to Formulas (72)~(75) to define similar

intermediate parameter terms:

g′ := r2 − 2

(
˜
P

f

i +
˜
P

f

j

)
r +

˜
P

f

i
˜
P

f

j

t′i,j :=

∣∣∣∣∣r− ˜
P

f

i,j

∣∣∣∣∣
γ′i,j :=

∣∣∣∣∣r− ˜
P

f

i,j

∣∣∣∣∣(t′i,j)−2
δr =

(
t′i,j
)−1

δr

φ′ := 2

(
r−

˜
P

f

i −
˜
P

f

j

)
δr

. (82)

The imaging cosine considering the error is:〈
PUV

i,j

〉
′ = g′+φ′

t′it′j (1− γ′i)
(
1− γ′j

)
= g′+φ′

t′it′j
(
1− γ′i − γ′j

)
= g′

t′it′j +
φ′−g(γ′i+γ′j)

t′it′j .

(83)

Take the differential of the above formula:

δ
〈

PUV
i,j

〉
′ = δ

 g′
t′it′j

+
φ′ − g

(
γ′i + γ′j

)
t′it′j

 =


2

(
r−

˜
P

f

i −
˜
P

f

j

)
− g′

(
(t′i)−1 +

(
t′j
)−1
)

t′it′j

δr. (84)

Therefore:

δr =


2

(
r−

˜
P

f

i −
˜
P

f

j

)
− g′

(
(t′i)−1 +

(
t′j
)−1
)

t′it′j



−1

δ
〈

PUV
i,j

〉
′ := Gδ

〈
PUV

i,j

〉
′. (85)

G = t′it′j

2

(
r−

˜
P

f

i −
˜
P

f

j

)
− g′

(t′i)−1 +
(
t′j
)−1
−1

, (86)

σ2
r = GE

[
δ
〈

PUV
i,j

〉
′δT
〈

PUV
i,j

〉
′
]
GT = Gσ2

(〈
PUV

i,j

〉)
GT. (87)

The influence of crater ellipse fitting error on optical navigation position determination
can be expressed by the ICVCF Ψ(X) as:

σ2
r = G

(
Ψ(Xi) + Ψ

(
Xj
))

GT. (88)
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4.3. Crater Ellipse Fitting Error Influence on Attitude Determination

According to Formula (35):

C f
b PC =

˜
P

f
+ r. (89)

Take the differential of the above formula and define the transfer intermediate matrix N:

δC f
b = δr

(
PC
)T
(

PC
(

PC
)T
)−1

:= δrS := N(r)δr, (90)

N = N(r) := δrSδrT
(

δrδrT
)−1

. (91)

Meanwhile, take the differential of δCb
f :

δCb
f = −Cb

f δC f
b Cb

f = −Cb
f NδrCb

f . (92)

The influence of crater ellipse fitting error on OPNAV attitude determination is obtained:(
σ2
)b

f
= Cb

f NσrNTC f
b = Cb

f NG
(
Ψ(Xi) + Ψ

(
Xj
))

GTNTC f
b (93)

Define the intermediate transfer matrix D:

D := Cb
f NG (94)

The influence can be expressed by Ψ(X) as:

σ2
C =

(
σ2
)b

f
= D

(
Ψ(Xi) + Ψ

(
Xj
))

DT (95)

4.4. Summary of the Influence of Crater Fitting Error on OPNAV

Given the measurement error, the influence of the Ψ(Xi) on navigation positioning
and attitude determination is:

Ψ(Xk) = CWkMKHTσ2
k HKTMTWk

TCT k = i, j
σ2

r = G
(
Ψ(Xi) + Ψ

(
Xj
))

GT

σ2
C = D

(
Ψ(Xi) + Ψ

(
Xj
))

DT
(96)

According to Formulas (64), (68), (77), (85), (90), (91) and (94), each intermediate matrix
is as follows: 

K =
(
HTH

)−1

M2×5 = 1
2 A−1[A−1b −1

][δA
δb

]
δ

ˆ
Θ

T
(

δ
ˆ

Θδ
ˆ

Θ

T
)−1

Wi,j =


(

ZC
i,j

)−1
0 XC

i,j

(
ZC

i,j

)−2

0
(

ZC
i,j

)−1
YC

j

(
ZC

i,j

)−2


C = t−

1
2

i t−
1
2

j

[
PUV

i

∣∣PUV
j

][−gi,jt−1
i I2 I2

I2 −gi,jt−1
j I2

]T

G = t′ it′ j

2

(
r−

˜
P

f

i −
˜
P

f

j

)
− g′

(t′ i)
−1 +

(
t′ j
)−1
−1

S =
(
PC)T

(
PC(PC)T

)−1

N = δrSδrT(δrδrT)−1

D = Cb
CNG

(97)
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Intermediate parameters in Formula (97) are:

ti,j = 1 + U2
i,j + V2

i,j
gi,j = 1 + UiUj + ViVj

t′i,j =
∣∣∣∣∣r− ˜

P
f

i,j

∣∣∣∣∣
g′ = r2 − 2

(
˜
P

f

i +
˜
P

f

j

)
r +

˜
P

f

i
˜
P

f

j

(98)

After detecting the crater, the existing OPNAV method usually calculates the central
coordinates of the crater and directly uses this for navigation, discarding the shape, distri-
bution, and other information of detected craters. In Formula (97), matrix K represents the
distribution characteristics of craters, and matrix M represents the shape characteristics of
the crater. Torus-OPNAV does not discard any information about ellipse fitting, and uses it
in a high-precision inertial/optical integrated navigation system in planetary exploration.

The CDA based OPNAV algorithm proposed in this paper can work independently
when more than three craters are detected. When the number of detected craters is less than 3,
the OPNAV method can work normally only when it is combined with the inertial navigation
system. In this case, there are two schemes for INS/OPNAV integrated navigation: (1) replace
the crater feature with the crater detection vector. At this time, the optical navigation system
cannot calculate the position, attitude and other information, and can only correct the inertial
navigation system; (2) replace the crater feature information with the feature point information,
such as ORB, and combine it with the inertial navigation system.

5. Results and Discussion
5.1. Torus-OPNAV Algorithm Feasibility Verification

Crater detection is the basis of OPNAV and hazard avoidance based on terrain charac-
teristics. The crater database obtained in reference [8] was used as the original data. The
simulation conditions are shown in Table 1. Torus-OPNAV algorithm was applied to optical
navigation and verified.

Table 1. Simulation condition of Torus-OPNAV algorithm feasibility verification.

Parameter Value

NAVCam
parameters

focal length (f ) 0.008 m
view angle(θ) 100◦

resolution ratio 2 m
measurement error ~N (0, 12)

Crater
parameters

Crater 1 coordinates [−3000 2000 1] m
Crater 2 coordinates [−3000 3000 1] m
Crater 3 coordinates [1000 3000 1] m

Initial position ro [−300 50 2000] m
Time 70 s

Under the condition of observing three craters, the lander’s position was at an inter-
section of the 3-torus, as shown by the white dot in Figure 7. The other three intersection
coordinates could be excluded because the landing orbit altitude was negative, it was below
the surface of the celestial body, or the position vector direction was opposite to the actual
flight direction of the lander.
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Figure 8. Partial enlarged view of intersection line of torus.

Crater ellipse fitting and ellipse center calculation are the basis of the Torus-OPNAV
method proposed in this paper. Its distribution directly affects the imaging cosine calcula-
tion, and further affects the accuracy of optical navigation position and attitude determina-
tion. According to the parameters set in Table 1, the Monte Carlo simulation experiment
was carried out. The shooting times were 1000, and the length of the long and short semi
axes of the crater were set to 100 m. The coordinates of the fitting ellipse center of three
craters were counted and 3 σ confidence ellipses were drawn, as shown in Figure 9.

It can be seen from Figure 9 that the error of fitting ellipse center was a Gaussian
distribution, and the accuracy was 1 m (3σ). On this basis, the Torus-OPNAV simulation
experiment was carried out with 1000 shooting times. The simulation results are shown in
Figures 10 and 11. Figure 10 shows the shooting results of the Torus-OPNAV positioning
accuracy simulation experiment, and Figure 11 shows the shooting results of attitude
determination accuracy, including yaw angle, pitch angle, and roll angle.
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5.2. Torus-OPNAV Simulation under Different Observation Conditions

In the actual lunar and Mars exploration missions, the optical navigation position and
attitude determination results are also different due to the difference in the resolution and
measurement error variance of the navigation camera carried by the lander, and the actual
crater coordinates.

We set different measurement errors and coordinate distributions of the craters, as
shown in Table 2 and Figure 12. Figure 12 shows the coordinate distribution configuration
of two groups of craters. Compared with configuration 1, the coordinate span of the crater
in configuration 2 was larger.
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Table 2. Torus-OPNAV Monte Carlo simulation conditions.

Parameter Value

NAVCam parameters Same as Table 1.
Configuration 1 Crater 1,2,3 coordinates Same as Table 1.

Configuration 2
Crater 1 coordinates [3000 2000 1] m
Crater 2 coordinates [2000 −1000 1] m
Crater 3 coordinates [−1000 −3000 1] m

Measurement
error

Error 1 δX0~N (0, 22) m
Error 2 δX0~N (0, 42) m
Error 3 δX0~N (0, 72) m

Initial position ro [−300 50 2000] m
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Monte Carlo simulation experiments were carried out 1000 times. The experimental
results are shown in Table 3. By analyzing Table 3, the following conclusions can be drawn:

Table 3. Monte Carlo results under configuration 1 and configuration 2.

Configuration Parameter Error 1 Error 2 Error 3

1

Elapsed time 160.571 164.005 164.025

Position error
(3σ )/(m)

δx 2.8673 5.7877 10.3558
δy 2.3336 4.6916 8.8206
δz 2.4791 5.7877 9.3774

Attitude
error

(3σ )/(◦)

δψ 0.4346 0.8987 1.4564
δθ 10.4090 24.1604 38.8603
δγ 0.4163 0.8366 1.5310

2

Elapsed time 172.244 169.968 159.502

Position error
(3σ )/(m)

δx 2.2474 4.5473 7.6934
δy 1.6995 3.6656 6.1785
δz 0.9694 1.9780 3.4999

Attitude
error

(3σ )/(◦)

δψ 3.1565 6.5668 11.9348
δθ 5.8700 12.6747 21.7557
δγ 2.7599 5.9758 9.8372
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(1) No matter what kind of crater distribution configuration was selected and what
kind of measurement error variance was set, the running time of the Torus-OPNAV algo-
rithm was almost the same, and the real-time performance was good. The position and
attitude determination of optical navigation could be completed within 180 ms;

(2) The accuracy of the Torus-OPNAV position and attitude determination was af-
fected by the geometrical configurations of the crater. With the same measurement error
variance, the larger the coordinate span of the craters, the better the position and attitude
determination results;

(3) The celestial (z-direction) position accuracy of the lander was higher because the
imaging cosine was more sensitive to the height of the lander.

During the descent and landing of the lander, due to the influence of errors such as
the chattering of the lander, attitude change, and image distortion, when the image with a
resolution of 1 m/pixel was detected, and the measurement error was better than N

(
0, 22),

according to the simulation results in Table 3, the Torus-OPNAV position determination
accuracy, based on the spatial position distribution model, could reach the meter level, and
the attitude determination was better than 7◦ (3σ).

5.3. Hardware-in-the-Loop Simulation

To verify the reliability of the proposed Torus-OPNAV algorithm, a hardware-in-the-
loop simulation test was carried out. The test verification system was composed of a
lunar sand table, UAV (unmanned aerial vehicle)-equivalent flight platform, indoor optical
tracking system (OptiTrack, Corvallis, OR, USA), etc., as shown in Figure 13.
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The parameters of the sand table, NAVCam, and other test equipment are as shown in
Table 4. We made the UAV hover over the lunar sand table, took real-time photos of the
table, extracted the craters, and calculated the attitude and position of the UAV. Then, we
compared the calculation results with the reference truth value provided by OptiTrack to
verify the accuracy and reliability of the algorithm. Three craters in the field of view were
randomly selected for navigation in each test.
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Table 4. Hardware parameters.

Hardware Parameter

PC
CPU Intel i9-10900
RAM 32 G

Lunar sand table
Size 2 m × 2 m

Maximum depth of crater 0.30 m
Reference height of sand table 0.18 m

Light source Color temperature 5600 K × 2
Optical tracking system Accuracy 0.01 m

NAVCam 45fps@1280 × 60, 60fps@1280 × 720
80fps@640 × 480, 160fps@320 × 240

Comparing the Torus-OPNAV proposed in this paper with the OPNAV method, based
on the gradient descent (GD) method and improved gradient descent (IGD) method, we
calculated the RMSE value of the position and attitude determination accuracy of the three
methods, and compared their running time. The number of target practice was 1000, and
the simulation results are shown in the Figures 14–16.
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The accuracy of the three methods was basically the same. The Torus-OPNAV algo-
rithm was obviously superior to the traditional OPNAV based on the GD method and the
IGD method in terms of time consumption.
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6. Conclusions

In this paper, an optical navigation method based on a spatial position distribution
model was proposed to solve the problem of high-precision optical navigation for the
descent and landing of lunar and planetary landers. According to the correspondence of
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objects and images between two craters and the cosine of imaging, the spatial position
distribution of the lander relative to the two craters was calculated and described as a
self-intersecting spatial torus of the Abelian Lie group. Using this characteristic, when more
than two craters were observed, the high-efficiency, high-precision optical navigation of
the landing lander could be realized by analyzing the intersecting relationship between the
lander and the torus. The crater detection error and its influence on optical imaging and
optical navigation were analyzed, and the theoretical accuracy of the optical navigation
system based on the crater detection algorithm was demonstrated.

Theoretical analysis and simulation experiments showed that, compared with the
traditional optical navigation method based on crater detection, the proposed method
had the following advantages: (1) After the crater was detected and imaged, the imaging
mathematical relationship was further analyzed and discussed. The relationship between
the optical imaging information and the spatial position distribution of the lander was
revealed. It was demonstrated that the spatial distribution surface of the position was a
torus, which was described by a set of parameter formulas. On this basis, the mathematical
relationship between positioning and attitude determination of optical navigation system
could be decoupled, and the amount of calculation of optical navigation could be reduced.
(2) From crater detection to optical navigation, it was difficult to accurately match the center
and shape of the detected crater with the true value, due to measurement errors. In this
paper, the error propagation characteristics of the detection error in the process of least
squares fitting, imaging cosine calculation, and nonlinear iteration were derived in detail.
The imaging cosine variance contribution function was proposed to analyze the influence
of Crater Observation Error on optical navigation positioning and attitude determination.
(3) The imaging cosine variance contribution function could be directly used to adjust the
error variance matrix R in the filter, making the optical navigation system adaptive to the
current environment and improved the navigation accuracy. (4) The proposed algorithm
could directly calculate the absolute position information of the lander on the basis of
detecting craters and other features. The positioning accuracy (especially the celestial
positioning accuracy) was high and the real-time performance was good.
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