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Abstract: This paper investigates the robustness of the conventional mean-variance (MV) optimiza-
tion model by making two adjustments within the MV formulation. First, the portfolio selection
based on a behavioral decision-making theory that encapsulates the MV statistics and investors
psychology. The second aspect involves capturing the portfolio asset dependence structure through
copula. Using the behavioral MV (BMV) and the copula behavioral MV (CBMV), the results show
that stocks with lower behavioral scores outperform counterpart portfolios with higher behavioral
scores. On the other hand, in the Forex market, the reverse is observed for the BMV approach, while
the CBMV remains consistent.

Keywords: mean-variance; dependence structure; portfolio optimization; cumulative prospect theory;
differential evolution
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1. Introduction

Portfolio construction is fundamental to the investment management process. The
Nobel Prize winner Harry Markowitz with his innovative work in (Markowitz 1952) estab-
lished the underpinnings for the modern portfolio theory. This is an investment framework
for the selection and construction of investment portfolios based on the maximization of ex-
pected portfolio returns and simultaneous minimization of investment risks that constitute
the original mean-variance (MV) framework. This framework is appealing because it is
efficient from a computational point of view. However, it also has well-established failings
that can lead to portfolios that are not optimal from a financial point of view, see (Michaud
1989). Among these criticisms of MV optimization are: concentrated asset class allocation,
inability to account for skewness and kurtosis, and lack of risk diversification. To address
these shortcomings, many extensions of MV have been proposed in the literature. Zhou
and Li (2000) introduced the stochastic linear quadratic (LQ) control as a general framework
to study the mean-variance optimization, and found an analytical optimal portfolio policy
and an explicit expression of the efficient frontier for a continuous-time mean-variance
portfolio selection problem. Fahmy (2020) proposed a theoretical extension of the MV
framework by adding a time dimension, so that the construction of a portfolio is thought
of as an activity that consists of monetary outcomes. This mean-variance time model has
the ability to explain many of the observed time-related anomalies of stock returns. Ötken
et al. (2019) proposed another extension of MV in which the problem specification has three
additional sets of constraints: cardinality, sector capitalization, and tracking error, on top of
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the Markowitz model and other diversification constraints regarding the portfolio. Each
one of these MV extensions addressed a particular aspect of portfolio optimization.

In this study, an extension of the classical MV approach was achieved by first incorpo-
rating investor psychology through the cumulative prospect theory, then by coupling it to
the copula model. These models will be applied to two different classes of assets, namely,
the Johannesburg Stock Exchange (JSE) traded assets and the Forex market. Another im-
portant aspect that we aim to investigate is the performance ability of these models on each
asset class.

According to Markowitz, investors always make rational decisions in order to maxi-
mize their utility. Thus, the prime objective of an investor is to maximize his/her utility
by either maximizing the portfolio mean (i.e., return) or minimizing the portfolio stan-
dard deviation (i.e., risk) or vice-versa. Still on this line of utility maximization, in the
context of insurance contract design, Xu et al. (2019) presented the optimal insurance
model under the rank-dependent utility (RDU) framework and derived a general necessary
and sufficient condition for optimal solutions. However, other researchers working in
the field of behavioral and experimental economics hold contrary views about some of
the assumptions underlying Markowitz’s theory. They argue that investors are not fully
rational and occasionally make sub-optimal decisions. In particular, investors are ’risk
seeking’ in the region of gains, but ’risk averse’ in the region of losses (see, for example,
Kahneman and Tversky 1979, 1992). The goal of this paper is to show how mean-variance
portfolio allocation can benefit, on the one hand, from the development of the cumulative
prospect theory (CPT) introduced by (Kahneman and Tversky 1992), and on the other hand,
from copula, which embodies all of the information about the dependence between the
components of a random vector. We will also assess the robustness and the sensitivity of
these models to asset classes. As we will illustrate in this study, sensitivity of a model over
asset classes should not be ignored in model building and validation. This assessment will
be conducted in various portfolios constructed from the two asset classes (JSE and Forex)
using their CPT scores.

The CPT theory is rooted in behavioral psychology and was demonstrated to possess
sufficient explanatory power for use in actual decision-making problems. Few studies (see,
for example, Ababio et al. 2020; Omane-Adjepong et al. 2019; Simo-Kengne et al. 2018; He
and Zhou 2011) have delved into this area attempting to adopt some behavioral decision-
making theories, to take a re-look at the Markowitz strategy. In these studies, the authors
adopted the cumulative prospect theory with different probability weighting functions,
such as the portfolio asset selection technique. He and Zhou (2011), in particular, introduced
a new measure of loss aversion for large payoffs and investigated the sensitivity of the CPT
value function with respect to the stock allocation. Jin and Yu Zhou (2008) established a
continuous-time behavioral portfolio selection model-based cumulative prospect theory,
featuring very general S-shaped utility functions and probability distortions, and obtained
closed-form solutions for an important special case. With this approach, they were able to
examine how the allocations to equity were influenced by behavioral criteria.

In this study, the impact of behavioral criteria on portfolio allocation is assessed
empirically through two adjustments. The first one combines the traditional mean-variance,
in what we will name behavioral mean-variance (BMV). A second adjustment to BMV with
the copula function will be considered, and the resulting approach will be named copula
behavioral mean-variance (CBMV).

The copula function was introduced by (Sklar 1959). It was designed to provide an
idiosyncratic description of the dependence structure between random variables, irrespec-
tive of their marginal distributions. Sklar’s theorem in (Sklar 1959) shows that copula fits
well into a portfolio selection context, where various assets in the portfolio have different
distributional characteristics. The interactions between assets have to be assessed in order
to choose the copula that best models the dependence structure in the portfolio. One can
immediately employ the multivariate copulae, such as t copula and Gaussian copula, thus
discarding many available existing bivariate copulae with interesting properties. Thanks to
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vine copula, it is possible to simultaneously use different copulae in modeling the depen-
dence structures in a multivariate setting. The first regular vine copula was introduced by
(Joe 1994) to extend parametric bivariate extreme value copula families to higher dimen-
sions. In the regular vine class, we have the C-vine and the D-vine. A preliminary check
to the study conducted in this paper has seen C-vine outperforming D-vine in terms of
portfolio risk and return. More illustrations of copula in the portfolio selection context can
be seen in (Mba et al. 2018; Mba and Mwambi 2020, 2021; Ababio et al. 2020). Ababio et al.
(2020) used CPT scores as portfolio selection criteria among two asset classes (indices and
cryptocurrency) and employed t copula in the optimization process. Their results showed
consistency throughout the various portfolios constructed: portfolios constructed from
lower CPT scores outperformed those obtained from higher CPT scores irrespective of the
asset class. Can we generalize these findings? The results we will obtain in this paper
will show that such a generalization can be misleading. To assess this, we considered two
different asset classes: JSE traded stocks on the Forex market. Instead of the t copula, as in
the previous study, we use the vine copula, which is flexible enough to auto-select suitable
bivariate copulae for dependence structure modeling. We can summarise the approach
used in this paper as follows.

In this paper, we investigate the robustness of the conventional mean-variance (MV)
optimization model by making two adjustments based, on the one hand, on a behavioral
decision-making theory and investor psychology, called the behavioral mean-variance
(BMV) approach, and on the other hand, by using the copula theory to extract the portfolio
asset dependence structures, called the copula behavioral mean-variance (CBMV) approach.
For this assessment, two markets will be considered: the Johannesburg Stock Exchange
(JSE) and the Forex markets. The findings illustrate that CBMV is consistent with those in
the literature; that is, portfolios with lower CPT scores outperform those with higher CPT
scores. Whereas the BMV shows the reverse in the Forex market. This may be attributed to
the lack of the classical MV to capture a nonlinear dependence structure.

The rest of the paper is organised as follows: Section 2 describes the data, the be-
havioral selection process, the copula theory, and the optimization algorithm. Section 3
presents the results and discussion. Section 4 concludes the study. Appendix A presents
some basics of the JGR-GARCH model, introduced by (Glosten et al. 1993), which is used
in this study to simulate the dynamics of the conditional variance.

2. Material and Methods

This study uses the cumulative prospect theory (CPT) as a portfolio assets selection
technique before the mean-variance (MV) portfolio setting is implemented. This combina-
tion blends investor psychology into the traditional MV approach, which focuses mainly
on the first two moments of asset return distribution. Let us start with the cumulative
prospect theory.

2.1. Cumulative Prospect Theory

The study focuses on the extreme assets classified by a behavioral decision-making the-
ory called the cumulative prospect theory proposed by (Kahneman and Tversky 1992). This
decision-making theory helps capture investors’ cognitive biases in their quests to select
assets with the sole objective of adding value to their investments. Expected utility theory
(EUT), a pioneer normative model of decision-making theory proposed by (Von Neumann
and Morgenstern 1947), is estimated by finding the product of utility and its objective
probability. On the other hand, the CPT, a descriptive model of decision-making, is a
product of a value function (VF) and a non-linear decision weight estimated using an
inverted S-shaped probability weighting function (PWF). The S-shaped PWF captures
the deviations from rational thinking as prescribed by the EUT model. The PWF reflects
probability distortions or biases and primarily governs the amplification of low proba-
bilities and attenuates mid-range and high probabilities. In addition, the CPT provides
several new features that depart from the EUT and broaden the decision-making process of
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investors. The behavioral model that describes the investor’s decision-making process and
characteristics in uncertain situations, is specified as follows:

CPT(x) = ∑(ν−ω− + ν+ω+)

where ν−ω− and ν+ω+ represent the product of the VF function and the PWF for gains and
losses. CPT(x) denotes the behavioral numerical score for any given asset. For example,
VF is mathematically estimated as follows:{

ν+ = xα, x ≥ 0,
ν− = −λ(−x)β, x < 0

where ν(x) represents the value function over gain or loss x relative to a reference point;
α, on the other hand, is the coefficient of risk-aversion (0 < α < 1); β is the coefficient of
risk-seeking in the domain of losses (0 < β < 1), and λ > 0 is the coefficient of the scaling
factor called the loss-aversion. The estimated parameter values, according to (Kahneman
and Tversky 1992), are α = 0.88 and λ = 2.25. On the contrary, the PWF of the CPT model
takes inverse S-shaped weighting functions, with separate functions for gains and losses
mathematically expressed below:

π(p) =


ω−(p) =

pν(
pnu + (1− p)ν

) 1
ν

, 0 < ν ≤ 1

ω+(p) =
pδ(

pδ + (1− p)δ
) 1

δ

, 0 < δ ≤ 1

for p ∈ [0, 1], where (ω+(p)) and (ω−(p)) represent the weighting functions for gains
and losses, respectively. Kahneman and Tversky (1992) suggested the value of parameter
ν = 0.69 for ω− and δ = 0.61 for ω+.

BMV Mathematical Formulation

For the behavioral mean-variance (BMV) portfolios, the first step involves the asset
selection based on CPT scores; then the optimization is carried out according to the follow-

ing formulation:


arg min

ω
ωTΣω−ωTµ,

ωTi = 1,
ωi ≥ 0, i = 1, · · · , n

where ω = (ω1, · · · , ωn) is the weight vector;

µ = (µ1, · · · , µn) the return vector, and Σ the variance-covariance matrix of the portfolio’s
assets; i is a column vector of ones.

2.2. Dependence Measure

The analysis of the dependence structure between random variables has gained
much attention in probability and statistics. Various concepts and measures of statis-
tical dependence have been introduced, including Pearson’s Rho, Spearman’s Rho, copula,
distribution-based measures, the distance covariance, the HSIC measure popular in ma-
chine learning, and the local Gaussian correlation, which is a local version of Pearson’s
Rho, among others. On the one hand, Pearson’s correlation coefficient is the most used
measure of statistical dependence. It gives a complete characterization of dependence in
the Gaussian case, and it also works well in some non-Gaussian situations. Copula, on the
other hand, seems to provide a better way to model dependence, especially in heavy-tailed
distributions and in nonlinear situations.

2.2.1. Copula

From the literature, we distinguished two groups of copula families: elliptical (such
as Gaussian or Student’s t copula) and Archimedean copula (such as Clayton, Gumbel, or
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Frank copula). To model the dependence structure between three or more random variables,
multivariate copulas have been used, but they lack flexibility in higher dimensions. To
overcome this issue of flexibility, vine copula models were introduced. They use bivariate
conditional copulas as building blocks, making them flexible enough to capture the un-
derlying dependence structure. In dimension d (i.e., d random variables), a multivariate
density is constructed by d(d − 1)/2 bivariate (conditional) copulas (see, Bedford and
Cooke 2001) as building blocks; thus, the name pair-copula construction (PCC) is given to
this construction process.
For example, let x1, x2, and x3 be three random variables with distribution functions F1, F2,
and F3, respectively. The joint density can be decomposed as

f (x1, x2, x3) = f3|12(x3|x1, x2) f2|1(x2|x1) f1(x1)

where

f2|1(x2|x1) = c12

(
F1(x1), F2(x2)

)
f2(x2)

f3|12(x3|x1, x2) = c13;2

(
F1|2(x1|x2), F3|2(x3|x2)

)
f3|2(x3|x2)

f3|2(x3|x2) = c23

(
F2(x2), F3(x3)

)
f3(x3)

with

F(x|v) =
∂Cx,vj ;v−j{F(x|v−j), F(vj|v−j)}

∂F(vj|v−j)

for every vj of the vector v with v−j = v− {vj} in the general case.
Note that the construction is not unique. All of the possible constructions are illustrated

by a set of nested trees Ti = (Vi, Ei) where Vi are the nodes and Ei the edges. This set of
trees is called a Vine (Bedford and Cooke 2001).

A nested set of trees is a regular vine if and only if the trees fulfill the following
conditions (Bedford and Cooke 2001):

1. T1 is a tree with nodes V1 = {1, · · · , d} and edges E1;
2. For i ≥ 2, Ti is a tree with nodes Vi = Ei−1 and edges Ei;
3. If two nodes in Ti+1 are joint by an edge, the corresponding edge in Ti must share a

common node (proximity condition).

A PCC is called a regular vine (R-vine) copula if all marginal densities are uniform.
The class of regular vines is still very general and embraces a large number of possible
pair-copula decompositions. We will concentrate here on a special case of regular vines
called the canonical vine, also known as the (C-vine). Aas et al. (2009) specialize to a C-vine
the density of an n-dimensional distribution given by (Bedford and Cooke 2001) in terms
of a regular vine. The d-dimensional density f (x1, · · · , xd) corresponding to a C-vine is
given by

d

∏
k=1

f (xk)
d−1

∏
j=1

d−j

∏
i=1

cj,j+i|1,··· ,j−1
(

F
(
xj|x1, · · · , xj−1

)
, F
(
xj+i|x1, · · · , xj−1

))
. (1)

CBMV Mathematical Formulation

For the copula behavioral mean-variance (CBMV) portfolios, the first step is the asset
selection based on CPT scores, then the below steps are followed:

i. Use the GJR-GARCH model to filter the asset returns and obtain standardized residu-
als;

ii. Convert these residuals to a chosen marginal distribution for the estimation of the
copula;
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iii. Fit the vine copula to the data obtained in (ii);
iv. Simulate new data from the vine copula;
v. Use the inverse transform of the marginal distribution to convert the new data ob-

tained in (iv) to new returns ready to be used in the optimization algorithm.

The optimization is again carried out according to the following formulation:
arg min

ω
ωTΣω−ωTµ,

ωTi = 1,
ωi ≥ 0, i = 1, · · · , n

where ω = (ω1, · · · , ωn) is the weight vector; µ = (µ1, · · · , µn) the simulated return vector,
Σ the variance–covariance matrix of the portfolio assets computed from the simulated
returns, and i is a column vector of ones.

Portfolio Optimization

In the portfolio optimization process, the main challenge resides in designing a proper
model that empirically best fits the data and, at the same time, is feasible and robust enough
to generate simulation-based inference for risk evaluation.

In this study, we used an evolutionary algorithm called differential evolution (DE).
Evolutionary algorithms (EAs) are search methods that take their inspiration from natural
selection and survival of the fittest in the biological world. EAs differ from more traditional
optimization techniques in that they involve a search from a “population” of solutions, not
from a single point. Each iteration of an EA involves a competitive selection that eliminates
poor solutions. The solutions with high fitness are recombined with other solutions by
swapping parts of a solution with another. Solutions are also mutated by making a small
change to a single element of the solution. What is appealing in these types of algorithms
is that they use recombination and mutation to generate new solutions that are biased
towards regions of the space for which good solutions have already been seen.

The DE algorithm introduced by (Storn and Price 1997) has the capability of solv-
ing nonlinear optimization problems. This algorithm uses biology-inspired operations
of initialization, mutation, recombination, and selection on a population to minimize
an objective function through successive generations (Holland 1975). Similar to other
evolutionary algorithms, to solve optimization problems, DE uses alteration and selection
operators to evolve a population of candidate solutions. In this process, a global solution
is reachable. It has become a powerful and flexible tool to solve optimization problems
arising in finance. DE has been successfully used in finding optimal portfolio weights and
returns in (Ababio et al. 2020; Krink et al. 2009; Krink and Paterlini 2011; Maringer and
Oyewumi 2007; Mba and Mwambi 2020, 2021; Mba et al. 2018; Yollin 2009).

3. Results and Discussion
3.1. Data

Model performance is particularly tested during normal and stressful (extreme) market
conditions. However, while many models perform well during normal market conditions,
the reverse is not always the case and poses model robustness problems. Thus, a robust
model is expected to perform during normal and turbulent market periods. Therefore, the
study period was chosen to test the robustness of the models adopted in analysing the
empirical data. The 2008 global financial crisis is one good example from recent years and
could serve the study’s purpose.

Data comprise two different asset types. The first one constitutes one hundred and
eight (108) stocks from the Johannesburg Stock Exchange (JSE) spanning from January
2007 to December 2009. The second constitute 95 Forex data (US dollar (USD) against
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95 other currencies) from August 2007 to April 2007. The daily stock and Forex returns
were estimated as

ri = ln
(

pt

pt−1

)
× 100%

where ri represents daily stock returns and pt(pt−1) denotes the stock price for day t(t− 1).

3.2. Behavioral Asset Selection Criterion within the MV Framework

The MV model is a normative model of decision-making that focuses on how investors
are expected to behave in financial markets. Thus, according to (Markowitz 1952)investors
are more particular about the first two moments of asset return distribution in taking
market-related decisions. However, it has become obvious that many investors have
departed from (Markowitz 1952) rational norms. Thus, other factors apart from market
returns’ mean and standard deviations influence investors’ decision-making. One key
highlight in behavioral economics is that investors are not fully rational and depart from
many rational norms due to cognitive biases that impact decision-making. Hence, the
cumulative prospect theory (CPT) has become a golden tool to encapsulate Markowitz’s
proposed norms and other factors that influence investors’ decision-making processes.
The CPT model is a descriptive model of decision-making; however, it dwells on what
investors do in real-life as opposed to normative models. Investors’ cognitive biases become
evident in their decision-making processes on a daily basis; however, normative models of
decision-making fail to capture these biases and deviations from rationality, as depicted in
Figure 1 below.

Figure 1. Nonlinear function of probability (P) in the behavioral decision theory.

The probability weighting function expresses that investors overreact to prospects
with small probabilities, but under-react to medium and large probabilities.

The behavioral score estimated using the CPT model for 108 stocks ranges from
0.0678 to 0.6154. The first and last eight (8) ranked stocks were selected and classified
based on their behavioral scores. Stocks with lower (higher) behavioral scores ranged
between 0.0678 and 0.1043 (0.3505 and 0.6154). Likewise, the Forex data with lower (higher)
behavioral scores were estimated between 0.0032 and 0.0161 (0.1665 and 0.7239) thresholds,
indicating min (max) behavioral scores as 0.0032 (0.7239). Four distinct portfolios made
up of assets with extreme behavioral scores were selected for optimization analyses using
the conventional MV model. The MV asset selection criteria focuses mainly on the first
two moments of asset return distribution, disregarding investors’ psychology. On the
other hand, the behavioral asset selection criterion encapsulates the distribution of asset
returns and the behavioral scores, primarily capturing investors’ cognitive biases in their
decision-making processes.
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3.3. Asset Classification and Selection

Eight assets with extreme behavioral scores were selected for portfolio analysis and
optimization to form a portfolio in both asset classes. Thus, two portfolios were constructed
for each asset class. The first (second) portfolio was composed of eight assets with extremely
low (high) behavioral scores in both cases. Thus, eight assets were carefully selected to form
the different portfolios with the sole objective of benefiting from portfolio diversification.
The stock (Forex) portfolio has two distinct portfolios: the stock portfolio 1L and 1H (Forex
portfolio 1L and 1H), respectively. Assets in the four different portfolios with corresponding
behavioral scores are presented below:

3.3.1. CPT Scores for Stocks

JSE Stock Portfolio 1L: RES (0.0678), EMI (0.0790), CLH (0.0839), SPP (0.0873), TKG (0.0975),
VKE (0.1005), CML (0.1017), JSE (0.1043).

JSE Stock Portfolio 1H: CFR (0.3505), ITE (0.3516), ACT (0.3521), RCL (0.3615), KIO (0.3689),
LON (0.4748), MTA (0.5311), TDH (0.6154).

3.3.2. CPT Scores for Dollar Exchange Rate

Forex Portfolio 1L: Qatari Rial/US Dollar (0.0032), Oman Rial/US Dollar (0.0033), Hong
Kong/US Dollar (0.0046), Bahraini Dinar/US Dollar (0.0050), UAE Dirham/US Dollar
(0.0084), Jordanian Dinar/US Dollar (0.0087), Egyptian Pound/US Dollar (0.0152), Chinese
Yuan/US (0.0161).

Forex Portfolio 1H: Swaziland Lilangeni/US Dollar (0.1665), Georgian Lari/US Dollar
(0.1717), Ukraine Hryvnia/US Dollar (0.1794), Icelandic Krona/US Dollar (0.1870), South
Africa Rand/US Dollar (0.2128), Kazakhstan Tenge/US Dollar (0.2387), Seychelles Ru-
pee/US Dollar (0.5559), Cape Verde Escudo/US Dollar (0.7239).

The paper adopted three key portfolio statistics in comparing the performances of the
four formulated portfolios. These statistics include the portfolio return, risk, and the Sharpe
ratio, respectively. Apart from the two moments of the portfolio return distribution, the
Sharpe ratio, on the other hand, makes it possible to evaluate portfolio performance easily.
The higher the Sharpe ratio, the better, and portfolios with such characteristics attract many
investors. The optimization results of the Forex portfolios were used to validate the results
of the JSE stock portfolios.

3.4. Descriptive Statistics

Tables 1 and 2 present the summary results of the classified stocks with extreme
low and high behavioral stocks estimated using the proposed metric by (Kahneman and
Tversky 1992) respectively. A cursory inspection of these tables indicates that the classified
stocks depart significantly from normality. The skewness and the kurtosis estimates of all
stocks in the two behaviorally classified stocks exhibit non-normality characteristics. In
both cases, the results showed a non-zero skewness signifying the non-normality of the
stock returns distribution. Thus, the skewness estimates for stocks with lower (higher)
behavioral scores exhibited strictly positive skewness. Likewise, on the other hand, the
kurtosis also indicates either lighter (i.e., kurtosis less than 3) or heavier (i.e., kurtosis
more than 3) tails than the normal distribution. The eight stocks classified as having lower
behavioral scores all had kurtosis estimates of less than three (3), with six (two) estimates
being negative (positive), see Table 1. Likewise, the classified stocks with higher behavioral
scores, see Table 2. Table 3 also presents the same results as in Tables 1 and 2 but for the
classified foreign exchange rate of the US Dollar against a universe of other currencies.
Similarly, the classified Forex with extreme lower and higher behavioral scores depicted
similar summary statistics as Tables 1 and 2.
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Table 1. Summary statistics of classified JSE stocks with lower behavioral scores.

JSE Stocks

RES EMI CLH SPP TKG VKE CML JSE

Mean 0.090 −0.0005 0.006 0.037 −0.121 0.016 0.239 0.113
min −3.680 −5.190 −17.600 −4.990 −8.710 −6.700 −5.830 −7.750
max 4.270 4.950 5.200 5.480 6.400 6.860 6.520 6.770
sd 0.796 1.180 1.580 1.300 1.560 1.170 1.540 1.500
asd 12.600 18.700 25.000 20.600 24.700 18.500 24.300 23.700

Skewness 4.230 3.770 20.400 1.270 3.780 4.840 2.420 1.930
Kurtosis −0.155 −0.172 −1.660 0.161 −0.570 0.048 −0.166 −0.093

JB 570.000 454.000 13,452.000 55.000 494.000 741.000 190.000 120.000
Q10 12.800 49.100 18.300 15.800 8.240 9.520 11.100 5.310
Q102 34.400 179.000 7.050 9.410 62.200 77.800 25.400 135.000
ACF 0.149 0.197 0.015 0.052 0.198 0.277 0.149 0.109

Table 2. Summary statistics of classified JSE stocks with higher behavioral scores.

JSE Stocks

CFR ITE ACT RCL KIO LON MTA TDH

Mean 0.037 −0.031 −0.096 0.017 −0.108 −0.065 −0.104 −0.088
min −8.151 −23.180 −26.788 −9.496 −20.373 −18.427 −46.801 −63.178
max 28.996 28.768 28.768 30.449 29.725 40.547 46.801 57.536
sd 2.407 3.269 5.321 2.249 4.079 3.955 4.106 6.257
asd 38.061 51.691 84.126 35.558 64.493 62.527 64.918 98.933

Skewness 27.680 19.429 7.022 45.764 5.417 16.450 63.627 40.428
Kurtosis 2.153 0.515 0.213 3.301 0.370 0.964 −0.385 −0.652

JB 24,731.780 11,934.540 1562.512 67,365.850 944.345 8649.373 127,575.800 51,558.460
Q10 9.272 12.337 59.195 15.397 14.284 11.993 140.625 40.508
Q102 6.894 19.195 89.952 0.433 155.785 4.640 185.669 27.276
ACF 0.004 0.152 0.215 0.015 0.315 0.026 0.470 0.154
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Table 3. Summary statistics of classified Forex with lower and higher behavioral scores.

Currencies

QATARI.RIAL OMAN.RIAL HONG.KONG
BAHRAINI.

DINAR
UAE.DIRHAM

JORDANIAN.

DINAR

EGYPTIAN.

POUND

CHINESE.

YUAN

SWAZILAND.

LILANGENI

GEORGIAN.

LARI

UKRAINE.

HRYVNIA

ICELANDIC.

KRONA

SOUTH.

AFRICA.RAND

KAZAKHSTAN.

TENGE

SEYCHELLES.

RUPEE

CAPE.

VERDE.ESCUDO

Mean 0.0001 −0.00001 −0.002 −0.00003 0.00001 −0.0001 −0.001 −0.024 0.055 0.0004 0.111 0.141 0.055 0.044 0.212 0.009
min −0.137 −0.138 −0.235 −0.293 −0.339 −0.304 −0.857 −0.421 −6.906 −0.817 −16.448 −14.461 −6.776 −1.338 −6.340 −69.253
max 0.137 0.151 0.202 0.236 0.431 0.432 0.769 0.861 12.093 13.386 13.231 13.735 16.172 19.546 50.499 68.944
sd 0.032 0.025 0.044 0.041 0.037 0.092 0.202 0.126 1.698 0.680 2.027 2.245 1.759 0.955 2.667 4.844

asd 0.500 0.398 0.701 0.643 0.582 1.449 3.199 1.991 26.841 10.746 32.057 35.497 27.814 15.099 42.170 76.597
Skewness 4.911 12.296 5.354 19.613 71.580 2.917 2.507 5.603 8.139 347.044 21.712 17.166 17.768 401.594 292.018 189.641
Kurtosis −0.092 0.113 −0.221 −0.608 0.967 0.626 0.180 0.714 0.979 17.755 −0.052 −0.687 1.897 19.800 15.758 −0.138

JB 439.217 2741.502 524.643 6993.046 92,762.000 183.625 117.292 607.449 1271.173 2,200,989.000 8536.129 5371.844 5977.720 2,945,088.000 1,560,195.000 650,475.800
Q10 80.245 47.611 19.963 45.141 234.026 82.264 11.198 8.112 17.518 4.448 13.919 23.101 26.243 2.662 18.185 96.822

Q102 102.499 21.124 82.127 61.386 222.140 22.936 26.124 1.504 242.653 0.023 34.902 548.066 95.065 0.018 1.010 107.313
ACF 0.358 0.198 0.269 0.298 0.515 0.100 0.080 0.013 0.247 −0.003 0.210 0.797 0.164 0.001 0.046 −0.004
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3.5. Empirical Results

This section presents the optimization result of all portfolios described in the previous
section and intuitively explains the results’ direction. The traditional MV optimization
technique and the proposed copula-based C-vine were adopted to optimize the various port-
folios constituting the two asset classes. For each portfolio, the two estimation techniques
were used to analyze the portfolios. The portfolio optimization results are discussed below.

3.5.1. Optimization of Classified Stocks

The optimization of the classified stocks that consist of two types of portfolios: portfo-
lio with lower CPT scores and portfolio with higher CPT scores, were optimized using the
traditional mean-variance (MV) approach as well as the C-vine approach. While the MV
approach adopts the conventional Pearson correlation as a measure of dependence between
portfolio assets, the C-vine uses copula as a measure of dependence. Copula captures the
linear and nonlinear dependence structures between two variables (for bivariate copula) or
more than two variables (for multivariate copula), whereas the Pearson correlation captures
only linear dependence between two variables. Below are the optimization results.

From the return and sharp ratio resulting from the mean-variance (MV) approach,
as displayed in Table 4, it is evident that the portfolio of stocks with lower CPT scores
outperforms that of stocks with higher CPT scores.

Table 4. Optimization results of JSE stock portfolios using BMV approach.

Lower CPT Stock Portfolios Higher CPT Stock Portfolios

Tickers RES EMI CLH SPP TKG VKE CML JSE CFR ITE ACT RCL KIO LON MTA TDH

Weights 30.04 12.48 9.23 10.14 9.31 13.56 6.36 8.89 8.19 14.36 8.12 17.26 15.12 13.12 16.76 7.08

Return 0.0476 −0.0548

Risk 0.0875 0.9924

SR 0.5440 −0.0552

This is also supported by the results in Table 5 obtained from the C-vine approach.

Table 5. Optimization results of JSE stock portfolios using the CBMV approach.

Lower CPT Stock Portfolios Higher CPT Stock Portfolios

Tickers RES EMI CLH SPP TKG VKE CML JSE CFR ITE ACT RCL KIO LON MTA TDH

Weights 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 3.00 21.00 11.00 10.00 10.00 2.00 8.00 35.00

Return 0.0176 0.0079

CVaR 0.5840 0.3060

SR 0.0301 0.0258

While MV outperforms C-vine in these individual portfolios, Tables 4 and 5, the
reverse is observed when both classified stocks are merged into one portfolio, as displayed
in Tables 6 and 7. In the merged portfolio using the MV approach, 83.95% of capital were
mainly allocated to stocks with lower CPT scores. However, with the C-vine approach, in
the merged portfolio, 77% of capital were allocated to stocks with higher CPT scores.
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Table 6. Optimization results of the portfolio consisting of a combination of JSE stocks with lower
and higher behavioral scores using the BMV approach.

Combined (Lower and Higher) Stock Portfolio

Tickers RES EMI CLH SPP TKG VKE CML JSE CFR ITE ACT RCL KIO LON MTA TDH

Weights 15.03 15.79 9.53 9.45 17.18 14.27 0.00 2.70 2.22 2.15 0.84 4.44 c1.44 1.70 c2.03 1.24

Return −0.0036

Risk 0.1133

SR −0.0318

Table 7. Optimization results of the portfolio consisting of a combination of JSE stocks with lower
and higher behavioral scores using the CBMV approach.

Combined (Lower and Higher) Stock Portfolio

Tickers RES EMI CLH SPP TKG VKE CML JSE CFR ITE ACT RCL KIO LON MTA TDH

Weights 2 2.00 2.00 5.00 2.00 2.00 2.00 6.00 2.00 24.00 2.00 2.00 3.00 5.00 3.00 36.00

Return 0.0080

CVaR 0.2360

SR 0.0338

While with the MV approach, a higher percentage of funds were allocated to stocks
with lower CPT scores, the portfolio optimization resulted in a negative return with com-
mensurable risk. This may be as a result of investing in false positive stocks (by positive, we
mean assets with the potential to add value to the portfolio as selected by the MV approach.
However, this leads to a negative return and the corresponding negative Sharpe ratio. Thus,
the name false positive stocks). The C-vine, on the other hand, achieved a positive return and

a positive Sharpe ratio by allocating more that
3
4

of funds to stocks with higher CPT scores.
Hence, these stocks can be called true-positive stocks.

For the Forex market, while higher CPT portfolio outperforms the lower CPT one for
the MV approach (Table 8), the reverse is observed with C-vine (Table 9). The fact that the
C-vine results are consistent for both markets may be attributed to its ability of capturing
both linear and nonlinear dependence structures through suitable bivariate copulas. On the
other hand, the inconsistency of the MV results for both markets may be a result of the
market characteristics. While the stocks are country specific markets, the Forex on the other
hand is a global and highly liquid market. Nonlinearity has been observed in many highly
liquid developed markets, see (Antoniou et al. 1997). The contradictory results on both
markets from the MV approach may be as a result of the failure to capture the nonlinearity
in the highly liquid Forex market.

Table 8. Optimization results of Forex portfolios using the BMV approach.

Forex Portfolio with Lower Behavioral Scores Forex Portfolio with Higher Behavioral Scores

Tickers Weights Return Risk SR Tickers Weights Return Risk SR

QATARI.RIAL.TO.USD 18.20

−0.0033 0.0002 −16.5000

SWAZILAND.LILANGENI.TO.USD 5.45

0.0784 0.2236 0.3506

OMAN.RIAL.TO.USD 24.28 GEORGIAN.LARI.TO.USD 20.86

HONG.KONG.TO.USD 17.71 UKRAINE.HRYVNIA.TO.USD 13.64

BAHRAINI.DINAR.TO.USD 6.33 ICELANDIC.KRONA.TO.USD 11.92

UAE.DIRHAM.TO.USD 17.48 SOUTH.AFRICA.RAND.TO.USD 3.94

JORDANIAN.DINAR.TO.USD 3.50 KAZAKHSTAN.TENGE.TO.USD 31.21

EGYPTIAN.POUND.TO.USD 0.04 SEYCHELLES.RUPEE.TO.USD 12.99

CHINESE.YUAN.TO.USD 12.45 CAPE.VERDE.ESCUDO.TO.USD 0.00
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Table 9. Optimization results for Forex portfolios using the CBMV approach.

Forex Portfolio with Lower Behavioral Scores Forex Portfolio with Higher Behavioral Scores

Tickers Weights Return Risk SR Tickers Weights Return Risk SR

QATARI.RIAL.TO.USD 12.50

0.0068 0.5820 0.0116

SWAZILAND.LILANGENI.TO.USD 2.00

0.0044 0.4650 0.0094

OMAN.RIAL.TO.USD 12.50 GEORGIAN.LARI.TO.USD 7.00

HONG.KONG.TO.USD 12.50 UKRAINE.HRYVNIA.TO.USD 15.00

BAHRAINI.DINAR.TO.USD 12.50 ICELANDIC.KRONA.TO.USD 2.00

UAE.DIRHAM.TO.USD 12.50 SOUTH.AFRICA.RAND.TO.USD 10.00

JORDANIAN.DINAR.TO.USD 12.50 KAZAKHSTAN.TENGE.TO.USD 19.00

EGYPTIAN.POUND.TO.USD 12.50 SEYCHELLES.RUPEE.TO.USD 5.00

CHINESE.YUAN.TO.USD 12.50 CAPE.VERDE.ESCUDO.TO.USD 40.00

For the Forex merged portfolio, MV outperforms the C-vine (Table 10), as opposed to
the observations made for stocks. The results exhibited by C-vine are consistent with those
obtained by (Ababio et al. 2020) using R-vine on indices and cryptocurrency portfolios.

3.5.2. Robustness of Optimization Results

In the JSE stock market, using the BMV and the CBMV approaches, the stocks with
lower CPT scores were found to outperform the counterpart portfolios with higher CPT
scores. The CBMV results in the JSE stock market are consistent with those of the Forex
market. However, in the Forex market, the BMV portfolio with higher CPT scores outper-
formed the counterpart portfolio with lower CPT scores, which is different from the BMV
results in the JSE stock market.

Merging the two portfolios using the BMV and CBMV in each market, the CBMV
outperforms that of the BMV in the JSE stock market, while in the Forex market, the reverse
was observed.

Based on the Sharpe ratio, the BMV appears to outperform the CBMV in almost all
settings. It appears that investing in the Forex market using the behavioral MV approach is
more promising and could add value to the invested portfolio.

Table 10. Optimization results of Forex portfolios using BMV and CBMV, respectively.

Forex Portfolio Obtained by Merging Currencies with Lower and Higher Behavioral Scores (BMV Approach) Forex Portfolio Obtained by Merging Currencies with Lower and Higher Behavioral Scores (CBMV Approach)

Tickers Weights Return Risk SR Tickers Weights Return Risk SR

QATARI.RIAL.TO.USD 0.00

0.0376 0.0488 0.7705

QATARI.RIAL.TO.USD 2.00

0.0134 0.3250 0.0412

OMAN.RIAL.TO.USD 29.66 OMAN.RIAL.TO.USD 8.00

HONG.KONG.TO.USD 0.00 HONG.KONG.TO.USD 2.00

BAHRAINI.DINAR.TO.USD 20.89 BAHRAINI.DINAR.TO.USD 7.00

UAE.DIRHAM.TO.USD 11.14 UAE.DIRHAM.TO.USD 4.00

JORDANIAN.DINAR.TO.USD 0.00 JORDANIAN.DINAR.TO.USD 4.00

EGYPTIAN.POUND.TO.USD 2.32 EGYPTIAN.POUND.TO.USD 2.00

CHINESE.YUAN.TO.USD 0.00 CHINESE.YUAN.TO.USD 4.00

SWAZILAND.LILANGENI.TO.USD 1.64 SWAZILAND.LILANGENI.TO.USD 2.00

GEORGIAN.LARI.TO.USD 0.87 GEORGIAN.LARI.TO.USD 8.00

UKRAINE.HRYVNIA.TO.USD 6.54 UKRAINE.HRYVNIA.TO.USD 2.00

ICELANDIC.KRONA.TO.USD 6.08 ICELANDIC.KRONA.TO.USD 7.00

SOUTH.AFRICA.RAND.TO.USD 1.55 SOUTH.AFRICA.RAND.TO.USD 3.00

KAZAKHSTAN.TENGE.TO.USD 12.46 KAZAKHSTAN.TENGE.TO.USD 2.00

SEYCHELLES.RUPEE.TO.USD 6.86 SEYCHELLES.RUPEE.TO.USD 5.00

CAPE.VERDE.ESCUDO.TO.USD 0.00 CAPE.VERDE.ESCUDO.TO.USD 38.00

4. Conclusions

In this paper, we investigated the robustness of the conventional mean-variance (MV)
optimization model by making two adjustments, based, on the one hand, on a behavioral
decision-making theory and investor psychology, called the BMV approach, and on the
other hand, by using the copula theory to extract the portfolio asset dependence structures,
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called CBMV. Applying the BMV and the CBMV on the JSE stock market, the results show
that portfolios of stocks with lower behavioral scores outperform counterpart portfolios
with higher behavioral scores. Whereas on the Forex market, the reverse is observed for
the BMV, while the CBMV remains consistent. More specially, in the Forex market, the
BMV portfolio with higher CPT scores was found to outperform the counterpart portfolio
with lower CPT scores. This could be due to the failure of the classical MV to capture the
non-linearity exhibited by a highly liquid market as the Forex. In the future, other markets,
such as commodities, bonds, or derivatives, will be assessed. Applying the BMV and the
CBMV on the combined portfolios within the same asset classes, the CBMV outperforms
that of the BMV in the stock market, while in the Forex market, the reverse was observed.
Based on the Sharpe ratio, the BMV appears to outperform the CBMV in almost all settings.
It appears that investing the Forex market using the behavioral BMV approach is more
promising and could add value to investors’ portfolios.

The approach presented in this study has the advantage of incorporating investor
psychology in the portfolio selection since investors are not fully rational in their decision
making. Previous studies on world indices and cryptocurrency markets have shown
consistency with the indices/cryptoassets with lower CPT scores outperforming those
with higher CPT scores. This was based on a t-copula type model. The same conclusion
is drawn here with the vine copula type model (CBMV), whereas the BMV model does
not align to such conclusions in the Forex market. Thus, is such a claim market-related or
model-specific? We will investigate this in future work.
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Appendix A

Appendix A.1. JGR-GARCH Model

It is useful in the portfolio selection to take into account the dependence structure, the
stylized facts related to the fat tail distributions, as well as the phenomenon of volatility
clustering. This explains the use of GJR-GARCH and vine copula in this study to model
these features.

Appendix A.2. GARCH Specifications

Let rt = (r1,t, r2,t, · · · , rd,t) be a d-dimensional vector of asset returns. The standard
GARCH specification is given by:

ri,t = µi,t + εi,t

εi,t = σi,tνi,t (A1)

σi,t = ωi,t + αi,tε
2
i,t + βi,tσi,t−1

where σi,t is the conditional variance of the returns series ri,t and νi,t ∼ N(0, 1) the stan-
dardized innovations/residuals, which can be assumed to follow a normal, Student’s t,
skewed-Student’s t, or any other distribution. Giving the lack of a standard GARCH model

https://finance.yahoo.com/
https://finance.yahoo.com/
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to capture the leverage effect, we opted for an asymmetric GARCH, namely GJR-GARCH
(Glosten et al. 1993) to simulate the dynamics of the conditional variance given by:

σ2
i,t = ωi +

p

∑
j=1

βi,jσ
2
i,t−j +

q

∑
k=1

(
αi,k + γi,kIi,t−k

)
εi,t−k (A2)

where Ii,t−k =

{
1, if εi,t−k < 0;
0, if εi,t−k ≥ 0

Financial return time series are known to display fat tail

features. Giving that the heteroskedasticity does not explain all characteristics of fat-tailed
distributions, we need to specify such distributions to model innovations. Bollerslev and
Wooldridge (1992) used the t-distribution while Engle and Gonzalez-Rivera (1991) used
non-parametric modeling. To control the higher order moments (Kurtosis and Skewness),
Hansen (1994) constructed a new distribution called skewed Student’s t, which is a general-
ization of the Student’s-t distribution with an additional parameter to control the skewness.
Its density is given by:

d(x; η, λ) =


bc
(

1 +
1

η − 2

(
bx + a
1− λ

)2)− η+1
2

if x > − a
b

bc
(

1 +
1

η − 2

(
bx + a
1 + λ

)2)− η+1
2

if x ≤ − a
b

where a = 4λc
η − 2
η − 1

, b = 1 + 3λ2 − a2, c =
Γ
( η+1

2
)√

π(η − 2)Γ
( η

2
) and Γ is the gamma function.

What is interesting about this density function is that it encompasses a wide range of
conventional densities. For example, when λ = 0, it reduces to Student’s-t distribution. If
λ = 0 and η → ∞, it reduces to the normal distribution. This justifies our choice for the
skewed Student’s-t distribution as our margins in this study.

References
Aas, Kjersti, Claudia Czado, Arnoldo Frigessi, and Henrik Bakken. 2009. Pair-copula constructions of multiple dependence. Insurance:

Mathematics and Economics 44: 182–98. [CrossRef]
Ababio, Kofi Agyarko, Jules Clement Mba, and Ur Koumba. 2020. Optimisation of mixed assets portfolio using copula differential

evolution: A behavioural approach. Cogent Economics & Finance 8: 1780838.
Antoniou, Antonios, Nuray Ergul, and Phil Holmes. 1997. Market efficiency, thin trading and non-linear behaviour: Evidence from an

emerging market. European Financial Management 3: 175–90. [CrossRef]
Bedford, Tim, and Roger M. Cooke. 2001. Probability density decomposition for conditionally dependent random variables modeled

by vines. Annals of Mathematics and Artificial Intelligence 32: 245–68. [CrossRef]
Bollerslev, Tim, and Jeffrey M. Wooldridge. 1992. Quasi-maximum likelihood estimation and inference in dynamic models with

time-varying covariances. Econometric Reviews 11: 143–72. [CrossRef]
Engle, Robert, and Gloria Gonzalez-Rivera. 1991. Semiparametric arch models. Journal of Business & Economic Statistics 9: 345–59.
Fahmy, Hany. 2020. Mean-variance-time: An extension of markowitz’s mean-variance portfolio theory. Journal of Economics and

Business 109: 105888. [CrossRef]
Glosten, Lawrence R., Ravi Jagannathan, and David E. Runkle. 1993. On the relation between the expected value and the volatility of

the nominal excess return on stocks. The Journal of Finance 48: 1779–801. [CrossRef]
Hansen, Bruce E. 1994. Autoregressive conditional density estimation. International Economic Review 1: 705–30. [CrossRef]
He, Xue Dong, and Xun Yu Zhou. 2011. Portfolio choice under cumulative prospect theory: An analytical treatment. Management

Science 57: 315–31. [CrossRef]
Holland, John H. 1975. Adatation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.
Jin, Hanqing, and Xun Yu Zhou. 2008. Behavioral portfolio selection in continuous time. Mathematical Finance: An International Journal

of Mathematics, Statistics and Financial Economics 18: 385–426. [CrossRef]
Joe, Harry. 1994. Multivariate extreme-value distributions with applications to environmental data. Canadian Journal of Statistics 22:

47–64. [CrossRef]
Kahneman, Daniel, and Amos Tversky. 1979. On the interpretation of intuitive probability: A reply to jonathan cohen. Cognition 7:

409–11. [CrossRef]

http://doi.org/10.1016/j.insmatheco.2007.02.001
http://dx.doi.org/10.1111/1468-036X.00038
http://dx.doi.org/10.1023/A:1016725902970
http://dx.doi.org/10.1080/07474939208800229
http://dx.doi.org/10.1016/j.jeconbus.2019.105888
http://dx.doi.org/10.1111/j.1540-6261.1993.tb05128.x
http://dx.doi.org/10.2307/2527081
http://dx.doi.org/10.1287/mnsc.1100.1269
http://dx.doi.org/10.1111/j.1467-9965.2008.00339.x
http://dx.doi.org/10.2307/3315822
http://dx.doi.org/10.1016/0010-0277(79)90024-6


Int. J. Financial Stud. 2022, 10, 28 16 of 16

Kahneman, Daniel, and Amos Tversky. 1992. Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk
and Uncertainty 5: 297–23. [CrossRef]

Krink, Thiemo, and Sandra Paterlini. 2011. Multiobjective optimization using differential evolution for real-world portfolio optimiza-
tion. Computational Management Science 8: 157–79. [CrossRef]

Krink, Thiemo, Stefan Mittnik, and Sandra Paterlini. 2009. Differential evolution and combinatorial search for constrained index-
tracking. Annals of Operations Research 172: 153–76. [CrossRef]

Maringer, Dietmar, and Olufemi Oyewumi. 2007. Index tracking with constrained portfolios. Intelligent Systems in Accounting, Finance
& Management: International Journal 15: 57–71.

Markowitz, Harry M. 1952. Portfolio selection. Journal of Finance 7: 77–91.
Mba, Jules Clement, and Sutene Mwambi. 2020. A markov-switching cogarch approach to cryptocurrency portfolio selection and

optimization. Financial Markets and Portfolio Management 34: 199–214. [CrossRef]
Mba, Jules Clement, and Sutene Mwambi. 2021. Crypto-assets portfolio selection and optimization: A cogarch-rvine approach. Studies

in Nonlinear Dynamics & Econometrics. [CrossRef]
Mba, Jules Clement, Edson Pindza, and Ur Koumba. 2018. A differential evolution copula-based approach for a multi-period

cryptocurrency portfolio optimization. Financial Markets and Portfolio Management 32: 399–418. [CrossRef]
Michaud, Richard O. 1989. The markowitz optimization enigma: Is ‘optimized’optimal? Financial Analysts Journal 45: 31–42. [CrossRef]
Omane-Adjepong, Maurice, Kofi Agyarko Ababio, and Imhotep Paul Alagidede. 2019. Time-frequency analysis of behaviourally

classified financial asset markets. Research in International Business and Finance 50: 54–69. [CrossRef]
Ötken, Çelen N., Z. Batuhan Organ, E. Ceren Yıldırım, Mustafa Çamlıca, Volkan S. Cantürk, Ekrem Duman, Z. Melis Teksan, and Enis
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