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Abstract: Transaction-cost models in continuous-time markets are considered. Given that 

investors decide to buy or sell at certain time instants, we study the existence of trading 

strategies that reach a certain final wealth level in continuous-time markets, under the 

assumption that transaction costs, built in certain recommended ways, have to be paid. 

Markets prove to behave in manners that resemble those of complete ones for a wide 

variety of transaction-cost types. The results are important, but not exclusively, for the 

pricing of options with transaction costs. 

Keywords: risky asset; transaction costs; weakly complete markets; continuous-time 

markets; cost function; option pricing 
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1. Introduction 

Our source of inspiration is the attempt to price options in a continuous-time environment.  

Black and Scholes developed a model with no transaction costs, under the hypothesis that there are no 

market imperfections, such as transaction costs, taxes, etc. Since then, there have been numerous 

different approaches, deviating from their original work, both on the initial assumptions used as well 

as the existence of transaction costs. 

When transaction costs are paid, the arbitrage arguments, as well as the completeness of markets 

assumptions are not necessarily valid any more. Therefore, one needs to study first how transaction  

costs are incorporated, then investigate their properties, such as type of cost, time of occurrence, 

number of payments, etc., and finally explore/address the consequences of the existence of costs to the 

continuous-time market environment. 

OPEN ACCESS



Int. J. Financial Stud. 2015, 3 103 
 

 

Since the Black-Scholes approach, several attempts have been made to improve their result as well 

as to bring it closer to reality, which was related in part to the inclusion of transaction costs. Initially, 

proportional costs were added, and later costs that had a fixed and a proportional part (still linear 

though) were considered. In relation to the addition of proportional costs, we can find among others 

the work initially of Merton [1] and later of Monoyios [2]. Whalley and Willmot [3] included small 

transaction costs, while Damgaard [4,5] and Kocinski [6], followed a more global approach. On the 

other hand, the addition of fixed and proportional costs has been studied by Zakamouline [7] and 

Amster [8], among others. 

With regards to the literature on transaction costs globally, Kabanov and Safarian [9] present a 

mathematical approach of financial markets with proportional transaction costs. They include a variety 

of results, focusing on a series of topics, such as approximative hedging, arbitrage theory and 

consumption-investment problems. Safarian [10] continues to study a hedging problem for European 

options with transaction costs in incomplete markets, using the concept of risk minimization. 

Our contribution mainly lies in the way transaction costs are incorporated. We assume that 

transaction costs are built as an expression of the form 
ΓΔ+Δ= )()(0 YY λαβ , (1)

where YΔ  is the total change in the risky asset position since the last payment of transaction costs, for 
λ  and Γ  constants in ]1,0[  and )(0 xα  a step function that becomes equal to a constant 0α  if x  is not 

0 and equals to 0 if x  is 0. The above transaction costs have a fixed and a proportional part but are not 

necessarily linear. 

The time instants at which transaction costs are paid are the points of time at which the investor 

decides to adjust the portfolio as a result of a significant change in the price of the risky asset.  

The change in price is monitored with respect to the maximum and minimum price achieved since the 

last transaction took place. When the price deviates by a preset quantity or proportion, then the 

investor adjusts/rebalances his or her portfolio by performing a transaction on the (specific risky) asset. 

In our setting, the change in the position is made purely for the purpose of paying the transaction 

costs that behave similarly to management or commission fees. This means that whenever the risky 

asset price deviates from the minimum or maximum price since the last payment of management fees, 

then management or commission fees need to be paid again. 

The properties of the time instants where the management or commission fees are paid have been 
studied in Poufinas [11]. More precisely, it has been proved that in a time interval ],0[ T  there are 

finitely many such time instants and they are stopping times. 

The existence of a trading strategy on the risky asset that pays for the management or commission 

fees and simultaneously reaches a desired wealth level at time T  is investigated. We derive conditions 

for which such a strategy exists and we prove that when 1<Γ , then such a strategy always exists. 

To the best of the author’s knowledge, there has not been a similar approach, either to the way the 

transaction costs are modeled as well as the way their properties are built or to their effect on the 

existence of trading strategies that allow the investor to reach a certain final level of wealth. 

In Section 2, we describe the environment in which we derive our results. The differences from the 

Black-Scholes approach are stressed so that the derived results are better interpreted. In Section 3, we 

present our models for the time instants at which transaction costs or management fees have to be paid 
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as developed in Poufinas [12]. In Section 4, the cost functions are modeled and our main findings 

about the existence of trading strategies, which pay for the costs incurred and reach a desired final 

wealth, are examined. In Section 5, certain special cases with respect to the parameters involved  

are presented. In Section 6, we make a short comment about the applicability of our findings to the 

pricing of European Options on the risky asset. In Section 7, we describe some further steps and 

extensions that could be followed towards the inclusion of transaction costs. If achieved, then a more 

general result would be in place that would allow for the improvement of the modeling of transaction 

costs when looking for trading strategies that reach a certain final wealth level or pricing options.  

In Section 8, we conclude with the findings of the main body of the paper. From an organizational 

perspective, we present the proofs of the propositions, corollaries and theorems as an appendix at the 

end of the manuscript. 

2. Description of the Mathematical Setting 

In the following we consider continuously trading markets with transaction costs (commission fees). 
Our mathematical setting comprises of a filtered complete probability space ))(Pr,,,( 0 ∞≤≤Ω ttFF . 

Filtered means that +∞≤≤ttF 0)(  is an increasing family of σ-algebras (called a filtration), i.e., ts FF ⊆  

for ts ≤  (see Protter [13] p. 3). We assume that all the stochastic processes that appear are adapted, 
unless otherwise mentioned. This means that if ∞≤≤ttX 0)(  is a stochastic process, then tt FX ∈ , for all t . 

In other words tX  is tF  measurable (see Protter [13] (pp. 3–4)). Furthermore, all the functions and 

stochastic processes are continuous, unless otherwise stated. (In)equalities that involve random 

variables are understood to hold almost surely. We assume the existence of a risky asset such that its 

prices are generated by an Itô process (see Merton [1] (pp.122–124) or Duffie [14] (pp. 80–84)), and 

its stochastic differential satisfies 

dWtPdttP
P

dP
),(),( σα += . (2)

α  is the instantaneous conditional expected change in price per unit time, 2σ  is the instantaneous 

conditional variance per unit time and W  is a Brownian Motion. Moreover we assume the existence of 
a riskless asset that has a rate of return ).,( tBr  If tB  denotes the dollar amount invested in the riskless 

security at time t, then 

dttBr
B

dB
),(= . (3)

For the rest of our discussion we assume that α , σ  do not depend on P, t and r does not depend on B, t.

tV  denotes the portfolio value at time t. tN  denotes the number of shares of stock that the individual 

holds at time t. For our models we assume the existence of only one risky and only one riskless asset. 
Then tV  is given by 

tttt BPNV +=: . (4)

We define 

ttt PNY =:  (5)
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to be the market value of the risky asset. Continuing in line with the problem that stimulated our theme, 
there is also a third security—an option—that receives no payments at time ),0[ Tt∈  and its value at 

time T is given by 

),0max(: EPO TT −= , (6)

where E is the exercise or strike price. T is the agreed-upon date at which the buyer has to exercise the 

option. This date is called the expiration or maturity date. Such an option is also known as a European 

Call Option, since it can be exercised only on the expiration date (see Merton [1] (pp. 256–257, p. 280)). 

Given the payment to the individual at expiration, the problem is to find the price of the option at 

any other time instant and in particular at t = 0. This is the price that the intermediary would charge the 

buyer for the option. To develop option pricing models (option valuation techniques) one needs to 

determine the production cost of the option by deriving a portfolio strategy that mixes the stock with 

the riskless security and exactly replicates the payoff to the option. By following this strategy the 

intermediary that intends to sell the call option to the customer (buyer) completely hedges the risk 

(perfect hedge), i.e., he or she eliminates the possibility of future gain or loss (see Downes and 

Goodman [15] (pp. 184–185)). The ask price for the call option is the value of the portfolio at t = 0, i.e.,

0V . The question is whether we can find such a portfolio (trading) strategy. 

Two concepts are needed in such an analysis: those of arbitrage and complete markets. A trading 
strategy is said to be an arbitrage if either 00 <V  and 0≥TV  or 00 ≤V  and 0>TV  holds (see Duffie [14] 

(p. 107)). We say that markets are complete if for any random variable X (with finite variance) there 

exists an adapted, self-financing portfolio strategy such that X is obtained as the terminal value of the 
portfolio, i.e., XVT =  (see Duffie [14] (pp. 103–104)). 

Returning to the search of a portfolio strategy that replicates the payoff to the option, it is required 

that the individual’s portfolio is not an arbitrage. To rule out the possibility of arbitrage at any time 
instant ],0[ Tt∈ , tt OV =  must hold in a Black-Scholes environment. 

In the following discussion we assume that commission fees as described in the Introduction have 

to be paid. Different ways of incorporating transaction costs are given in Section 4 below. In our 

models we get to choose the time instants at which the aforementioned payments are made. These time 

instants (and their properties) are presented first in Section 3 that follows. However, the addition of such 

transaction costs modifies the Black-Scholes working environment. As a consequence, markets are not 

necessarily complete, arbitrage may be possible and it is not necessary that a self-financing portfolio 

that has any given X (with finite variance) as terminal value does exist. We therefore need the 

following definitions: 

Definition 1: Markets are said to be weakly complete when for each random variable X with finite 
variance there exists an TF —measurable portfolio strategy on the stock (risky asset) and the bond 

(riskless asset) such that X is obtained as the final value of the strategy, i.e., XVT = . 

Definition 2: We say that a strategy N on the risky asset finances the security X at time T if 

XBPN TTT =+  (7.1)

and 

 ∈∀−+=
t

s

t

stt TtdsscdPNPNPN
0000 ],0[,)( , (7.2)
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where )(sc  is the cost paid for the transaction at time s. 

The trigger—intuition behind this approach is that we still want to investigate if we can construct a 

portfolio that allows us to reach a desired final wealth level, realizing that when transaction costs have 

to be paid markets are not frictionless, thus not necessarily complete. This means that a complete set of 

possible outcomes on future states-of-the-world may not be constructed with existing assets as was the 

case without friction. In this manuscript we examine the conditions (for different cost functions) under 

which we can find a portfolio strategy on a risky and a riskless asset (let us say stock and bond, 

respectively), which is rebalanced every time transaction costs have to be paid to cover for these costs, 

which matches a final value. We defined the markets for which this can be achieved as “weakly 

complete”. These are markets in which the volume and availability of securities ensures that there are 

no constraints on investment outcomes. Attention needs to be paid on the fact that even weak 

completeness is not always secured when transaction costs have to be paid. The type of the cost 

function may lead to specific conditions under which markets are weakly complete. We comment 

more on the economic meaning of this (as well as on the measurability) when we define cost more 

explicitly, in Section 4 (in the text following Equation (18)). 
In the case that )(),( ttP αα =  and )(),( ttP σσ = , i.e., they are functions of time only and not the 

risky asset, then the solution of Equation (2) becomes 
)(

0
t

t ePP γ= , (8.1)

where 

 +=
t s

sdWsdsst
0 0

)()()( σμγ  (8.2)

and 

)(
2

1
)()( 2 ttt σαμ −= . (8.3)

For the rest of our discussion we assume that μ and σ are continuous or even fixed, hence in any case 

they are bounded. 

3. The Time Instants at Which Payments Have to Be Made 

We assume that payment of transaction costs takes place on the time instants iτ , *1 Ni = , which 

are determined in the following way (see Poufinas [12] (pp.374–375, p. 392)); first let J be a fixed 
positive real number and 0:0 =τ . Assume that iτ  has already been defined and let 

]},[:max{: tsPM ist τ∈=  (9.1)

and 

]},[:min{: tsPm ist τ∈=  (9.2)

for ],0[ Tt∈ . Let 

),max(:)( tttt mPPMt −−=φ  (10.1)

and for Ω∈ω , let 
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)).()(),()(max(),( ωωωωωφ tttt mPPMt −−=  (10.2)

Then define 1+iτ  by 

}),(:)(inf{:)(1 Jtt ii =≥=+ ωφωτωτ . (11)

iτ  denotes the time instant on which the payment of the transaction cost takes place. In other words, 

after the transaction cost is paid at time iτ  the next payment is done at time 1+iτ . This is the time 

instant at which the price has deviated from its maximum or minimum since iτ  by a preset amount J. 

The rationale behind using such a choice for the time of the transaction lies in the fact that the 

investor chooses to adjust the risky asset part of the portfolio when the price of the risky asset has 

departed from the maximum or minimum price by a certain amount. 

One could recommend using both the risky and the riskless asset to cover for the transaction costs. 

This would yield an alternative strategy with a different cost function or level of total cost incurred for 

the investor. The question then would be how to choose one of the two (or more) potential approaches. 

As a matter of fact a similar question can be raised when we have a portfolio of more than one risky 

asset and a riskless asset. We have identified this problem for future research, as mentioned in the 

relevant Section 7 below. We recommend addressing the problem with the use of the utility function of 

the investor, which allows us to find the optimal solution (strategy) from his or her perspective (as 

reflected through the utility function). 
A different way to define iτ  is given if 

i
PJ i τν=+ :1 , where ν is a fixed positive number. Set 0:0 =τ . 

If iτ  is given we define 1+iτ  by 

Ω∈=≥= ++ ωωωφωτωτ )},(),(:)(inf{:)( 11 iii Jtt . (12)

The reasoning behind such a choice is that the investor chooses to perform a transaction and adjust the 

portfolio when the stock price has increased or decreased compared to its maximum or minimum by a 

certain multiple of the price at the time of the previous transaction, thus reflecting a “percentage change”. 

A further elaboration of the choice of such a criterion to transact—for both ways as defined  

above—can be given as follows: 

• The investor buys or sells shares of stock when the price increases or decreases vs. the 

min or max by a certain amount. 

• This is based on the rationale that the investor monitors the price move, e.g., through a 

price chart and, as soon as the price deviates from the minimum (maximum) recorded 

since the previous transaction, he or she transacts again by, e.g., selling (buying) shares of  

stock, respectively. 

• This seems to be a reasonable direction/choice, not far removed from the technical 

analysis approach. In the model described minimum and maximum prices from the last 

transaction price are used, whereas in technical analysis relative maxima and minima  

are observed. 

• This amount is absolute (J) in the case of Equations (9.1)–(11), but it becomes relative 

to the previous transaction price in Equation (12). In the latter, 
i

PJi τν=+ :1 , where ν is a 

proportion of the last transaction price. 
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• However, instead of transacting when the price has deviated from the last transaction 

price by more than a specific amount, the aforementioned criterion is used. Such a 

choice seems appropriate as it considers not only the price shift from the last transaction, 

but rather its shift from the max or the min posted since the last transaction. 

• The latter somehow seems to be a “more secure” signal to transact. 

The above is illustrated in Figure 1 below, where we have taken 10 =P  and 5,0=J . The choice 

has been made simply to elaborate, as 5,0=J  is quite big compared to the price (the graph is more 

an indicative sketch as opposed to an accurate price chart). Only the first seven time instants at 

which the investor transacts have been mapped. 
As one can see from the graph, the investor buys the share at time 0 for 10 =P  and then transacts 

when the price has departed by 5,0=J  from the minimum, which coincides with 10 =P . At that 

time, 1τ , he or she sells. Consequently, he or she incurs transaction costs. 

Then he or she transacts again at the time instant 2τ , when the price has parted from the maximum 

by 5,0=J ; he or she buys. There has not been a previous time instant at which the price has moved 

from the maximum or the minimum by 5,0=J . He or she has to pay transaction costs again. 

This continues for the entire time horizon of the investor, and the relevant time instants are 

shown on the sketch. 

The purchase or sale of shares of stock when the difference of the current (at the time) price and 
the max or min has reached 5,0=J  can be explained by the fact that the investor exits as soon as a 

targeted profit has been made and he or she re-enters when the price has reached a level he or she 

considers as reasonable to give him or her an upside potential. One can see that this is the case in 
the relative lows (e.g., at time instants 2τ , 4τ ) as well as in upward moves (e.g., at time instant 6τ ). 

 

Figure 1. Times of transaction cost occurrence. 

One can note that when the price goes up (increasing pieces of the chart), then tt PM = , hence 

tttttt mPmPPM −=−− ),max( . This is due to the fact that when the price goes up there is always a  

new maximum. 

Price

                B
             S

               S
   S       B             B

P0=1 B

τ0 Time   τ1             τ2 τ3               τ4 τ5 τ6
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On the other hand, when the price goes down (decreasing pieces of the chart), then tt Pm = , hence

tttttt PMmPPM −=−− ),max( . This is due to the fact that when the price goes down there is always 

a new minimum. 
As can be seen from Figure 1, and inferred from the definition of the time instants iτ , if J is too 

small, then there will be many transactions hence the investor will incur higher transaction costs.  

For example, as 0→J , almost every time instant will be an instant suitable for transaction. In such a 

case, the transaction costs will be very high and will most likely make the strategy worthless to follow. 
Let ωI  be the index set for the )(ωτ i ’s. In Poufinas [11] it has been proved that for almost every ω, 

ωI  is finite and that for each i, iτ  is a stopping time (see Protter [13] (pp. 3–5)). 

4. The Cost Functions 

The amount that the individual has to pay at iτ , *1 Ni =  may be given by different cost functions. 

If iβ  is this amount and c(t) denotes the cost function, then 


=

−=
*

1
0 )()(

N

i
i dtdttc ττδβ ι  (13)

where )(0 xδ  denotes the Dirac delta function. This function has the properties that 0)(0 =xδ  for 0≠x  

and +∞=)0(0δ  in such a way that 1)(0 = dxx
b

a
δ  for any ba << 0  (Merton [1]). There are no functions, 

in the usual sense of the world, with such properties, and, this is thus referred to as generalized function. 

c(t) is essentially the individual’s “consumption” at time t, since his or her expenses are only the 

commission fees. On the other hand the individual’s consumption in terms of his or her shares of stock 
is given by )( PdPdN + . We conclude that 

dNdPPdNdttc +=− )( . (14)

This is where our fist deviation from the Black-Scholes environment occurs. The portfolio cannot be 

self-financing in the standard sense, as self-financing portfolios assume that there is no “inflow” or 

“outflow”. In our model, there is an outflow when transaction costs are paid. The “consumption” of the 

investor equals the transaction costs. Moreover, we assume that the transaction costs are only paid from 

the risky asset, i.e., the investor does not liquidate part of the riskless asset to pay for the transaction costs 

incurred when he or she performs a transaction on the risky asset. This means that such costs are paid by 

trading on the risky asset (stock), and the riskless asset (bond) position does not change. 

We apply Itô’s Lemma to differentiate Equation (4) to see that 

dBdNdPPdNNdPdV +++= . (15)

Equations (13)–(15) yield that 

dttdBNdPdV i

N

i
i )(0

1

*

−−+= 
=

τδβ . (16)

Use Equation (2) to realize (see Merton [1] (pp. 124–126)) that 

dttdBdWNPdtNPdV i

N

i
i )(0

1

*

−−++= 
=

τδβσα . (17)



Int. J. Financial Stud. 2015, 3 110 
 

 

Recall that YBVNP =−= . Hence dYdBdV +=  and thus 

dttYdWYdtdY i

N

i
i )(0

1

*

−−+= 
=

τδβσα . (18)

In the following we will prove that, with our model assumptions, markets are weakly complete and 
the strategy chosen is TF -measurable. The strategy constructed is piecewise constant (step function) 

with respect to time. Our approach focuses more on the explicit construction or proof of existence of 

the strategy rather than on the measurability, as we would like to be able to point out the exact number 

of shares of stock (units of the risky asset) that the investor should hold. 

Moreover, in today’s markets the time period between 0 and T may not result in a significant 
difference on the information available, thus TFF ,,0   may reflect the same information for trading 

the security. This can be partially attributed to the insider information that traders have. This is 
particularly true when the time interval ],0[ T  is small, especially when pricing stock options. 

Given a desired final wealth level/outcome at time T, the time horizon of the investor (or maturity 

of the option when applicable), we try to construct a strategy on the risky and the riskless asset that 

gives as outcome the aforementioned wealth level. This strategy is affected by the fee payment, 

whenever it takes place, and the rebalancing performed by the investor occurs only at the fee payment 

times. This mimics a mutual fund or a portfolio holding where fees are paid when there is a given 

deviation from its share price. 

No other assumption about the change in the holding of shares of the risky asset can be made, since 

each investor increases or decreases his or her number of shares (even at the time instants of Section 3) 

based on his or her individual choices. Consequently, in our analysis we study the existence of portfolio 

strategies that finance any given outcome, allow for the payment of the management fees (as modeled in 

each of the section below) and are adjusted purely for the payment of the management fees. 

Due to the previous relaxation of the measurability requirement, Itô integration may not work.  

The fact that the strategy chosen is piecewise constant (step function of time) allows us to proceed 

with the same notation. This is because the investor does not change his or her position at any other 

point of time except for the ones described in this paper. Moreover, we examine the change in the units 

of the risky asset held to cover the transaction costs. Therefore, there is a very tight relationship 

between the units of the risky asset held before and after costs are paid. 

The problem of pricing a European Option on the risky asset—if we wanted to follow the  

Black-Scholes approach—is then reduced to solving the Stochastic Differential Equation (18) subject 

to the boundary condition 

TTTTT BOBWY −=−= , (19)

which becomes 

TTT BEPY −−= ),0max( . (20)

As a result, we are looking for a solution of Equation (18) subject to Equation (20). Our approach—as 

mentioned above—cannot use the standard arbitrage arguments, and lacks the measurability of the 

trading strategy. However, it still gives a financing strategy for the terminal price of the option. 
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As a remark, one can see that as 0→iβ , then the cost goes to zero, hence Equation (18) reduces  

to the equation followed in the Black and Scholes approach, thus leading to the Black-Scholes 

formula/solution. 

4.1. Constant Cost Function 

The first case we consider is 
*1,: Nii == ββ  (21)

i.e., the individual pays a fixed amount. Then the following proposition holds: 

Proposition 1: If the amount iβ , paid at time instant iτ , for *1 Ni =  is given by Equation (21), 

then markets are weakly complete. 

The natural question here is whether the previous integrals, as well as the ones to follow, make 
sense, since the strategy followed is only TF -measurable. The answer is provided by the fact that 

within each interval ),[ 1 ii ττ −  the number of shares of the risky asset held is unchanged with respect to 

time. Therefore one can readily see that for 1s  and 2s  in ),[ 1 ii ττ − . 

.
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−− ==⇔

++=⇔

++=⇔

++=







 (22)

The aforementioned result is the basis of our algebraic calculation and allows for the integral 

notation used in our proofs. It appears that we do not need to use such a notation; instead we can 
proceed simply with producing tN  backwards for each point of time. Care is necessary at the time 

instants iτ , where costs are paid. 

In the discussion below, as well as in the proofs, we denote by −
i

Yτ  the value of Y  at time iτ
immediately before the payment of the transaction costs and by +

i
Yτ  the value of Y  at time iτ  

immediately after the payment of the transaction costs. 

4.2. Linear Cost Function 

This time the individual pays a proportion of the amount of the transaction at iτ , i.e., 

)(
1

+−−+
−

−+−=
tttt

YYYYi ττττλβ . (23)

The reasoning behind such a choice of the transaction cost is that the investor pays a proportion λ of 

the total change of the portfolio value since the last portfolio adjustment due to the risky asset only. 

This consists of two parts; one due to the passage of time and another due to the occurrence of 

transaction costs. In this sense λ is the proportion of the change in the value of the portfolio paid in 
transaction costs. Set 1)( 0 =τθ  and for *1 Ni =  let (see Poufinas [12] (pp. 397–398, p. 401)) 
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1
1

:)(
~ )()()()(

0
11 −

−
+= −− −− iiii eei

τγτγτγτγ

λ
λτθ . (27)

We observe that 0)(
~ >iτθ  and 0)(

~
0 >iτθ  for all i. Two necessary and sufficient conditions for the 

weak completeness of markets are given in the following proposition. 

Proposition 2: If the amount paid at time iτ  is given by Equation (23) markets are weakly complete 

if and only if 0)( >iτθ  for all *1 Ni = . In addition, markets are weakly complete if and only if 

0)(0 >iτθ  for all *1 Ni = . 

4.3. Concave Cost Function 

A third way to incorporate costs is given if we assume that the individual pays a proportion of a 

power of the dollar amount of the transaction in fees, i.e., 

10,)(
1

<Γ≤−+−= Γ+−−+
−

whereYYYY
tttti ττττλβ . (28)

The introduction of concave functions is justified by the fact that as the traded amount becomes bigger due 

to the price difference or size of shares of stock traded, then the cost charged increases at a lower pace and 

not at the same constant pace. In other words, the cost paid is reflected by a concave function. 
The case Γ = 0 is equivalent to the one we examined when ββ =i . Observe that if Γ = 1, then 

Equation (28) is identical to Equation (23). We assume that )1,0(∈λ  since if 0=λ  then ββ == 0i . 

Proposition 3: With costs incorporated as in Equation (28), markets are weakly complete. 

4.4. Affine Cost Function 

Next we generalize the cost function given by Equation (23). We add to it a “fixed” cost.  

This additional cost is zero if there is no transaction and is strictly positive otherwise. It is given by 

)()(
110

+−−++−−+
−−

−+−+−+−=
tttttttt

YYYYYYYYi ττττττττ λαβ . (29)

0α  is defined by 





=
≠

=
00

0
:)( 0

0 x

x
x

α
α , (30)

where 0α  is a strictly positive number. If we allow 0α  to be zero, then we have the case discussed in 

Proposition 2. 
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Such a choice of the transaction costs is justified by the fact that costs may also have a fixed part 

besides the variable part. The latter is of course paid only when the transaction leads to a change in 

value. As far as the weak completeness of the markets is concerned, the following theorem holds. 

Theorem 1: If the fees that have to be paid at time instant iτ  are given by (30), then markets are 

weakly complete if and only if 0)(0 >iτθ . 

4.5. Affine-Concave Cost Function 

Finally, we generalize the cost function of Equation (28) by adding a “fixed’’ cost as given by (30). 

Our cost function becomes 

Γ+−−++−−+
−−

−+−+−+−= )()(
110 tttttttt

YYYYYYYYi ττττττττ λαβ , (31)

where 10 <Γ≤ . 

The introduction of affine-concave functions is justified by the fact that as the traded amount 

becomes bigger due to the price difference or size of shares of stock traded, then the cost charged 

increases at a lower pace and not at the same constant pace. In other words, the cost paid is reflected 

by a concave function but there is also a fixed part. The following theorem now holds: 

Theorem 2: If the transaction costs that the individual has to pay at time instant iτ  are given by 

Equation (31), then markets are weakly complete. 

5. Some Special Cases 

5.1. 0=Γ , )1,0(∈λ  

A particular case of the model we have been examining appears when )1,0(∈λ  and 0=Γ .  

It follows that 

λαβ ττττ +−+−= +−−+
−

)(
10 tttt

YYYYi . (32)

As before, let 0: ≥−=−= +−−+
iiii

YYYYx ττττ  and +−
−

−=
1

:
ii

YYC ττ  to see that Equation (32) is equivalent to 

λα ++= )(0 Cxx . (33)

Recall that 0>λ  and thus x > 0. This implies that 00 )( α=+Cxa  and 

λ+= 0ax . (34)

Conclude that for each *1 Ni =  

βλαβ :0 =+=i  (35)

i.e., iβ  is constant and does not depend on 
i

Yτ . As a result, our analysis is identical to the one we gave 

when iβ  is given by Equation (21), with λαβ += 0 , and therefore a solution (replicating strategy) tY

always exists, and is given by Equation (60). 
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5.2. 0=λ , ]1,0[∈Γ  

Theorem 1 covers the case 1=Γ  and )1,0(∈λ . Theorem 2 discusses the case )1,0(∈Γ  and

)1,0(∈λ . Finally in the previous paragraph we examined the case 0=Γ , )1,0(∈λ . The obvious 

question is what happens when 0=λ  and 0α  is as before. Observe that, no matter what Γ  is, the term 

that is multiplied by λ  is annihilated since 0=λ . Therefore, 

)(
10

+−−+
−

−+−=
tttt

YYYYi τττταβ . (36)

Set once more 0: ≥−= +−
ii

YYx ττ  and +−
−

−=
1

:
ii

YYC ττ  to see that Equation (36) becomes 

)(0 Cxx +=α . (37)

Observe that if x = 0, then 0)(0 =+Cxα  and thus x + C = 0, which implies that C = 0. If C = 0 though 

it does not necessarily follow that x = 0. x might be positive, in which case 0α=x . If C > 0, then 

00 )( αα =+Cx , since x + C > 0. Hence, 0α=x . To preserve a uniform notation with the rest of the 

cases we set 

);(:
10

+−
−

−=
ii

YYRx ττα , (38)

which also shows the dependence of x on the value of 0α . );( 0 ⋅αR  is a well defined function on  

),0( ∞+  and 

00 );( αα =⋅R  (39)

on that interval. On the other hand, if C = 0, );( 0 CR α  may be 0 or 0α . If we keep the positive solution 

when C = 0, then );( 0 ⋅αR  becomes a well defined function on ),0[ ∞+  and Equation (39) holds on 

),0[ ∞+  as well. The solution tY  is now given by 

)()()()(

1
00 ])()1;([ 1

1

*

t
N

i
t eetHeYRYY i

i

ii

i

γτγ
τ

τγτγ
τα −−+

=

−−= −

− . (40)

There are two ways to choose the value of iβ . The first is exactly like the one we followed for the case 

)1,0(∈λ . The details of the corresponding analysis will be presented later. There is a second way 

though we can choose iβ . We observed that 0αβ == xi  if C > 0. Moreover, if C = 0, then 0α=x  is 

one of the two possible solutions for iβ . As a consequence, we may take 

βαβ == 0i . (41)

to see that our problem becomes equivalent to the one we considered when iβ  was given by Equation (21). 

The weak completeness of markets is guaranteed by Proposition3. 

Going back to the traditional way of proving the weak completeness of markets, for fixed *1 Ni =
we define 

0:~
1
≥= +

−ιτYy , (42.1)

1: )()( 1 −= −− iiec τγτγ , (42.2)
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+
−

=
1

:
i

Yy τ , (42.3)

to see that Equation (37) can be written as 

)(0 ycxx +=α , (43)

)~(0 ycxx +=⇔ α . (44)

The question of the completeness of markets is answered by the following corollary. 

Corollary 1: For ]1,0[∈Γ  and iβ  given by Equation (36) markets are weakly complete. 

6. Application to the Pricing of European Options 

The methodology presented could be used for the pricing of European Options on the risky asset. 

More precisely, recall that for any given X we were able construct a portfolio strategy that satisfies 

TTT BPNX += . (45)

Take now TOX = , i.e., the value of the option at maturity, to see that such a portfolio strategy  

( TF -measurable) can be built. We can set 

],0[ TtBPNO tttt ∈∀+=  (46)

as the price of the option. It is of further research interest to examine the properties of such a choice 

and how it compares with the actual option price. Unfortunately, such a proposed solution does not 

meet the measurability requirements of the Black-Scholes environment. Therefore, the conditions 
under which the tF -measurability is established are to be investigated. 

7. Future Research 

A natural generalization would be to consider any nonnegative function f as our cost function.  

This means that the cost would be given as 

)(
1

+−−+
−

−+−=
tttt

YYYYfi ττττβ . (47)

The properties that f must satisfy can be derived by the conditions that are necessary to guarantee the 

existence of the solution of the resulting equations if we try to mimic the steps that we followed for our 

cost functions. A reasonable assumption is that f is concave, as is indicated by the functions we 

considered in our models. 

Moving in another direction, we could try to retrieve what conditions on our fee functions would 

allow for our results to be readily used for the pricing of (European) options. Such a result appears to 

be very interesting as it would incorporate transactions only when the risky asset price moves from its 

maximum or minimum within a certain time interval by a certain amount or percentage. The number 

of shares of the risky asset transacted would not have to be the ones that the investor needs to transact 
so that only the fees are paid but could be of any number. This means that the TF -measurability may 

not be sufficient and we would need to strengthen our result by producing a strategy that is adapted. 

The completeness or weak completeness of the markets would have to be examined as well. 
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Another next step in our analysis is the study of portfolios with more than one risky asset.  

Such portfolios allow for the trading of more than one risky asset and give more choices. This means 

that there is not only one strategy that can be followed, but the investor would have to choose among 

the available ones. This hints that we need to move towards the use of utility functions and control 

theory so as to derive the strategy that is optimal for the investor. 

In a different direction, the models presented above could be used for the valuation of hedge funds 

that include high-water mark features as a compensation scheme (or valuation of high-water mark 

contracts embedded in hedge funds)—as recommended by one of the anonymous referees, whom we 

sincerely thank. Indeed, such funds include high-water mark contracts, which “… have the appealing 

feature of paying the manager a bonus only when the investor makes a profit, and in addition, 

requiring that the manager make up any earlier losses before becoming eligible for the bonus payment. 

On the other hand, their option-like characteristics clearly induce risk-taking behavior when the 

manager is below the high-watermark, and the large bonus above the benchmark clearly reduces  

long-run asset growth.”, as per Goetzmann, Ingersoll and Ross [16]. “…high water mark provisions 

condition the payment of the incentive upon exceeding the maximum achieved share value”. 

The problem is relevant, as not only has the maximum share value been utilized (which is somehow 

common with our approach), but also because “The payoff at any point in time depends on the  

high-water mark which is related to the maximum asset value achieved. As such the contract can be valued 

using option-pricing methods”. We trust that such a problem could be tackled as part of finding the global 

properties of a function that would map transaction costs and is thus considered for future research. 

Last but not least, of interest would be to examine the validity or not of such results in a discrete-time 

framework. This means that we would have to examine the changes of the Cox-Ross-Rubinstein 

environment as a result of the introduction of transaction costs, modeled in a way similar to the one 

presented in this paper. Buss and Dumas [17] have recently published a paper in this area. We thank 

one of the anonymous reviewers for bringing this to our attention. 

Computer programs could be built for the findings of this paper as well as the recommended future 

research so as to compare the results with empirical evidence. When it comes to option pricing, this 

could be used as a lead to show how to proceed in incorporating the proposed transaction-cost models 

in option pricing techniques. 

8. Conclusions 

We modeled costs in a way dependent on the change of the risky part of the portfolio. Transaction costs 

incur at time instants where the price of the risky asset departs from its maximum or minimum either 

by a certain amount or a certain percentage. We established that markets are weakly complete or found 

conditions so that the latter occurs under the fee models we studied; namely the ones with fixed, linear, 

affine, concave and affine-concave costs. 
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Appendix: Proofs 

A. Proof of Proposition 1 

Recall that αα =),( tP , σσ =),( tP , to realize that the solution to Equation (2) is )(
0

t
t ePP γ= , 

where tWtt σμγ +=:)(  and 221: σαμ −=  (see Kloeden, Platen and Schurz [18] (pp. 69–78)). To see 

that take 

PG ln=  (48)

and use Itô’s Lemma to conclude that 

)(
0

)(
0

0 00

2

)(lnln

)2(

t
t

t
t

t t

t

ePPePP

tdWdtPP

WtdWdtdG

γγ

γσμ

σμσσα

==

=+=−

+=+−=

   (49)

Let X be any random variable. We will prove that there exists a portfolio strategy tV , such that 

XVT = . Let TBXY −=: . It suffices to prove the existence of a strategy tY  such that YYT = . This is 

equivalent to solving Equation (18) subject to YYT = . 

On the interval ),0[ 1τ , 

s

t

s

t

st dWYsdsYsYY  ++=
000 )()( σα  (50)

for ),0[ 1τ∈t . Its solution is 

)(
0

t
t eYY γ= . (51)

On the interval ),0[ 2τ  for 1τ≥t  

dssdWYsdsYsYY i

t N

i
s

t

s

t

st )()()(
0

1
0000

*

−−++=  
=

τδβσα  (52)

βσασα
ττ

ττ
−++++=⇔  dWYsdsYsdWYsdsYsYY

t

s

t

ssst
11

11

)()()()(
000 dss

t
)( 10 0 − τδ . (53)

The latter is due to the fact that for *2 Ni =  we have that 0>−≥−≥ ts tii τττ , as ti >≥ 2ττ , when 

),0[ 2τ∈t , hence the relevant integrals are equal to 0. 

If we allow for 1τ=t  in Equations (50) and (51) we get that Equation (53) becomes 

dWYsdsYsdsseYY
t

s

t

s

t

t  ++−−=
11

1 )()()( 10 0
)(

0 ττ

τγ σατδβ . (54)

Put 1τ=t  (or let +→ 1τt , i.e., t  converge to 1τ  from above) to see that 

βτγ
τ −=+ )(

0
1

1
eYY . (55)

Note: In the above equations, if we wanted to be more precise, we could have taken the first integral 
from 0 to ετ −1  and the second from ετ −1  to ετ +1  (for all terms), also for the integral of the Dirac 

delta function, for 0>ε  and small. The first integral for the Dirac delta function would have been zero 
and the first term of Equation (54) would have been )(

0
1 ετγ −eY . Taking then the limit as 0→ε , we 

would have derived Equation (55). 
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Therefore, for ),[ 21 ττ∈t , we have that 

dWYsdsYsYY
t

s

t

st  ++= +

11
1

)()(
τττ σα . (56)

Thus, 
)()( 1

1

τγγ
τ

−+= t
t eYY , (57)

for ),[ 21 ττ∈t . Equations (55) and (57) imply that 

)()(
0 ][ 1 t

t eeYY γτγβ −−= , (58)

for ),[ 21 ττ∈t . Equations (51) and (58) yield that 

),0[,])([ 2
)()(

0
1

1
τβ γτγ

τ ∈−= − tforeetHYY t
t , (59)

where for *1 Ni =  we define ),[: ∞+=
ii

H ττ χ , the characteristic function of ),[ ∞+iτ . This function is 

defined by 1)(),[ =∞+ t
iτχ  if it τ≥  and 0)(),[ =∞+ t

iτχ  if it τ< . 

We proceed in a similar fashion on the interval ),0[ iτ  for *3 Ni =  (in the case that 3* ≥N ) and 

eventually on ],0[ T  to see that 

,])([ )(

1

)(
0

*

t
N

i
t eetHYY i

i

γτγ
τβ

=

−−=  (60)

for ],0[ Tt ∈ . 

To find 0Y  we set t = T. Thus, 


=

−− +=
*

1

)()(
0 )(

N

i

T
T

i

i
eTHeYY τγ

τ
γ β . (61)

One can see that 0Y , and thus 0N , is in TF  but not necessarily in 0F . As a result, a solution exists 

and is given by Equation (60), with 0Y  given by Equation (61). As a consequence, there exists a 

replicating strategy, namely ttt BYV += , such that XVT = . This proves the weak completeness of the 

markets. Q.E.D. 

B. Proof of Proposition 2 

Let X be any random variable. The weak completeness of markets is equivalent to the existence of a 
portfolio strategy tV  such that XVT = . Set TBXY −= , to see that markets are weakly complete if and 

only if there exists a strategy tY , such that YYT = . Such a strategy though would be a solution of the 

Stochastic Differential Equation (18) subject to the boundary condition YYT = . 

As in the proof of Proposition 1 we see that on ),0[ 1τ  the solution is 

)(
0

t
t eYY γ= . (62)

Going to the interval ),0[ 2τ , we realize that for 1τ≥t  the solution is given by 
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)()( 1

1

τγγ
τ

−+= t
t eYY , (63)

where 

1
)(

01
1

11
ββ τγ

ττ −=−= −+ eYYY . (64)

The second equality in Equation (64) holds since )(
0

1

1

τγ
τ eYY =− . Equations (62)–(64) yield that 

)()(
10 ])([ 1

1

t
t eetHYY γτγ

τβ −−= , (65)

for ),0[ 2τ∈t . We proceed similarly on the interval ),0[ iτ  for *3 Ni =  (in the case that 3* ≥N ) and 

eventually on ],0[ T  to realize that 

)(

1

)(
0 ])([

*

t
N

i
it eetHYY i

i

γτγ
τβ

=

−−= . (66)

We generalize Equation (64) for any i to get that  

iii
YY βττ −= −+ . (67)

iβ  is nonnegative and therefore −+ ≤
ii

YY ττ . The latter equation is equivalent to 

+−+−
−

−=−−
1

))(1(
iiii

YYYY ττττ λλ  

+−−+
−

−
−

−=⇔
11 iiii

YYYY ττττ λ
λ

 (68)

+−
−

−
−

=⇔
11 ii

YYi ττλ
λβ . (69)

Without loss of generality we assume that 2* =N . If 00 ≥Y , then Equation (68) for i = 1 and 
)(

0
1

1

τγ
τ eYY =−  yield that 

)1
1

( )()(
0

11

1
−

−
−=+ τγτγ

τ λ
λ

eeYY  (70)

)1)(
1

)(( )()(
0

)()(
00

0101

1
−

−
−=⇔ −−+ τγτγτγτγ

τ τθ
λ
λτθ eeYY  (71)

since 1)( 0 =τθ  and 0)( 0 =τγ . Thus 

)( 101
τθτ YY =+ . (72)

Proceeding in a similar fashion (see Poufinas [12] (p. 397)) we get that for each i 

)(0 iYY
i

τθτ =
+ . (73)

If on the other hand 00 <Y , then 

)(
~

0 iYY
i

τθτ =
+ . (74)

If we do not make any assumptions about the sign of 0Y , then 

1
1

)()(
0

)()(
0

0101

1
−

−
−= −−+ τγτγτγτγ

τ λ
λ

eYeYY . (75)
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Similarly we see (see Poufinas [12] (p. 400)) that 

1
1

)()()()( 12

1

12

12
−

−
−= −+−++ τγτγ

τ
τγτγ

ττ λ
λ

eYeYY . (76)

After these introductory remarks, assume that markets are weakly complete. Let X be a random 
variable such that TBX > . There exists a portfolio strategy tV  such that XVT = . Hence, 

0: >=−=−= YBXBVY TTTT . Therefore, a solution to the Stochastic Differential Equation (18) 

subject to YYT =  must exist. See that 

0)()()()( 2

2

2

2
>=⇔= +−+−+ τγγ

τ
τγγ

τ
T

T
T

T eYYeYY . (77)

We have three cases to consider, namely 0
1
>+τY , 0

1
<+τY  and 0

1
=+

τY . 

If 0
1
>+τY , then )( 2012

τθττ
++ =YY . Since 0

2
>+

τY  and 0
1
>+τY  it follows that 0)( 20 >τθ . 

If 0
1
<+

τY , then )(
~

2012
τθττ

++ = YY . Since 0
1
<+

τY  and 0)(
~

20 >τθ , we get that 0
2
<+τY , which contradicts 

Relation (77). 
If 0

1
=+

τY , then Equation (56) implies that 0
2
=+

τY , which contradicts Relation (77) as well. 

Conclude that the only inequalities that can hold are 0
1
>+τY  and 

0)( 20 >τθ . (78)

+
1τY  is given by Equation (75). We have three inequalities to consider for the sign of 0Y  as well. These 

are 00 >Y , 00 <Y  and 00 =Y . Working as we did for +
1τY , we see that the last two cannot occur, and as 

a result, 00 >Y  and 

0)( 10 >τθ . (79)

To prove that 0)( >iτθ  for all i, recall first that 

01)( 0 >=τθ . (80)

On the other hand, )()( 100101
τθτθτ YYY ==+  and 00 >Y , whence 

0)()( 101 >= τθτθ . (81)

In addition, )()( 202012
τθτθττ YYY == ++ . Recall that 0

1
>+τY , 00 >Y  and 0)( 20 >τθ , which yields that 

0)( 2 >τθ . (82)

Inequalities (78)–(82) prove that if markets are complete then 0)(0 >iτθ  for 2,1=i  and 0)( >iτθ  for

20=i . The above proof can be repeated to show that this is true for any *N . 
Assume that 0)( >iτθ  for every 20=i . Let X be a random variable. Markets are weakly 

complete if and only if there exists a portfolio strategy tV  such that XVT = , or XBY TT =+ , or 

TT BXY −= . Set TBXY −=:  to see that our problem is equivalent to proving the existence of a 

replicating strategy such that YYT = . In general, 0>Y  on a subset Ω⊆Ω +)( , 0<Y  on another subset 

Ω⊆Ω −)(  and 0=Y  on a third subset Ω⊆Ω )0( . These three subsets are measurable, mutually disjoint 

and their union is Ω . It suffices to prove the existence of such a portfolio in the three cases  

Y > 0, Y < 0, Y = 0. 
If Y > 0, then TY , which equals Y, must be positive. Since 0)( >iτθ  for all i, if we choose 
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)(
:

2

)()(

0

2

τθ

τγγ +−

=
TYe

Y , (83)

then 00 >Y  and a replicating strategy exists, i.e., a solution to the Stochastic Differential Equation (18), 

satisfying the boundary condition YY T=  exists. 

If Y < 0, then TY  must be negative. This time we choose 

)(
~:

2

)()(

0

2

τθ

τγγ +−

=
TYe

Y . (84)

It follows that 00 <Y  and a replicating strategy exists. 

Finally, if Y = 0, then 0=TY . We simply choose 

00 =Y  (85)

to see that 0=tY  for all t is a replicating strategy (see Poufinas [12] (pp. 404–405)). 

In the general case, we define 0Y  by Equation (83) on )(+Ω , by Equation (84) on )(−Ω  and by  

Equation (85) on )0(Ω . We next solve our SDE to see that tY  is given by Equation (66). It follows that 

ttt BYV +=  for all t and therefore XBYV TTT =+= . This proves that there exists a portfolio tV  whose 

terminal value is X and thus, markets are weakly complete. The previous proof can be repeated for  

any *N . 
To prove that if 0)(0 >iτθ  for all i, then the markets are complete, we work in a similar fashion.  

We consider as before the cases Y > 0, Y < 0 and Y = 0. 

If Y > 0, then we take 

)()(
:

2010

)()(

0

2

τθτθ

τγγ +−

=
TYe

Y  (86)

to see that 00 >Y . 

If Y < 0, then 0Y  is given by 

0
)(

~
)(

~:
2010

)()(

0

2

<=
+−

τθτθ

τγγ TYe
Y . (87)

Finally, if Y = 0, then 

00 =Y , (88)

which yields that 0=tY  is a solution to the SDE that satisfies the desired boundary condition 0== YYT . 

In the general case, depending on the sign of Y, we choose 0Y  as is given by Equations (86)–(88) to 

realize that a solution of the SDE that satisfies the boundary condition YYT =  exists. This proves that 

the markets are weakly complete. The same proof can be given for any *N . This finishes the proof of 

our proposition. Q.E.D. 

C. Proof of Proposition 3 

We work as in the proof of Proposition 2 to see that if a solution exists, then it should be given by 
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)(

1

)(
0 ])([

*

t
N

i
it eetHYY i

i

γτγ
τβ

=

−−= . (89)

As before for all *1 Ni =  we have iii
YY βττ −= −+  or 

Γ+−−+−+
−

−+−−= )(
1iiiiii

YYYYYY ττττττ λ  (90)

+−Γ+−ΓΓ+−
−

−+−=−⇔
1

111 )()(
iiiiii

YYYYYY ττττττ λλ , (91)

since +− ≥
ii

YY ττ . We set q1:=Γ  and Γ=Λ 1λ . As a result, )1,0(∈Λ  and 

+−+−+−
−

−Λ=−Λ−−
1

)()(
iiiiii

YYYYYY q
ττττττ . (92)

We define x, C, M by 

−++− −=−=
iiii

YYYYx ττττ: , (93.1)

0:
1
≥−= +−

−ii
YYC ττ , (93.2)

0: ≥Λ= CM , (93.3)

to see that Equations (90) and (92) can be respectively written as 
Γ+= )( Cxx λ , (94)

MCxxq :=Λ=Λ− . (95)

If a solution of Equation (94) exists, then it is nonnegative and this solution is iβ . Let 

xxxf q Λ−=:)( , (96)

Mxxx q −Λ−=Σ :)( . (97)

If M = 0, then we are looking for 0≥x  such that 0=Λ− xxq  or 0)( 1 =Λ−−qxx . The solutions of 

the latter equation are 0=x  or )1(1 −Λ= qx . Since )1,0(∈Λ , M = 0 if and only if C = 0 or equivalently  

M = 0 if and only if +−
−

=
1ii

YY ττ . We take 0=x  or )1(111 Γ−− =Λ= λqx , depending on whether costs are 

being charged or not. 

If M > 0, then we prove that Σ has exactly one root. Indeed, since q > 1, it follows that 
0)0( <−=Σ M  and +∞=Σ+∞→ )(lim xx . As a consequence, a strictly positive solution to the  

equation 0)( =Σ x  exists. This solution is unique. Indeed such a solution satisfies f(x) = M > 0, and  

can be readily seen to be in ),( )1( ∞+Λ Γ−Γ . On the other hand, f is strictly increasing on

),(),)(( )1()1( ∞+Λ⊇∞+ΛΓ Γ−ΓΓ−Γ , thus proving the uniqueness of the solution. 

To illustrate the dependence of x on λ and CYY
ii

=− +−
− 1ττ  we set 

);(:
1

+−
−

−=
ii

YYRx ττλ . (98)

We can extend the notation introduced by Equation (98) to the case M = 0, i.e., when 0
1
=− +−

−ii
YY ττ . 

Recall though that when M = 0, x can take two values, namely 0 and )1(1 Γ−= λx . If we keep the strictly 
positive one, then );( ⋅λR  becomes a well-defined function on ),0[ ∞+ . In order to examine all the 
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potential scenarios, we will not exclude the zero solution. This “solves” the problem of the choice of iβ . 

Pretending that we know 0Y , we choose );(: 01 1
YYR −= −

τλβ . It follows that 111
βττ −= ++ YY . Similarly

);(:
122
+− −= ττλβ YYR . If we use )()( 1

1

−

−

−+− = ii

ii
eYY τγτγ

ττ , then 

)1;(: )()( 1

1
−= −

−

−+ ii

i
eYRi

τγτγ
τλβ , (99)

for *1 Ni =  (if 2* >N ). Moreover, if a solution of our SDE exists, it will be given by 

)(

1

)()()(
0 ])()1;([

*

1

1

t
N

i
t eetHeYRYY i

i

ii

i

γτγ
τ

τγτγ
τλ

=

−−+ −−= −

−
. (100)

We would have been able to evaluate 
ιτY  if we were able to evaluate 0Y . We prove that such a 0Y  

exists. For that, we fix an },,1{ Ni ∈ . We define 

+
−

=
1

:~
ιτYy , (101.1)

1: )()( 1 −= −− iiec τγτγ , (101.2)

0:
1
≥= +

−ιτYy . (101.3)

Observe that cyycC == ~ . See that Equation (95) becomes 

ycxxq ~Λ=Λ− , (102)

or 

cyxxq Λ=Λ− . (103)

Equation (103) has a zero and a strictly positive solution if cy = 0, and just a strictly positive solution if 
cy > 0. If c > 0, then the solution x is a function of y, namely x = R(λ; cy) = x(y), on ),0( ∞+ , and 

)()( Γ= yOyx  as +∞→y . Moreover, if we keep the positive solution of Equation (103) whenever  

y = 0, then x is a continuous function of y on ),0[ ∞+ . 

Similarly, if x is the solution of Equation (102), then x is a continuous function of y~  on ),( ∞+−∞ , 

provided that we keep its strictly positive value at 0~ =y . In addition, )~()~( yOyx =  as +∞→y~ . 

To prove the previous claim, observe that in general 0≥c . If c = 0, then the right-hand side of 

Equation (103) does not depend on y and x is constant and equal to 0 or )1( Γ−ΓΛ . As a consequence, it 

is trivially continuous with respect to y. Therefore, the assumption that c > 0 is necessary before we 

are able to make any claim concerning the dependence of x on y. We assume for the rest of the proof 
that c > 0, 0≥y . 

We prove that x is a continuous function of cyM Λ= . M is a continuous function of y and thus the 

conclusion will follow. Recall that for each 0≥M , there exists a unique strictly positive solution of 

the equation f(x) = M. Let this solution be x(M). In addition, we have proved that f is a strictly 
increasing function on ),[ )1( ∞+Λ Γ−Γ  and its image is ),0[ ∞+ . Therefore, 1−f  is a well-defined 

function, and )()( 1 MfMx −= . It suffices to show that 1−f  is continuous. 

Consider the restriction of f on any interval ],[: 1
1 dΓ−ΓΛ=Δ . Its image is )](,0[:2 df=Δ . Thus, 

21: Δ→Δf  is strictly increasing, onto and continuous, and as a result 12
1 : Δ→Δ−f  is strictly 
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increasing, onto and continuous. This proves that 1−f  is continuous on any interval of the form ],0[ D , 

and as a result that 1−f  is continuous on ),0[ ∞+ . Thus, )()( 1 MfMx −=  is a continuous function of 

M for 0≥M  and as a consequence x is a continuous function of y. If we keep x = 0 for cy = 0, then x is 
a continuous function of y on ),0( ∞+ . 

To prove that )()( Γ= yOyx  as +∞→y  we take )(1 cy Λ> . Recall that cyxxq Λ=Λ−  or 

cyxxq Λ+Λ= . This yields that 

1)( 1 >Λ≥Λ≥ xcyxcyx qq . (104)

Hence, x(y) > 1 for )(1 cy Λ>  and the second of the Inequalities (104) holds as strict inequality. It 

follows that )()]([ yxyx q >  and thus xxq −<− . This yields that 

qqqq xxxxxcy )1( Λ−=Λ−>Λ−=Λ . (105)

Divide by )1( Λ−  to see that 

xy
cy

xy
cy

x
cy q

q
q >








Λ−
Λ⇔>








Λ−
Λ⇔>

Λ−
Λ Γ

Γ

111
1

1

. (106)

From Inequalities (104) and (106) it follows that 

ΓΓΓ
Γ

Λ>>







Λ−
Λ

ycyxy
cy

)()(
1

. (107)

Inequalities (107) imply the desired result 

)()( Γ= yOyx as +∞→y . (108)

If we define y~  by +
−

=
1

:~
ιτYy  as in Equation (101.1), then a similar proof can be given. We can just 

replace y by y~:=ψ  in the previous (in)equalities to realize that (103)–(108) hold as they are. 

To prove that markets are weakly complete, it suffices to show that for any X, there exists a 
replicating strategy tV  such that XVT = . Let TBXY −=: . Our problem now is equivalent to finding a 

strategy tY  such that YYT = . We may assume without loss of generality that 2* =N . We consider 

three different cases, namely Y > 0, Y = 0 and Y < 0. 
Let Y > 0. Then YYT = . This yields that 

0)()( 2

2
>= +−+ τγγ

τ
T

T eYY . (109)

Recall that 222
βττ −= −+ YY , )()( 12

12

τγτγ
ττ

−+− = eYY . As a result, 

);(
1222

+−−+ −−= ττττ λ YYRYY  (110)

+−+−+ −−−=⇔
2

12

1

12

1
)1;(0 )()()()(

τ
τγτγ

τ
τγτγ

τ λ YeYReY . (111)

We define +−+−++ −−−=
2

12

1

12

11
)1;(:)( )()()()(

τ
τγτγ

τ
τγτγ

ττ λ YeYReYYg , and set 1: )()( 12 −= − τγτγec , +=
1

: τYy , 
)()( 12: τγτγ −= ep . Then +−−=

2
);()( τλ YycRypyg . Let us restrict ourselves to solutions 0≥y  of g(y) = 0 

and drop the absolute values. 0);( ≥cyR λ  and is a continuous function of y. If c > 0, then );( cyR λ  is 

a continuous function of y on ),0[ ∞+ , provided that we keep its strictly positive value at y = 0. If c = 0, 

then )0;();( λλ RcyR =  is constant with respect to y. Therefore, g(y) is a continuous function of y. 



Int. J. Financial Stud. 2015, 3 125 
 

 

Moreover, 0)0;()0(
2
<−−= +

τλ YRg  since 0
2
>+τY  and 0)0;( ≥λR . In addition, +∞=+∞→ )(lim ygy . If 

c > 0, this follows since )();( Γ= yOcyR λ  as +∞→y  and )1,0(∈Γ . If c = 0, then 0)0;( ≥λR  is a 

nonnegative number that does not depend on y. In both cases the dominating term is yp and p > 0 

holds. Conclude that there exists a strictly positive solution to the equation g(y) = 0, and consequently 
a strictly positive solution +

1τY  to Equation (111). −
2τY  is given by )()( 12

12

τγτγ
ττ

−+− = eYY . We now move to 

the time instant 1τ=t . Equation (111) becomes 

)1;( )(
0

)(
0

11

1
−−=+ τγτγ

τ λ eYReYY . (112)

To prove that there exists a 0Y  that satisfies Equation (112), we work as we did for i = 2. Recall that 

0)( 0 =τγ . We define 1: )( 1 −= τγec , 0: Yy = , )( 1: τγep = . Then, )(:);(0
1

ygYycRyp =−−= +
τλ .  

Since 0
1
>+τY , our analysis to find +

1τY  can be carried along as it is, to prove that a strictly positive 0Y  

exists. Then −
1τY  will be given by )(

0
1

1

τγ
τ eYY =− . Therefore, a replicating strategy tY , whose final value 

is Y, does exist. 
If Y = 0, since YYT = , conclude that 0=TY . As a consequence, 

0)()( 2

2
== +−+ τγγ

τ
T

T eYY . (113)

Hence at 2τ=t  the equation that holds is 

);(
1222

+−−+ −−= ττττ λ YYRYY  (114)

)1;(0 )()()()( 12

1

12

1
−−=⇔ −+−+ τγτγ

τ
τγτγ

τ λ eYReY . (115)

We define c, y and p as we did for the case Y > 0 at 2τ=t to realize that )(:);(0 ygycRyp =−= λ . 

We will attempt to find a nonnegative solution of the equation g(y) = 0. Thus, we drop the absolute 
values. If we use the zero value of )0;(λR , then y = 0 is a solution. If we use the positive value of 

);( cyR λ  at y = 0, then we proceed as we did when Y was strictly positive. At 1τ=t , the equation we 

have to solve is 

)1;( )(
0

)(
0

11

1
−−=+ τγτγ

τ λ eYReYY . (116)

Once more we set )(:);(0
1

ygYycRyp =−−= +
τλ  and look for nonnegative solutions y of g(y) = 0 and 

thus drop the absolute values. We consider two cases that have to do with the value of +
1τY  as it was 

determined by our analysis for 2τ=t . If 0
1
=+τY , then we work exactly as we did at time instant 2τ=t

and Y = 0. If +
1τY  is strictly positive, then we work as we did at 2τ=t  when Y > 0. As a consequence, 

there exists a portfolio strategy tY  whose terminal value is Y = 0. 

If Y < 0, it follows that 0<=YYT . Therefore, 

0)()( 2

2
<= +−+ τγγ

τ
T

T eYY . (117)

At time 2τ=t  we have once more that 

)1;( )()()()( 12

1

12

12
−−= −+−++ τγτγ

τ
τγτγ

ττ λ eYReYY . (118)

Take c, y, and p to be defined as when Y > 0. Then )(:);(0
2

ygYycRyp =−−= +
τλ . 
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If c > 0, then we keep the positive value of )0;(λR . See though that now +−−=
2

)0;()0( τλ YRg  can 

be strictly negative, zero or strictly positive, since 0)0;( <− λR  and 0
2
>− +

τY . If g(0) < 0, then using 

+∞=+∞→ )(lim ygy  we conclude as before that there exists a y > 0 such that g(y) = 0. If g(0) = 0, then  

y = 0 is the solution to the equation g(y) = 0. Finally, if g(0) > 0, then we see that −∞=−∞→ )(lim ygy . 

This is true since )();(
Γ= yOycR λ  as +∞→y  and the coefficient p of the dominating term yp is 

positive. Therefore, there exists a strictly negative solution to the equation g(y) = 0. As a consequence, 

if c > 0, then there is always a solution to g(y) = 0, which is positive, zero or negative depending on 

whether g(0) < 0, g(0) = 0 or g(0) > 0 respectively. 
If c = 0, then if we keep the zero value of )0;(λR , then the equation we have to solve becomes 

)()( 12

12

τγτγ
ττ

−++ = eYY , (119)

which yields that 

0)()( 12

21
<= +−++ τγτγ

ττ eYY . (120)

Therefore, there exists a strictly negative solution for +
1τY  in this case. If we keep though the strictly 

positive value of )0;(λR , then as in the case c > 0, +−−=
2

)0;()0( τλ YRg  can be strictly negative, zero, 

or strictly positive. Working as we did when c > 0, we realize that there exists a solution which is 

strictly positive, zero, or strictly negative, if g(0) < 0, g(0) = 0, or g(0) > 0 respectively. This is true, 
since +∞=−= +∞→+∞→ )]0;([lim)(lim λRypyg yy and −∞=−= −∞→−∞→ )]0;([lim)(lim λRypyg yy . 

Conclude that there is always a value for +
1τY  so that Equation (108) holds. We move to the time instant 

1τ=t  to recover 0Y  from +
1τY . The equation that we have to solve is 

)1;( )(
0

)(
0

11

1
−−=+ τγτγ

τ λ eYReYY . (121)

We take c, y, and p as before to see that we are looking for a solution of )(:);(0
1

ygYycRyp =−−= +
τλ . 

Recall that +
1τY  may be strictly positive, zero, or strictly negative. There exists a solution to g(y) = 0 in 

each one of these cases. Indeed, if 0
1
>+τY , we work as we did when Y > 0 and +

1τY  to see that g has a 

strictly positive root, which is the value we assign to 0Y . If, on the other hand, 0
1
=+

τY , then we work 

as in the case Y = 0 and 0
1
=+

τY  to show that there is always a solution to the equation g(y) = 0 that is 

either zero or strictly positive. Finally, if 0
1
<+τY , we work exactly as we did for the case Y < 0, +

2τY  at 

the time instant 2τ=t . It thus follows that there always exists a solution to the equation g(y) = 0, 

which is strictly positive, zero, or strictly negative, depending on whether g(0) < 0, g(0) = 0, or g(0) > 0 

respectively. We have thus proved that if Y < 0, then markets are weakly complete. 
In general, there is a subset Ω⊆Ω +)(  on which Y > 0, a subset Ω⊆Ω )0(  on which Y = 0 and a 

subset Ω⊆Ω −)(  on which Y < 0. These three subsets are measurable, mutually disjoint and their union 

is Ω . Working as we did above on each of these subsets it follows that there is always a replicating 
strategy tY  whose terminal value is Y. Thus, markets are weakly complete. Q.E.D. 
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D. Proof of Theorem 1 

Recall that iii
YY βττ −= −+ and 0≥iβ . Use Equation (103) at 1τ=t  to see that the latter is equivalent to 

000 111111 1
)(

1

1
YYYYYYaYY −

−
+−+−

−
=− −−−++−

ττττττ λ
λ

λ
 

(122)
.

1
)(

1

1
0001 1111

YYYYYYa −
−

+−+−
−

=⇔ −−−+
ττττ λ

λ
λ

β  

We consider two cases depending on whether 0)(0 =Ψ
iτα  or 00 )( αα τ =Ψ

i
, where 

+−−+
−

−+−=Ψ
1

:
iiiii

YYYY τττττ . (123)

If 0)(
10 =Ψτα , then 0

1
=Ψτ , which can happen if and only if 011

YYY == −+
ττ . Since iii

YY βττ =− −+ , this 

implies that 

01 =β . (124)

In addition, 0)( 1 =τγ  since )(
0

1

1

τγ
τ eYY =−  provided that 00 ≠Y . If 00 =Y , then 011

YYY == −+
ττ . As a 

consequence, )(
0

t
t eYY γ=  on ),0[ 2τ . Moreover, if 1* =N , then )(

0 11

T
T eYYYY γ

ττ
−+− ===  and thus the 

desired solution is )(
0

t
t eYY γ=  for ],0[ Tt∈ . 

If on the other hand, 00 )(
1

αα τ =Ψ , then 

.
11

1
001 1

YYa −
−

+
−

= −
τλ

λ
λ

β  (125)

This yields that 

0
)(

0
)(

0 1

1
1

1
11

1
α

λλ
λ τγτγ

τ −
−−

−
−=+ eYeYY  (126)

1
11

1 )(
0

)(
00

11

1
−

−
−=

−
+⇔ + τγτγ

τ λ
λα

λ
eYeYY . (127)

With the exception of the term 0)]1([ αλλ −  the previous equalities appear in the proof of Proposition 2. 

With )(0 iτθ  and )(
~

0 iτθ  as given by Equations (25) and (27) respectively, we can readily see that if 

00 ≥Y , then 

)(
1

1
10001
τθα

λτ YY =
−

++  (128)

and if 00 <Y , then Equation (110) is equivalent to 

)(
~

1

1
10001
τθα

λτ YY =
−

++ . (129)

Similar conclusions can be drawn for any *1 Ni = . 

Without loss of generality we assume once more that 2* =N . We show first that if markets are 
weakly complete, then 0)(0 >iτθ  for 20=i . Consider a random variable TBX > . There exists a 

replicating strategy tV , whose terminal value is X, i.e., XBYV TTT =+= . As a result, 
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0: >=−= YBXY TT . This means that there exists a solution of the Stochastic Differential Equation (18) 

that satisfies YYT = . Thus, 

0)()( 2

2
>= +−+ τγγ

τ
T

T eYY . (130)

At this point recall that 

1
1

)(
1

1 )()()()(
0

12

1

12

122
−

−
−=Ψ

−
+ −+−++ τγτγ

τ
τγτγ

τττ λ
λα

λ
eYeYY . (131)

We have two cases to consider as far as 0α  is concerned. If 0)(
20 =Ψτα , then +−+ ==<

122
0 τττ YYY , 

which yields that 

0)()( 2

1
>= +−+ τγγ

τ
T

T eYY , (132)

and thus 1)()( 12 =− τγτγe . Therefore, Equation (131) becomes 

0
12
>= ++

ττ YY . (133)

Moreover, 

01)( 20 >=τθ . (134)

If 00 )(
2

αα τ =Ψ , then we consider the three cases 0
1
>+τY , 0

1
<+

τY  and 0
1
=+

τY . 

If 0
1
>+τY , then 

)(
1

1
200 12
τθα

λ ττ
++ =

−
+ YY . (135)

The left-hand side of Equation (135) is positive since 0
2
>+τY , 00 >α , 10 << λ . In addition, it is our 

assumption that 0
1
>+τY . Therefore, 

0)( 20 >τθ . (136)

If 0
1
<+

τY , then 

)(
~

1

1
200 12
τθα

λ ττ
++ =

−
+ YY . (137)

Since 0
1
<+

τY  and 0)(
~

20 >τθ the right-hand side of Equation (137) is negative. Its left-hand side 

though was just seen to be positive, hence a contradiction. 
Finally, if 0

1
=+

τY , then Equation (114) becomes 

0
1

1
02
=

−
++ α

λτY . (138)

As before, the left-hand side of Equation (138) is strictly positive and thus it cannot hold. Conclude, 
that if 00 )(

2
αα τ =Ψ , then the only (in)equality that can hold is 0

1
>+τY , which yields that 0)( 20 >τθ . 

Combining now our results for 00 =α  and 00 >α , we realize that in both of these cases we have that 

0
1
>+τY  and 0)( 20 >τθ . 

Going now to the time instant 1τ=t , remember that we have seen that 
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1
1

)(
1

1 )(
0

)(
00

11

11
−

−
−=Ψ

−
++ τγτγ

ττ λ
λα

λ
eYeYY . (139)

We consider (as we did when 2τ=t ) two cases for )(
10 τα Ψ , namely 0)(

10 =Ψτα  and 00 )(
1

αα τ =Ψ . 

For the second one we consider the three possible (in)equalities 00 >Y , 00 <Y  and 00 =Y  to realize 

that 00 >Y  is the one that holds. Finally, we conclude that in any case 00 >Y  and 0)( 10 >τθ  must hold. 

Using the fact that 01:)( 00 >=τθ  and the results of our discussion above we realize that if markets 

are weakly complete, then 0)(0 >iτθ  for all *1 Ni = . 

Let us go now to the proof of the inverse statement, i.e., if 0)(0 >iτθ  for all *1 Ni = , then 

markets are weakly complete. This is equivalent to proving that given a random variable X there exists 
a portfolio strategy tY  with terminal value TBXY −=: . Remember that Y > 0 on a subset Ω⊆Ω +)( ,  

Y < 0 on another subset Ω⊆Ω −)(  and Y = 0 on a third subset Ω⊆Ω )0( . These three subsets are 

measurable, mutually disjoint and their union is Ω . To show that a replicating strategy exists, it 

suffices to show that this is true when Y > 0, Y < 0 and Y = 0. 
If Y = 0, then 0==YYT . As a result 

0)()( 2

2
== +−+ τγγ

τ
T

T eYY . (140)

We take 0
22110 ====== +−+−

TYYYYYY ττττ . This yields that 0)()(
12 00 =Ψ=Ψ ττ αα , whence 

],0[,0 TtYt ∈∀=  (141)

is the desired replicating strategy. 
If Y > 0, then 0>=YYT . As a consequence, 

0)()( 2

2
>= +−+ τγγ

τ
T

T eYY . (142)

Going to +
1τY , we see that 

1
1

)(
1

1 )()()()(
0

12

1

12

122
−

−
−=Ψ

−
+ −+−++ τγτγ

τ
τγτγ

τττ λ
λα

λ
eYeYY . (143)

If 1)()( 12 =− τγτγe  then +− =
12 ττ YY . Once more, we take +−+ ==

122 τττ YYY . Then 0)(
20 =Ψτα . If on the other 

hand 1)()( 12 ≠− τγτγe , then 0)(
20 ≠Ψτα  and Equation (126) becomes 

)(
1

1
200 12
τθα

λ ττ
++ =

−
+ YY , (144)

if we assume that 0
1
>+τY . Equation (144) implies that 

0
)(

)]1(1[

20

02

1
>

−+
=

+
+

τθ
αλτ

τ

Y
Y . (145)

To find what 0Y  should be we work as we did for +
1τY . We thus see that if 1)( 1 =τγe , then we choose 

+− ==
110 ττ YYY . However, if 1)( 1 ≠τγe , then by assuming a priori that 00 >Y , we see that 

0
)(

)]1(1[

10

0
0

1 >
−+

=
+

τθ
αλτY

Y . (146)
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The positivity of )( 10 τθ  guaranteed the a posteriori positivity of 0Y , hence being compatible with our 

original choice of 00 >Y . Conclude that if Y > 0, then we can always recover +
2τY , −

2τY , +
1τY , −

1τY and 0Y . 

Therefore, after having found +
2τY , −

2τY , +
1τY , −

1τY and 0Y  we can use Equation (18) to find tY  for 

],0[ Tt∈ . 

Finally, if Y < 0, then 0<=YYT . This yields that 

0)()( 2

2
<= +−+ τγγ

τ
T

T eYY . (147)

To find +
1τY  recall one more time that Equation (143) holds. As before, if 1)()( 12 =− τγτγe , then +− =

12 ττ YY  

and we thus take +−+ ==
221 τττ YYY . As a result 0)(

20 =Ψτα . If 1)()( 12 ≠− τγτγe , then 0)(
20 ≠Ψτα  and 

Equation (143) becomes 

1
11

1 )()()()(
0

12

1

12

12
−

−
−=

−
+ −+−++ τγτγ

τ
τγτγ

ττ λ
λα

λ
eYeYY . (148)

Observe though that 0
2
<+

τY  and 0)]1/(1[ 0 >− αλ  and as a result the left-hand side of Equation (148) 

can be positive, zero, or negative. This determines the sign of +
1τY . 

If 0)]1/(1[ 02
>−++ αλτY , then we choose 0

1
>+τY , to see that Equation (148) becomes 

)(
1

1
200 12
τθα

λ ττ
++ =

−
+ YY  (149)

and thus +
1τY  is given by 

0
)(

)]1(1[

20

02

1
>

−+
=

+
+

τθ
αλτ

τ

Y
Y , (150)

which is compatible with our original choice of a strictly positive +
1τY . 

If 0)]1/(1[ 02
=−++ αλτY , then we take 

0
1
=+

τY  (151)

to realize that Equation (148) holds. 
If 0)]1/(1[ 02

<−++ αλτY , then we take 0
1
<+

τY  to see that Equation (131) becomes 

)(
~

1

1
200 12
τθα

λ ττ
++ =

−
+ YY . (152)

It follows that 

0
)(

~
)]1(1[

20

02

1
<

−+
=

+
+

τθ
αλτ

τ

Y
Y , (153)

which is in accordance with our a priori assumption that 0
1
<+

τY . Conclude that in any case we were 

able to recover +
1τY  from +

2τY . 

We have just seen that we have three possible cases for +
1τY , i.e., 0

1
>+τY , 0

1
=+

τY , or 0
1
<+τY .  

To find 0Y , we follow the same exact steps we did when we were looking for +
1τY , having had 
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knowledge of +
2τY  and its sign. It thus follows that if Y < 0, then we can always work backwards to find 

+
1τY , −

1τY  and 0Y . Then we can use Equation (18) to find tY  on the interval ],0[ T . Having proven that 

also in the cases Y = 0 and Y > 0, we conclude that there exists a portfolio strategy tY  such that YYT =
no matter what the sign of Y is and as a consequence, that there is a portfolio strategy tV  such that 

XVT = . This proves that if 0)(0 >iτθ  for all *1 Ni = , then markets are weakly complete and thus 

completes the proof of our theorem (for more details see Poufinas [12] (pp. 515–527)). Q.E.D. 

E. Proof of Theorem 2 

The proof is similar to that of Proposition 3. Recall that iii
YY βττ −= −+  and 0≥iβ  and thus 

Γ+−+−+−+−+−
−−

−+−+−+−=− ))(())((
110 iiiiiiiiii

YYYYYYYYYY ττττττττττ λα . (154)

We now set +− −=
ii

YYx ττ: , +−
−

−=
1

:
ii

YYC ττ  to see that Equation (154) becomes 

Γ+++= )()(0 CxCxx λα  (155)

)())(( 11
0 CxCxx +=+−⇔ ΓΓ λα . (156)

Set Γ= /1:q , Γ=Λ 1: λ . Then q > 1 and )1,0(∈Λ . Equation (156) can be written as 

MCxCxx q :))(( 0 =Λ=Λ−+−α , (157)

where 0: ≥Λ= CM . With the exception of the term )(0 Cx +α , this is identical to Equation (95).  

We are looking for a nonnegative solution of Equation (157). Since x and C are nonnegative numbers, 
then 0)(0 =+Cxα  if and only if x = 0 and C = 0. 

Let 

xCxxxf q Λ−+−= ))((:)( 0α , (158)

MxCxxx q −Λ−+−=Σ ))((:)( 0α . (159)

If M = 0, then C = 0. Equation (157) becomes 
Γ+=⇔Λ=+− xxxxCxx q λαα )())(( 00 . (160)

x = 0 is a solution. It also has a unique strictly positive solution. If such a solution exists, then 

00 axx >+= Γλα . Let 00 :)( αλ −−=Σ Γxxx  to see that 0)0( 00 <−=Σ α  and +∞=Σ+∞→ )(lim 0 xx .  

The second equality follows since )1,0(∈Γ  and thus the dominating term is x. The continuity of 0Σ
implies the existence of some x > 0 that is a root of 0Σ  and thus a solution to Equation (160).  

Set Γ−= xxxf λ:)(0 . A solution to the equation 0)(0 =Σ x  satisfies 00 )( α=xf , and is readily seen to be in 

),( )1(1 ∞+Γ−λ , on which 00 >f . In addition, 0f  is strictly increasing on ),(),)(( )1(1)1(1 ∞+⊇∞+Γ Γ−Γ− λλ . 

As a result, the uniqueness of the solution of 00 )( α=xf  follows. 

If M > 0, then C > 0. Therefore 00 )( αα =+Cx . Equation (157) becomes 

0)( 00 >>++= Γ αλα Cxx . (161)

Such a solution exists and it is unique. Equation (157) is equivalent to 
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Cxx q Λ=Λ−− )( 0α  (162)

)()()( 000 ααα +Λ=−Λ−−⇔ Cxx q  (163)

** : MCXX q =Λ=Λ−⇔  (164)

where 0: α−= xX , 0: 0
* >+= αCC , 0: ** >Λ= CM . We define *

1 :)( MXXX q −Λ−=Σ  and 

XXXf q Λ−=:)(1  and repeat the argument of the previous paragraph for 0f , 0Σ  to prove the existence of 

a unique solution X to 0)(1 =Σ X  and thus a unique solution x to (161). 

So far we have proved that there always exists a solution to Equation (157) for x. If M = 0, then 
there is either a zero solution or a strictly positive one, which is greater than 0α . If M > 0, then there is 

a unique positive solution, that is greater than 0α . We denote this unique solution by 

);,(:
10

+−
−

−=
ii

YYRx τταλ . (165)

We can use the same notation even in the case that M = 0, with the difference that now 

);,(
10

+−
−

−
ii

YYR τταλ  may be zero or a strictly positive number. At this point we do not reject any of 

these two possible values in order to see how our choice is going to affect our analysis. If we keep the 
positive value, then );,(: 0 ⋅= αλRx  becomes a well-defined function on ),0[ ∞+ . Observe that

);,(
10

+−
−

−=
ii

YYRi τταλβ . This means that a solution to our stochastic differential equation is given by 

)()()()(

1
00 ])()1;,([ 1

1

*

t
N

i
t eetHeYRYY i

i

ii

i

γτγ
τ

τγτγ
ταλ −−+

=

−−= −

− , (166)

since )()( 1

1

−

−

−+− = ii

ii
eYY τγτγ

ττ . Remember though that we do not know what 0Y  is and therefore we cannot 

directly evaluate +
1τY , −

1τY . An immediate consequence of our proof of the weak completeness of 

markets will be the existence of such 
i

Yτ ’s. For fixed }1{ *Ni ∈  we define 

0:~
1
≥= +

−i
Yy τ , (167.1)

1: )()( 1 −= −− iiec τγτγ , (167.2)

+
−

=
1

:
i

Yy τ . (167.3)

Observe that ycycC == ~ . See that Equation (157) becomes 

ycxx q ~)( 0 Λ=Λ−−α  (168)

ycxx q Λ=Λ−−⇔ )( 0α . (169)

Equation (169) has a zero and a strictly positive solution if 0~ =yc  and just a strictly positive solution if 

0~ >yc . If c > 0, then the solution x is a function of y~ , namely ),0( ∞+ , )~()~( Γ= yOyx  as +∞→y~ . 

Moreover, if we keep the strictly positive solution of Equation (152) whenever 0~ =y , then x is a 

continuous function of y~  on ),0[ ∞+ . Similarly, if x is the solution of (153), then );,()( 0 ycRyx αλ=  

is a continuous function of y on ),( ∞+−∞ , provided we keep its strictly positive value at 0. In 

addition, )();,()( 0

Γ== yOycRyx αλ , as +∞→y . 
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In general, 0≥c  holds. If c = 0, then the right-hand side of Equation (169) becomes 0 and therefore 

the equation has two possible solutions. One is zero and the other is strictly positive. In any case, 
)0;,();,( 00 αλαλ RycR =  is constant with respect to y and thus a continuous function of y. 

If c > 0, then let ycM Λ=: . It suffices to prove that x is a continuous function of M.  

Equation (169) becomes 

ycxx q Λ=Λ−− )( 0α  (170)

for ),( ∞+−∞∈y , if we keep the strictly positive solution at y = 0. If we keep the zero solution, then 

Equation (170) holds on ),0()0,( ∞+∪−∞ . Equation (170) is equivalent to 

*
000 )()( MXXycxx qq =Λ−⇔Λ+Λ=−Λ−− ααα  (171)

where 0: α−= xX , 0
* : αΛ+= MM . Define XXXF q Λ−=:)( . X satisfies the equation *:)( MXF = . 

Recall that for 0* ≥M  there exists a unique solution of the equation *:)( MXF = . Let us denote it by 

)( *MX . It suffices to prove that X is a continuous function of *M . This is because 0
* αΛ+= MM  is 

a continuous function of M and 0α+= Xx  is a continuous function of X. Therefore, x is a continuous 

function of ycM Λ= , and hence, x is a continuous function of y. Remember that F is a strictly 

increasing, continuous function on ),[ )1( ∞+Λ Γ−Γ  whose image is ),0[ ∞+ . Therefore, 1−F  is a  

well-defined function and )()( *1* MFMX −= . We follow an argument similar to the one in the proof of 

Proposition 3 to see that 1−F  is continuous on ),0[ ∞+ . As a result, X is a continuous function of *M . 

If +
−

=
1i

Yy τ  then the same proof can be given. 

For our second claim, i.e., )~()~( Γ= yOyx  as +∞→y~ , we need c to be strictly positive. This is 

because if c = 0, then )0;,( 0αλRx =  and this does not depend on y, as it is always constant and equal 

to zero or to a strictly positive constant. Since +∞→y  it follows that y is removed from zero and 

therefore );,()( 0 ycRyx αλ=  is a uniquely defined number which is greater than 0α . We may take, 

without loss of generality, )(1 cy Λ> . Recall that ycxx q Λ=Λ−− )( 0α , whence  

ycxycxx qq Λ≥−Λ+Λ=− )()( 00 αα  
(172)( ) 1)()( 0

1

0 >−Λ≥− axycx
qα . 

According to (172), if )(1 cy Λ> , then 1)( 0 >−αyx . Thus, the first of (172) holds as a  

strict inequality for )1,0(∈Λ . Moreover, it follows that ])([])([ 00 αα −>− yxyx q  or 

])([])([ 00 αα −−<−− yxyx q . This implies that 

xxyc q Λ−−=Λ )( 0α

(173)
)()( 000 ααα −Λ−−=Λ+Λ⇔ xxyc q

qq xxyc )()( 000 ααα −Λ−−>Λ+Λ
qxyc ))(1( 00 αα −Λ−>Λ+Λ⇔ . 

We divide by )1( Λ−  and raise both sides to q1  to get 
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⇔−>







Λ−
Λ+Λ

)(
1 0

1

0 α
α

x
yc

q

)(
1 0

0 α
α

−>







Λ−
Λ+Λ

Γ

x
yc

. (174)

Inequalities (172) and (174) yield that 

Γ

Γ

Λ>−>







Λ−
Λ+Λ

)()(
1 0

0 ycyx
yc

α
α

. (175)

It readily follows from the inequalities in (175) that 

)()(
Γ= yOyx  as +∞→y , (176)

which is the result to be proven. 

If we take +
−

=
1

~
i

Yy τ , an identical proof can be given to show the continuity of the solution )~( yx  and 

that )~()~( Γ= yOyx  as +∞→y~ . 

The proof of Proposition 3 can be repeated beyond this point to establish the weak completeness of 

markets. Q.E.D. 

F. Proof of Corollary 1 

If c > 0, then the solution to the Equation (43) is a function of y on ),0()0,( ∞+∪−∞ , let it be  

x = x(y). In addition, if we keep the strictly positive solution of equation )(0 ycxx +=α  whenever  

y = 0, then x is a constant function of y on ),( ∞+−∞ . More precisely, 0)( α=yx  on ),( ∞+−∞  and thus 

x is a continuous function of y on that interval. If we do not keep the strictly positive solution at  
y = 0, then 0)( α=yx  on ),0()0,( ∞+∪−∞  and thus it is continuous on this set. Similarly, for  

Equation (44) if c > 0 and we keep the strictly positive solution at 0~ =y , then 0α=x  on ),0[ ∞+ .  

If we keep the zero solution, then 0α=x  on ),0( ∞+  and is continuous only on that set. 

If x > 0, then 0α=x  by Equation (43). If c = 0, then our equation becomes )(0 xx α= , whose 

solutions are x = 0 or 0α=x . No matter which solution we keep, it is continuous since it is constant 

and 0)( =∀ yxy  or 0)( α=∀ yxy . 

If, however, c > 0, then for 0≠y  we have 0>+ ycx  and thus 00 )( αα =+ ycx , which yields that 

0α=x . For y = 0 we have again two options, namely x = 0 and 0α=x , from which the continuity or 

discontinuity argument follows. We work in a similar fashion for the solution of the Equation (144). 

The proof of Proposition 3 can be carried along in this case as well. Moreover, since 
),()( 0 ycRyx α=  does not depend on y, and is a constant, we do not have to say anything about its 

behavior, as +∞→y . Q.E.D. 
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